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Abstract. Starting from the principles of local relativistic Quantum Theory without
long range forces, we study the structure of the set of superselection sectors (charge quan-
tum numbers) and its implications for the particle aspects of the theory. Without assuming
the commutation properties (or even the existence) of unobservable fields connecting
different sectors (charge-carrying fields), one has a particle-antiparticle symmetry, an intrinsic
notion of statistics for identical particles, and a spin-statistics theorem. Particles in
"pseudoreal sectors" cannot be their own antiparticles (a variant of Carruthers' theorem).
We also show how scattering states and transition probabilities are obtained in this frame.

I. Introduction

In [1] we studied the structure of the set of charge quantum numbers
(or superselection rules in elementary particle physics) as far as it follows
from the general principles of local quantum physics. The setting and
the main results may be sketched as follows. One considers the theory
to be specified by the algebra 21 which is generated by the local observ-
ables1. Assuming the existence of a state2 ωθ9 corresponding to the
physical vacuum, we restrict our attention to the class of those states
which become indistinguishable from ω0 in asymptotic observations
(observations outside a sufficiently large region of space). The pure states

* Partly supported by CNR.
1 The observables which can be measured in a space-time region & generate the

subalgebra %(Θ). The principle of locality is expressed in terms of these; it requires that
two observables commute if they can be measured in spacelike separated regions. There-
fore the anticommuting fields occurring in conventional quantum field theory are not
affiliated with the algebra of observables.

2 Mathematically a "state" means an expectation functional over the abstract
algebra 51.
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within this class may then be divided into superselection sectors3; the
parameters which distinguish different sectors may be interpreted
physically as charge quantum numbers. One finds:

i) there is a composition law of sectors ("addition of charges")4;
ii) there is a conjugate to each sector ("charge conjugation")5

iii) each sector has a "statistics parameter" λ whose value can be
a positive or negative inverse integer or zero;

iv) if ξ denotes a sector and ξn its nth power in the sense of i) then
there is a unitary representation &{n) of the permutation group of n
elements which commutes with the representation of the observable
algebra belonging to ξn. The equivalence class of ε{n) is determined for
all n by the statistics parameter λ belonging to the sector ξ.

We did not treat in [1] any of the particle aspects of the theory.
This will be the essential objective of the present paper. We shall there-
fore consider only Poincare invariant sectors and furthermore exclude
the case of infinite statistics (λ = 0). A brief discussion of the pathological
situation arising if λ = 0 is given in the appendix.

Sections II, III and V will serve to show that the set of Poincare
covariant representations with finite statistics is closed under the opera-
tions i) and ii) above; that positivity of the energy in the vacuum sector
implies positivity of the energy in each of these representations; and
that the statistics parameters of conjugate sectors are equal.

In Section VI we consider sectors which contain single particle states.
With the help of techniques developed by Epstein [2] one finds the ex-
pected generalizations of theorems well known in quantum field theory,
namely:

1) Conjugate Sectors contain particles with the same mass, spin
and multiplicity (particle-antiparticle symmetry).

2) The sign of the statistics parameter of a sector in which a particle
of spin s occurs is (— l ) 2 s (connection between spin and parastatistics).

3) Self-conjugate sectors may be divided into two classes called
"real" and "pseudoreal". In a pseudoreal sector a particle cannot be its
own antiparticle. (This may be regarded as a variant of Carruthers'
Theorem [3].)

Finally in Section VII we discuss the construction of incoming and
outgoing many particle states and describe collision theory. This will

3 One sector consists of all the vector states occurring in one equivalence class of
irreducible representations of 91. Thus the occurrence of superselection rules is tied to the
existence of inequivalent representations of 91.

4 The product of two sectors may lead to a reducible representation. Thus the
"addition of charges" is not always an arithmetic addition but may be analogous to the
"addition of angular momenta" in quantum mechanics.

5 Actually we need here finite statistics. See also Theorem 3.1.
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establish the connection between our intrinsic definition of statistics
(items iii) and iv) above) and the wave mechanical description of systems
of identical particles: the operators ε(π) permute the arguments of the
wave functions of asymptotic particle configurations; their physical
significance stems from the fact that they determine the metric in the
Hubert space of asymptotic rc-particle states.

The essential assumptions all concern the vacuum sector. They are:
1) Poincare covariance.
2) Positivity of the energy.
3) Duality (see [1]), which combines the principle of locality with

the requirement that the algebra of observables cannot be enlarged.
4) Weak additivity6.
We use the same notation as in [1]. As discussed there the repre-

sentations of interest may be related to the vacuum representation by
localized morphisms. Thereby all representation spaces are identified
with the space J>f0 of the vacuum representation. We shall now be con-
cerned with those localized morphisms which are Poincare covariant
and lead to sectors with finite statistics. We denote the set of these by As.

Definition, ρ e As means that
a) ρ is an irreducible localized morphism of 21.
b) The statistics parameter λρ φ 0.
c) There exists a strongly continuous representation %Q of SP, the

(covering group of the) Poincare group by unitary operators acting in

% ) ; AeW, Le0>. (1.1)

Here αL denotes the automorphism of 21 which corresponds to the
Poincare transformation L (Poincare invariance of the theory).

Note that the set of charge quantum numbers considered here is
AJJ where J denotes the set of inner localized automorphisms of 21.
To help us describe the product composition of sectors we need to work
with certain reducible morphisms as well. For this reason we introduce
the set Ar of localized morphisms defined to be the smallest set con-
taining As and closed under taking products and subrepresentations.
It turns out, see Section II, that Ar consists of covariant morphisms with
finite statistics.

II. Covariant Representations

We show that the product of covariant morphisms is covariant
(Lemma 2.1). Further if ρ is covariant with finite statistics then the

6 This assumption is only used implicitly in as much as some of the results of [1]
depend on Property B formulated in the introduction of [1]. This property has been
derived by Borchers under the above assumptions.
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Poincare operators °UQ{L) are uniquely determined by ρ and belong to
the weak closure of the representation ρ of the observable algebra
(Lemma 2.2).

Let us denote by ρL the morphism which results from "shifting"
ρ by the Poincare transformation L:

ρL = ocLρa[1 . (2.1)

If ρ is covariant then it is clear that ρL must be equivalent to ρ. In fact
we can easily write down a unitary element from 91 implementing this
equivalence. Let °UQ be as in Eq. (1.1) and, similarly, let % be the repre-
sentation of 0> in the vacuum representation of 91. We have

%{L)A%{L)~ι=aL{A) (2.2)

because of our convention identifying 91 with its vacuum representation.
Now we get from (2.1), (1.1) and (2.2)

ρL(Λ) = a J ^ ( L ) - 1 ρ(A) %(L)) = %(L) ^ ( L ) " 1 ρ(A) %

or, introducing

%L)-\ (2.3)

we have
QL = <rχL(e)Q ( 2 4 )

If ρ is localized in Θ then ρL is localized in LΘ and XL(ρ) may be
regarded as a charge transfer operator from Θ to LΘ. We see from (2.3)
that it commutes with 9I(0')n9I(L$') and hence belongs to 91; it is a
special case of the objects considered in Section III of [1].

From (2.3) and (2.2) we get the "cocycle identity"

We may sum up the above discussion by saying: given a covariant ρ
we have a family of intertwiners [1; Section IV]

XL(Q) = (QL\XL(Q)\Q) (2.6)

such that the operators XL(ρ) depend in a strongly continuous fashion
on L and satisfy the identity (2.5). The converse statement is also true
as one easily verifies: if ρ is a localized morphism and if we can find
a continuous family of intertwiners (2.6) such that the operators XL(ρ)
satisfy the identity (2.5) then ρ is covariant and ̂ ρ(L) can be obtained
from (2.3)7. We use this remark to prove

2.1. Lemma. // ρ1 and ρ2 are covariant localized morphisms so is ρ2 Qι

7 Actually ρ itself may be recovered from the cocycle XL(ρ) [1; Lemma 3.1].
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Proof. As shown in Section IV of [1] we get an intertwiner from

Q2Q1 t o (Q2QI)L by taking the cross product:

We have to show that the family

XL(Q2 QI) = XL(Qi) Q2(XL(QI)) (2-8)

is strongly continuous in L and that it satisfies the identity (2.5). Since
the representation ρ2 is locally normal each of the two factors on the
right hand side of (2.8) is strongly continuous and since each factor has
unit norm their product is strongly continuous. The validity of (2.5) for
the family XL(ρ2Qi) defined by (2.8), given the validity of (2.5) for the
XL(Qi), is checked by direct calculation. It is an example of Eq. (4.7)
in [1]. This proves the covariance of ρ2ρ1.

Remark. Using (2.3) and (2.8) the representation ^ β 2 β l corresponding
to the cocycle XL(ρ2ρί) is given by

%2Qi(L) = Q2(XL(Qi))-1 %2(L). (2.9)

Next we show

2.2. Lemma. Let ρ be covariant with finite statistics, then ρ is equiv-
alent to a finite direct sum of morphisms from As. Further

a) There is only one strongly continuous unitary representation °UQ of
0> satisfying (1.1).

b) %(L)eρ(W,Le&
c) If Qι> ρ2 a r e covariant with finite statistics and R = (ρ2\R\ρ1) then

R also intertwines from %eι(L) to °ttQ2{L).

Proof. By assumption ρ has finite statistics and hence is a finite
direct sum of irreducible representations with finite statistics [1; Sec-
tion VI]. The crucial point is now the absence of non-trivial finite
dimensional, continuous, unitary representations of 0>. Let us consider
part c) of the lemma first. If R intertwiners from ρί to ρ2 then so does
RL given by

I ) * (2.10)

for any Le&. The set of intertwiners from ρί to ρ2 is a linear space 2Γ.
For any pair R\ R from 3~ we have JR'* JR e ρi(2ϊ)'. Choosing a state ω
over £i(2iy we can define a scalar product in 3~ by

<jR/,R> = ω(jR/*R). (2.11)

Moreover we can choose ω to be faithful and invariant under the Poincare
transformations (2.10) in 3~. To see this we note that the central decompo-
sition of £>i(2ί) decomposes ρ1(2I)/ into a finite direct sum of finite
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dimensional full matrix rings. The Poincare transformations define a
*-automorphism of each of these full matrix rings since the centre of
ρ1(9I)/, being discrete, must be pointwise invariant for reasons of con-
tinuity. If we pick ω to be proportional to the trace state on each of
these full matrix rings we obtain a faithful, invariant state. But then (2.10)
gives us a unitary, continuous representation of SP in the finite dimen-
sional Hubert space ^\ This representation must be trivial and thus,
since ω is faithful, we have

RL = R
or (2.12)

R%(L) %(L)R

which is the property claimed in part c) of the lemma. Part b) is an
immediate consequence of (2.12). We need only put Q2 = Qi=Q and note
that any element of ρ(2I)' is an interwiner from ρ to ρ. This also shows
that any subrepresentation of ρ is covariant so ρ is a finite direct sum
of morphisms from Δs. a) also follows from (2.12) because Jρ = (ρ|J|ρ)
must intertwine two representations of 0* satisfying (1.1).

It follows from Lemma 2.2 that the set of covariant localized mor-
phisms with finite statistics is closed under subrepresentations. However
Lemma 2.1 and [1; Corollary 6.8] show that it is also closed under
products.

In the introduction we defined Δr to be the smallest set of localized
morphisms containing Δs and closed under taking products and sub-
representations. Thus Δr consists of covariant morphisms with finite
statistics. If ρe Δr then ρ has pure para-Bose or pure para-Fermi sta-
tistics and not a mixture of the two [1 Eq. (6.16), (6.19)]. Thus a standard
left inverse φ of ρ satisfies φ(ερ) = λρ-1 [ί; Proposition 6.5] and we may
refer to λρ as the statistics parameter of ρeΔr. This feature makes it
technically simpler to work with Δr rather than with all covariant mor-
phisms with finite statistics.

We close this section with a remark on asymptotic behaviour under
large translations.

2.3. Lemma. Let ρ e Δs, A e 21 and x a translation.
Then as x tends spacelike to infinity

Proof. For any A e $ϊ the commutator of /L X(A) with a fixed element
ρ(B) will tend to zero in norm as x tends spacelike to infinity:

|| [/LX(Λ), ρ(B)21| = || IA, βxρ(BΏ II = II {.A, ρ
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Since ρ($ϊ) is weakly dense in ^(Jf 0 ) we have by a well known generali-
zation of Schur's Lemma

Since the vacuum is invariant under °ll§ we get by (2.3)

where we have used [1; Theorem 3.9] in the last step.

III. The Conjugate Charge

We complete here the discussion of the conjugation symmetry of
sectors begun in [1; § III] by showing that the conjugate representation
πφ constructed there is equivalent to a morphism ρeAs and that the
statistics parameters of conjugate sectors are equal.

To understand how the morphism ρ is constructed, it is worth
recalling the analogy between Δs and the irreducible continuous unitary
representations of a compact group8. In this analogy the conjugation of
sectors corresponds to passing from a unitary representation of ^ to its
complex conjugate representation. However for a unitary matrix group
of dimension d, the conjugate representation may be constructed as
follows: let ρ' be the representation on the d-dimensional space of totally
antisymmetric tensors of rank (d— 1), then g-+det(g)~1ρ'(g) is the con-
jugate representation. However #->det(g) is itself nothing more than the
representation y on the 1-dimensional space of totally antisymmetric
tensors of rank d. Since both ρ' and y are constructed using anti-
symmetrized tensor powers of the original representation, it is clear how
the analogous morphisms ρ' and y may be constructed for ρ e Δs.

Let E" and En

a denote the totally symmetric and totally antisym-
metric projections in the group algebra of Ψ{n\ Given ρezl r , one may
compute the statistical dimensions of the corresponding subrepresenta-
tions of ρ" using [1; Lemma 5.3, Proposition 6.6 and Corollary 6.8] and
one finds just the result predicted by the analogy except that sym-
metrization and antisymmetrization are reversed if ρ has para-Fermi
statistics. Let

1

1
τ?f Λd — \)ίτ?d — \\ if ] ^" C\

h = εn \E>V ) it λn = < u .
ρ * Q d8 This analogy can be exhibited explicitly in the case of models where ^ plays the

role of a gauge group [4].
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There are morphisms y and ρ' equivalent to the subrepresentations of ρd

and ρd~1 projected out by E and E respectively. Let W = (ρd\W\y) and
W' = (ρd ~γ I W'\ ρ') be isometric intertwiners W W* = E and W' W * = E.
The crucial point is that since y has statistical dimension 1, d(y) = ί,
y must be an automorphism9. Hence we set

ρ = ρ > y - 1 ; (3.1)

clearly d(ρ) = d(ρ) and keeping track of the sign of the statistics para-
meters using [1; Eq. (6.16), (6.19)], we see that λQ = λΈ. Now

ρ{W'*) WA = ρ(W'*) Wγγ'^A)

= ρ{W'*)ρdγ-1{A)W = ρρ(A)ρ{W'*) W.

Now ρ(E)^.E since ρ(E) is the image under ε{d) of the (anti)sym-
metrizer of the objects 2, 3 ... d on which P ( d ) operates [1, Theorem 4.2d],
and the latter projection includes the total (anti)symmetrizer. Hence
ρ(E')E = E, ρ(W'*) W is an isometry so ρρ contains the vacuum sector
as a component which is a necessary condition for ρ to play the role
of a conjugate. Note that the covariance of ρ plays no part in this con-
struction, but if ρ is covariant then by Lemmas 2.1 and 2.2 so are ρr

and y. Also by [5; Theorem 3.1], y" 1 is covariant so ρeΔr.
The next step is to show that if ρ is irreducible then πφ^ρ where φ

is the unique left inverse of ρ.

3.1. Theorem. Let ξ e ΛJJ. There exists a conjugate charge ξ e AJJ
uniquely determined by the property that the product ~ξξ contains the
vacuum sector as a component. Moreover

a) ξ ξ contains the vacuum sector precisely once.
b) The statistics parameters λξ and λξ are equal.

Proof. Pick ρ e Δs from the class ξ and define ρ by (3.1).

We have an intertwiner R = (ρρ\R\ή defined by

R=d(ρ)ίl2ρ(W'*)W (3.2)

and the defining property of a left inverse φ shows that if we set

R = d(ρ)φ(R) (3.3)

then we get an intertwiner R = (ρρ\R\ι). Also

R* ρ(R) = d(ρ) φ(R*) ρ(R) = d(ρ) φ(R* ρρ(R))

= d(ρ) φ(RR*) = d(ρ)2 W* φ(E) W .

9 By an oversight, this general result was not stated explicitly in [1]. The argument
runs as follows: suppose d(ρ) = 1 then ρ has pure Bose or pure Fermi statistics so λρ = ± 1.
Hence φ(I + ερ) = 0 where φ is a standard left inverse of ρ. Since / + ερ is positive and φ is
faithful [1; Lemma 6.4], ερ = ±I and the result follows from [1; Proposition 2.7].
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But by [1; Lemma 5.1], d(ρ)2φ(E) = Ef. Hence R*ρ(R) = Wf*E'W = /.
We show that ρ = πφ by showing that RΩ is a cyclic vector for ρ inducing
the state ω 0 ° φ. Let X e ρ(2l)' then X = Xρ(R)* K = ρ(Λ)* XR. So XK = 0
implies X = 0 and hence RΩ is cyclic for ρ. Now A-^R*ρ(A) R satisfies
[1; Eq. (3.5), (3.6')] of the definition of a left inverse and R*R is a
multiple of the identity so R*ρ(A) R = R*R φ(A) where φ is the unique
left inverse of ρ [1; Theorem 3.9]. Hence ρ = πφ showing in particular
that ρ is irreducible. Conversely if ξ e ΔJJ is such that ξξ contains the
vacuum sector, then pick ρeΔs from the class ξ and lϊ = (ρρ| JR|ι)Φθ.
Now RΩ φ 0 and iŝ  a cyclic vector for ρ because ρ is irreducible. Arguing
as above ρ ̂  πφ so ~ξ is unique. It only remains to prove a): let S = (ρρ\S\ι)
then ( F x / g ) « ( / e x S ) intertwine_s ρ and ρ so R*ρ(S)=μ I for some
complex number μ. Hence S = ρOR*) ρ ρ{S) R = μR completing the proof.

For technical reasons it is convenient to define conjugates for
reducible morphisms and the remainder of this section, which may be
omitted on first reading, is devoted to developing the necessary for-
malism. Rather than considering arbitrary localized morphisms with
finite statistics we restrict ourselves to ρeAr.

3.2. Lemma. Let ρe Δr9 φ a standard left inverse of ρ and S = (ρρ\S\ή
then

λρε(ρ,ρ)S, (3.4)

φ(S)*Q(S) = φ(SS*) = λρS*ρ(ε,) S. (3.5)

Proof Using [1 Theorems 4.2 and 4.3] we have

S = ε(ρ, ρρ) ρ(S) = ρ(ε(ρ, ρ)) ερρ(S),

S = ε(ρ, ρρ) ρ(S) = ρ(ερ) ε(ρ, ρ) ρ(S).

Applying φ to the first equation gives (3.4). The second equation and (3.4)
give φ{S)*ρ(S) = λeS*ρ(εs)S. But φ(SS*) = φ(5*ρρ(S)) = φ(S)*ρ{S) com-
pleting the proof.

3.3.Theorem. Let ρeAr then there exists ρeAr and R — (ρρ\R\ι),
R=(ρρ\R\ι) satisfying

R*ρ(R) = I; R*ρ{R)=I, (3.6)

« = signθyβ(ρ,ρ)ojR, (3.7)

R*R=R*R=d(ρ)I. (3.8)

Further ρ and ρ have the same statistics. If Rf = {ρ'ρ\R'\ι) and
Rf =(ρρ'\R'\ι) satisfy (3.6) and (3.7) with ρ' replacing ρ then there is a
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unique intertwiner U = (ρ'\U\ρ) such that

R'=(UxIρ)R, (3.9)

R' = (IβxU)oR. (3.10)

Proof. We define ρ by (3.1), R by (3.2) and R by (3.3) where φ is to
be a standard left inverse of ρ. As in the proof of Theorem 3.1 we have
the intertwining property of R and R and R*ρ(R) = L Now (3.3) and
(3.4) give (3.7) which in turn shows R*R = R*R. However we showed
that d(ρ)~112R = ρ{W')* W is an isometry so we have proved (3.8). Now
setting

= d(ρy1R*ρ(A)R, AeM (3.11)

defines a left inverse of ρ. But I = R*ρ(R) = d(ρ) φ(R)*ρ(R) so by (3.5),
φ(Sg) = λρ I and φ is standard. Using Lemma 3.2 with ρ in place
of_ρ we deduce R = d(ρ)φ(R) from (3.7) and R*ρ(R) = d(ρ)J(RR*)

by (3.3) and (3.8). But φ is faithful by [1; Lemma 6.4] so R*ρ(R) = I
proving (3.6).

It only remains to prove the uniqueness result of the Theorem. Given
an intertwiner R' = (ρ'ρ\R'\ ή set

ί/ = (ρ' | t/ |ρ) = (/^x«*)o(Jl'χ/-) (3.12)

then UR = ρf (R)* R'R = ρ'(R*ρ(R)) Rf = Rf giving (3.9). Conversely (3.9)
for an intertwiner U = (ρf | U \ρ) implies (3.12) since ρf (R)*Rf = ρf (R)* UR
= Uρ(R)* R = U. Similarly (3.10) is equivalent to

£7 = («*x/ ? ,) °(/ f x« ') . (3.13)

Now suppose R' and R' satisfy (3.6) and (3.7) with ρ' replacing ρ. Use
(3.12) to define 17, then by (3.7) and [1; Theorem 4.3]

R' = sign{λQ)ε{ρ',ρ)o(UxIβ)oR

= signμρ) (Ia x U) o ε(ρ, ρ) o R = (/β x U) o R

proving (3.10). Now by (3.13)

U U* = R* ρ(R') U* = R* U* ρf (Rf)

and substituting for U from (3.12) we get using (3.7)

UU*=R*R'* ρf {RR') = R'*ρf (ρ(JR*) RR')

= R'*ρ'(R') = I.

The symmetry between ρ and ρ' shows that C7* U = I completing the
proof.
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We call two localized morphisms ρ and ρ conjugate if we can find
R = (ρρ\R\ι) satisfying (3.6) where R is defined by (3.7)10. In closing we
note that setting

φ(A) = d(ρy1R*ρ(A)R, AeM (3.14)

defines a standard left inverse of ρ, compare (3.11), which by (3.9) with
ρ' = ρ is actually independent of the choice of Rn.

IV. The Field Bundle

In the subsequent sections we are often faced with the task of
extending certain standard results of local quantum field theory (particle-
antiparticle symmetry, spin and statistics, construction and metric of
collision states) to cover the case where we have superselection rules
and are not given a priori unobservable fields with specified commuta-
tion relations for spacelike separations. If we introduce a concept called
the "field bundle" which is a simple and intrinsic construct in our setting
and has many structural features in common with a field algebra, we
can work in close analogy with the standard procedure. Indeed once
this analogy between a field bundle and a field algebra is understood
many of the proofs become routine.

By using morphisms we have described many inequivalent repre-
sentations in the same Hubert space Jf0. Thus, picking a vector in Jf0

determines a state on 9ί only if we also specify the representation in
which it is to be understood. Let us therefore consider as a "generalized
state vector" a pair {ρ, Ψ} of which the first member is a morphism
from Δr and the second member a vector in 3tf0. Correspondingly we
shall consider a set £% of operators acting on this vector bundle. An
element of ^ is a pair B = {ρ;B} where ρeΔr and JBeSl. It acts on
Ψ = {Q';Ψ}by

{ρ'ρ;ρf(B)Ψ}. (4.1)

This leads to the (associative) multiplication law within J*

B2B, = {QIQ21 Qi(B2)Bι}; B^fa Bi}, i = l , 2 . (4.2)

1 0 This defines a conjugation ξ->ξ in ΔJJ which is just the extension commuting
with direct sums of the conjugation defined in ΔJJ> in Theorem 3.1.

For those familiar with category theory, we remark that if $1 is treated as a category
with a single object whose morphisms are the elements of $1 then ρ and ρ become endo-
functors and (3.6) tells us that ρ is a right and left adjoint for ρ. This implies that the
symmetric monoidal category of localized morphisms with finite statistics [1 Footnote 15]
is actually a closed category [6].

1 1 It can even be shown that a localized morphism with finite statistics has a unique
standard left inverse.
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We shall naturally define the action of the Poincare group on the state
vector bundle by writing

;Ψ}={ρ;%(L)Ψ}. (4.3)

The corresponding action on $ will be denoted by the same symbol αL

as the action 21 (since the former may be considered to be an extension
of the latter). We have

*ΛQ\ B} = {ρ; X J ρ Γ ^ Λ B ) } = {ρ;%(L)B^LY1} . (4.4)

$ has a local structure Θ -> SS(&) and we can define a conjugation £ -> £ f

in & corresponding to the Hermitean conjugation in a field algebra.
We have to realize, however, that from a physical point of view there is
some redundancy in the state vector bundle and in 0β. Thus the gener-
alized state vectors {ρ; Ψ} and {σvρ;UΨ} have the same physical
meaning if U is a unitary from (J 21(0) and, similarly, {ρ B} and

{σvρ; UB} are to be identified in physics12.

The redundancy can easily be handled by considering the action of

intertwiners on the state vector and field bundles. Given T = (ρ'\ T \ ρ) it

is natural to define its action on elements in the fibre over ρ in the two

bundles by T{β;Ψ} = W;TΨ} (4.5)

(4.6)

If T is unitary, applying T to a Ψ or a B does not affect the physical
meaning.

We can now exhibit the local structure of M.

4.1. Definition. B = {ρ;B}θ @{Θ) if there exists a unitary U = (Q'\U\Q)
such that ρ' has support in 0 and UB e 21(0).

This takes care of the redundancy and one checks that

Be@{Θ) implies α L (£)e ®{LΘ). (4.7)

The following formulae are useful in the subsequent computations. They
hold whenever the left hand side is defined.

ffioΓJofl^iofζoβ), (4.8)

(Γ2 o B2) {Tx o BJ ^(T1xT2)o(B2 Bt), (4.9)

BTΨ = (T x Iρ) BΨ, where B lies in the fibre over ρ (4.10)

= (IρxT) BΨ, where Ψ lies in the fibre over ρ . (4.11)

1 2 There is a cohomological obstacle to removing this redundancy and this is related
to the problem of passing from a field bundle to a field algebra — although in a field algebra
this redundancy has been removed only to be replaced by another one involving the action
of the gauge group.
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In (4.10), (4.11) the intertwiners on the right hand side act on the vector
BΨ; this has to be distinguished from the composition of an intertwiner
(by the symbol °) with B and the subsequent action on the vector.

The local commutation relations in J* are given by

4.2. Proposition. Let Bt = {ρf; Bt} e 3S{G^ i = 1,2 and Gλ be spacelike

B1B2=ε(ρl9ρ2)o(B2B1). (4.12)

Proof. By Definition 4.1, there exist B\ = {ρj; #•} = l/t- ° Bt such that
ρ and B[ have supports in Gt and t/f = (ρ | [/; \ ρ̂ ) are unitary intertwiners.
By (4.9)

BtBj^Ufo B'd(U?o B'^iUtxUno B'iB'j

Now under the given support assumptions, B[ B'2 = B'2 B[ by (4.2) and
(Uξ x ί/f) o (U1 x C/2) = ε(ρ1? ρ2) by [1 Theorem 4.2]. Applying (4.8) then
gives (4.12) as required.

The conjugation in & is an antilinear mapping from the fibre over ρ
to the fibre over ρ. For each ρeAr we suppose ρ and R chosen as in
Theorem 3.3 and define for B = {ρ, B}

βϊ = {ρ;ρ(B)*R}. (4.13)

Thus the conjugation depends on the choice of ρ and R but not in an
essential way because we can pass from one definition to another by the
unitary intertwiner U of Theorem 3.3. We adopt the convention that
ρ = ρ and use R as the intertwiner associated with ρ. With this conven-
tion 1 3

B^ = B. (4.14)

The conjugation preserves locality in the following sense.

4.3. Lemma. If B e &(Θ) then Bf e SS(Θy) where Θί is any double cone
containing Θ in its interior.

Proof First we see that if U = (ρ' \ U \ ρ) is a unitary intertwiner and
B = {ρ;B} then

(17° 5 ^ = 1/*° fit (4.15)

where (71 = ( ρ ' | W|ρ) is a unitary intertwiner between the conjugate
morphisms, because B-^>(U°By would also be a possible way of
defining conjugation on the fibre over ρ. This shows that the localization
of £ f depends only on the physical significance of B. We can therefore
assume without loss of generality that ρ and B have their supports in Θ.
If we compare the construction of ρ given in Section III with the proof
of Lemma 2.5 of [1] we see that we may take ρ to have support in any
Θγ containing G in its interior. This implies that B^ e ^ ($ i ) since both
ρ(B*) and R then have their supports in Gx.

1 3 If ρ and ρ are equivalent then this convention only allows us to choose ρ = ρ in
a real sector. This is related to Theorem 6.5.
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The most important use of the conjugate will be in connection with
scalar products. A scalar product is obviously defined within each fibre
of the state vector bundle: if ψx = {ρ; Ψj}; Ψ2 = {Qlιί/2} w e P u t

(ΨUΨ2) = (Ψ1,Ψ2). (4.16)

We then have

4.4. Proposition. Let B = {ρ\B), Φ = {ρ';Φ} and Ψ = {ρ'ρ;Ψ} then

{BΦ,Ψ) = (1Q. x RΦ, £ f Ψ). (4.17)

Proof. Using the definitions we get

{IQ. xRΦ,Blψ) = (ρ'(R) Φ, ρ'ρρ(B*) Q''Q{R) Ψ)

However by the intertwining property of R and (3.6) we get

(1Q, x RΦ, Bϊ Ψ) = (Φ, ρ'(B*) Ψ) = (BΦ, Ψ)
as required.

The action of the Poincare group ^ o n J preserves all the structure
involved.

4.5. Proposition. We have a representation L->aιL of & by automor-
phisms of 0$ \oιL acts linearly on the fibres and

aL{aL(B)) = aLL,{B), (4.18)

α L ( 5 2 β 1 ) = α L (β 2 )α z . (β 1 ) , (4.19)

aLm = *L(B)\ (4.20)

for B, Bu δ 2 e f and L, L e &.

Proof. Only (4.20) requires a little proof. If B = {ρ, B} we have by
(4.4) and (4.13)

OLL(BV ={Q;Q(OLL{B*)XL(Q))R}

= {ρ; %(L) Q{B*) VgiL)

But by Lemma 2.2c and (2.9)

R%(L) = %0(L) R = ρ{XL(ρ))-ι%s(L) R, (4.21)
so

«L(BV = {Q; %(L) Q(B*) H O ( I ) - ' }

= α L (β) t by (4.4).

We often apply classical functional analysis to the action of the
Poincare group on <%. The following remarks should suffice to make it
clear that this is no more difficult than in the case of a field algebra.
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All questions relating to the linear structure or topology on £8 or on
the state vector bundle are to be understood as referring to the indi-
vidual fibres. Thus we define

ll{<?;*}|| = 11*11, (4.22)
and note

llfl^H^llffJ-lliSJ, (4.23)
\\{ρ;By\\Sd(ρ)ll2\\B\\. (4.24)

The strong and weak operator topology on J* refer to its action on the
state vector bundle and are thus generated by the seminorms of the
form B-+\\BΨ\\ and B->\(Φ, BΨ)\ respectively. The product in Sί is
jointly continuous on the unit ball in the strong operator topology and
conjugation is continuous in the weak operator topology. 38{&) is fibre-
wise closed in the weak operator topology. The action of the Poincare
group is isometric and continuous in the strong operator topology.

V. The Energy-Momentum Spectrum

The energy-momentum spectrum in a representation given by ρ e Δr

will be denoted by S(ρ)1A. We want to compare the spectrum in the
subrepresentations of ρίρ2 with 5(ρJ and S(ρ2).

The basic idea is to imitate the standard field theory technique by
using elements of the field algebra to transfer momentum. As we shall see
in the following lemma, if B = {ρ; B) then B(q) = J <xx(B) e~iqx d4x adds
precisely the momentum q to a state vector and changes the representa-
tion by a factor ρ.

5.1. Lemma. Let B' = {ρ;B'} and let f be an U-function on space-
time whose Fourier transform

has support in an open set Jf of momentum space. Let

B=$ux(B')f(x)d4x. (5.1)

If Ψ = {ρx Ψ} has momentum support in the open set JV1 then B Ψ has
momentum support in Jf + Jfγ. Further if / n S ( ρ ) is not empty there
exists a B' = {ρ\B'} such that BΩ + 0.

Proof We first note that (5.1) defines an element of M\ this would
be clear if/ had compact support and B' e 3$(&ι) for some Θ1 because

1 4 The following conventions will be used: if x e ^ denotes a translation by x then
<Wρ(x) = eιPx. Px = Poxo — P x; the operators Pμ are called the momentum operators of
the representation ρ. S(ρ) is the closed set of IR4 (momentum space) carrying the joint
spectrum of the four operators Pμ.
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the fibres of each &(Θ) are weak operator closed. As functions with
compact support are dense in L1 and local elements are norm dense in J*,
B is the norm limit of a Cauchy sequence of local integrals and hence B e &.
Now όlί{x) BΨ = ux(B)<%(x)Ψ so Fourier analysis gives the stated
result on the momentum support of BΨ. Also by (5.1)

= j* d4xf(x)W(x) BΉ = {ρ;\d4xf(x)<%ρ(x)BΏ}.

If Jin S{ρ) is not empty we may choose / so that T = J d4x f(x) %Q(x) φ 0
and since Ω is cyclic we may choose B' such that TB' Ω φ 0.

We shall now show the following additivity property of the spectrum.

5.2. Theorem, a) Let ρi9ρ2eAr then S(ρi) + S(ρ2)CS(ρ1ρ2).
b) Let ρί9 ρ2 e Δs and ρ a subrepresentation of ρxρ2 then

Proof. The proof of a) is standard. Pick arbitrary open sets Jfγ and
Jί2 in momentum space intersecting 5(ρx) and S(ρ2) respectively. Pick
ψ1 = {ρ1,Ψ1} with momentum support in Jίι. By Lemma 5.1 there exists
a B = {ρ2 B} e ̂  such that Ψ2 = BΩ has support in Jf2 and Ψ = B ψx

has momentum support in Jfγ+Jf2. Moreover for each fixed y,
Ψy = Bύiί(y) Ψί will also have momentum support in Jίx + Jί2. We have
to show that for some y, Ψy φ 0. Now

as y tends spacelike to infinity. To prove b) we have to consider the
component of Ψy in the subspace corresponding to the subrepre-
sentation ρ. Let S = (ρχρ2 \S\ρ) be a non-zero intertwiner. By Lemma 2.2,
we know that S also intertwines the respective Poincare representations:
S*%IQ2(

L)=%(L) s* Hence S*Ψy also has momentum support in
Jίγ + Jί2 and

l^Ψ^^iΨ^WJyΓ'ρ^BηSStρ^W^Ψ,). (5.2)

We again want to show that for some y9 S*Ψyή=0 and may apply
Lemma 2.3 to obtain

I I S ^ I I ^ I I Ψ J 2 ^ ^

as y tends spacelike to infinity. We note that φx{SS*) intertwines from
ρ2 to ρ2, it is therefore a scalar as ρ2 was assumed irreducible. We may
choose S isometric and then use [1; Proposition 6.6 and, Corollary 6.8]
to compute

= φ2 φ1 (SS*) = d(ρ) d(βl ρj-11
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giving
\\S*Ψy\\2^\\Ψ1\\2\\Ψ2\\2d(ρ)d(ρxρ2r

1+0 (5.3)

as y tends spacelike to infinity. This completes the proof.
Now the vacuum representation i is a subrepresentation of ρ ρ. Since,

by assumption, S(ι) is contained in the closed forward light cone V +

and both S(ρ) and S((ϊ) are Lorentz invariant sets we deduce1 5

5.3. Corollary. If QE Δ S then S(ρ) C F * .

Of course since any ρeAr is equivalent to a (finite) direct sum of
irreducibles from Δs we deduce from Lemma 2.2c that S(ρ)C V+ for
ρε Δr as well.

VI. Particles and Antiparticles

In this section we shall consider single particle states and study the
particle-antiparticle symmetry. The starting point of this discussion is
the relationship between °UQ and % If ρ e Δr(Θ) we have by (2.3)

On the other hand by (3.14) and (4.21)

(RΩ, %{L) RΩ) = {RΩ, ρ{XL(ρ)) RΩ) = d(ρ) (Ω, φ{XL(ρ)) Ω).

Now by the definition of ερ [1; Theorem 4.2], we have

XL(ρ) = ερρ(XL(ρ))> LOCO\ (6.1)

)) = λρXL(ρ), LΘCΘ'. (6.2)
Hence

(RΩ, %{JOfγ RΩ) = sign(Aρ) (Ω, %(L) Ω) LOCO'. (6.3)

The significance of this simple relation can be better understood as a
special case of

6.1. Lemma, a) Let Bt = {ρ; £ J e 08(0) then

(B1Ω, <%(L) B2Ω) = sign(/y (B\ Ω, *U(lΓι) B\Ω)9 LΘ C 0'. (6.4)

b) Let Φi = {ρ\ Φt} and Bt = {ρ; Bt} e 08{G& Ϊ = 1,2, then

(fii Φ l 9 B2 Φ2) = signμρ) (BJΦ i 9 Bί Φ 2) Φx C 0'2. (6.5)

Proo/. If we replace B2 by aL(B2) in b) and use (4.4) and (4.20) we
get a) on specializing to Φ1=Φ2=Ω. Now to prove b) we have

[BXΦU B2 Φ2) = (1Q. x RΦ19 B\ B2 Φ 2 ) .

The idea of using additivity of the spectrum to prove positivity is due to Borchers [7].
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Since B\ and B2 are spacelike by Lemma 4.3, we have by (4.12)

= sign(Aρ) (/,, x « Φ A , £ 2 B\Φ2) by (3.7)

completing the proof of the Lemma.
Note that (6.5), a result of combining the commutation relation with

the adjoint in the field bundle, takes just the same form as in standard
field theory with Bose or Fermi statistics.

Now setting Bί = B2 in (6.4) and taking L to be a spacelike trans-
lation xelR 4 let us denote the left and right hand sides of (6.4) by h^x)
and sign(λρ)h2(x) respectively. The Fourier transforms /^(p), h2jp) are
bounded positive Borel measures with support in the cones V+ and V
respectively. According to Lemma 6.1a, the function h(x) = hί(x)
— sign(λρ) h2(x) vanishes on the complement Θ[ of some double cone Θ1:

hx (x) = sign (λe) h2 (x), xeΘ[.

We are therefore in a situation where the techniques of the Jost-Lehmann-
Dyson representation may be applied. We may define for any Borel set
5ClR+the functions

ήf(x)= J e^dkip). (6.6)J e
VPeS

The Borel measure S->/ιf (0) is just the projection of h^p) onto the space
of mass values under the Borel map p -»|/p^.

6.2. Lemma, a) Let S be an arbitrary Borel set of mass values, then

b) The Borel measures defined by projection of hγ(p) and h2(p) on the
mass axis are equivalent (i.e. they have the same null sets).

Proof a) Let H^p^m) be the Borel measure on ]R5 induced by h^p)
under the Borel map p->(p, ]//?). Then

Kip, m) = Htip9 m) -f H^p, -m) - sign(Aρ) H2(p, m) - sign(Λ,ρ) H2(p, -m)

has Fourier transform

K{x, s) = j eίpχ-ίmsdK{p, m) = 2 J eipx cosQ/p1 s) dh(p).

Using properties of the wave equation in 5-dimensions one shows [8]

K(x, s) = 0 for xeΘ[, selR1.
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Elementary integration theory then shows that for any Borel set S C1R1

$eipxχs(m)dK(p,m) = 0 for xeΘ[

where χs is the characteristic function of S. Hence for SC1R+ we have

h\ (x) = sign (λQ) hs

2 (x) for xeΘ[.

b) We must show that Λ?(0) = 0 if and only if hs

2 (0) =0. If Λf (0) =0,
then |λί(x)|^fti(0) = 0, so from a) hs

2(x) = 0 for xeΘ[. But hs

2{x) is the
boundary value of a function analytic in the backward tube hence
hl(x) = Q for all x, in particular /if (0) == 0. The converse follows by
symmetry.

An immediate consequence is

6.3. Theorem. The mass spectra of conjugate representations are
quasiequivalent, i.e.

Eρ{S) = 0 if and only if E g (S)=0

where Eρ(S), E$(S) denote the spectral projections of the mass operator in
the representations ρ and ρ.

The first result in this direction was obtained by Borchers [7 Theo-
rem VII-7].

The facts described above allow us to define an unbounded anti-
linear mapping JQ from state vectors {ρ; Ψ} of the sector ρ to state
vectors in the conjugate sector. If B = {ρ,B} is strictly local, i.e.

\ ) \ we define

(6.7)

Since Ω is cyclic and separating for (J 21(0), the domain of Jρ is dense
Θ

and the definition is consistent. Also, due to the cyclicity of Q, the range
of Jρ is dense. One checks immediately that Jρ commutes on its domain
with the Poincare operators:

Jρ%(L) = %(L)Jρ. (6.8)

This, together with Lemma 6.2, allows us to extend the domain of Jρ

setting
JE(S)BΩ E(S)B^Ω (6.9)

and extending Jρ to an antilinear operator. Here S is an arbitrary Borel
set in the mass spectrum. In particular we consider now the case where ρ
contains single particle states of mass m. The projectors Eρ({m}), E^({m})
on the single point m are then non-zero. The corresponding subspaces
in the two sectors will be denoted by Jfρ

m, Jfρ

m. Jρ is defined on a dense
domain in Jfm and maps it into a dense set in jtfψ.
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Let Jf ( m ' s ) be the space of an irreducible representation ^ ( m > s ) of the
Poincare group with mass m, spin s and positive energy. A vector of this
space will be described in the standard manner by a wave function fa(p)
where the index a = (rli . ..,r 2 s) corresponds to a symmetric spinor of
rank 2s (it has 25+ 1 independent components) and the scalar product
is given by

(g, f) = ί {9(P)> M(p) f(p)) dΩ+ (p) (6.10)
where

σ = (σί, σ2, σ3) are the Pauli matrices and dQ* (p) = δ(p2 — m2) ε^o) dAp
is the invariant measure on the positive mass hyperboloid. We note

M(-p)=(-ί)2sM(p). (6.12)

There is a natural involution F->F' defined on spinor-valued func-
tions which are analytic on the whole complex hyperboloid by putting

If both F and F' are in Jf{m's) when restricted to the positive mass
hyperboloid Km

+ we set

f(τΛ = FAΌ). Ό e V*
J OC \ίr / OL \L / * L ΪΪX / f j /-% \

y"" ί l /) ι (p)=Σ ϊ ' . ί ' l B ' 1

β

where
2ώ(P°'1 + P ' σ ) (6.14)

m

The operator J / ( m ' s ) defined in this manner is a densely defined (un-
bounded) antilinear involution on Jf ( m ' s ) commuting with ^ ( m ' s ) .

The representation of & on Jf^ is equivalent to a direct sum of
representations ^ ( m ' S ι ) where we allow for the possibility that ρ contains
more than one type of particle with mass m (the st are the spins of these
particles: each st may also occur several times in the direct sum).
However we discuss only the case of finite mass degeneracy where there
are just a finite number of types of particles with mass m. We may
identify JTρ

m with jfρ = 0 Jf(w'άί) and hence regard Jf

Q = @J'{m^ as
i i

a densely defined involution on Jfρ

m commuting with ^Q:

J'ρ%(L) = %(L)Jf

ρ, L e # . (6.15)

Similarly we may identify JTf with Jf^ = 0 jf(m'^ (where a priori the
j

Sj might be different from the sf).
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6.4. Theorem. // the mass m occurs with finite degeneracy in the
representation ρ, then

a) there is a unitary operator C mapping ffl™onto ffl™ (kίnematical
charge conjugation) with the following properties: C establishes the uni-
tary equivalence of the Poincare representations in the conjugate single
particle spaces (equality of spins and multiplicities) :

%?(L)C (6.16)

and C is the unique closed extension of the mapping Jf

ρΨ-+JρΨ.
b) For all values st of the spin occurring in J f ™ we have (connection

between spin and statistics)

( - l ) 2 s ' = signμ ρ). (6.17)

Proof. Taking S in Lemma 6.2 to be the single point {m} we obtain
two functions h™(x) and h™(x) which coincide up to a sign on the causal
complement of some double cone and have Fourier transforms h™ and
ft™ whose supports are the positive and negative mass hyperboloids
respectively. It follows, see e.g. Epstein [2; p. 757-758], that there is an
analytic function k on the complex mass hyperboloid such that

K(P) = HP) δ(p2 -M2), P real, p0 > 0
(6.18)

-m2), p real, p o < O .

Let B e &g(Θ) and consider the state vectors

Ψ = Eρ({m})BΩ; Ψ =JρΨ.

If fe Jfρ and / ' e Jtρ are the wave functions of Ψ and Ψ' respectively,
then using the definition of h™ and (6.18) we have for real p on the
positive mass hyperboloid

(6.19)

(/'(p), M(p)/'(p)) = signOl*) k(-p). (6.20)

In these equations we have used matrix notation so that the left hand
sides involve sums over spinor indices and over the spins of the particles
involved. The difficult but vital step in the proof is to show that the
wave function/ can be extended to an analytic function F on the whole
complex mass hyperboloid, see Epstein [2; Appendix I I ] 1 6 . Therefore

1 6 Actually Epstein considers only the case of a single particle with mass m and
spin s. However the proof in [2] depends only on the following properties of the represen-
tations 9^ of GL(2,<C) and &™ of Γ ^ C ) : 0 ( s )(L*) = 0 ί s ) (L)*; ^ ( s ) (L Γ ) = ^ ( s ) ( L ) Γ and
Λ^S){S\Λ) is holomorphic. These properties hold equally well for finite direct sums of
the S)(s) and @(s\ The proof would also require B to have been regularized over the
Poincare group and this suffices for our purpose. However using this as an intermediate
step, one can show that / can always be extended to an analytic function on the whole
complex mass hyperboloid.
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we have from (6.19) and (6.20)

(F(plM(p)F(p)) =

\\Ψ'\\2 = sign(λρ)$k(-p)dΩ+(p) (6.21)

= sign (A,) J (F( - p\ M( - p) F( - p)) dΩ^ (p).

To simplify the argument leading to b) we note that the spins st occurring
in Jfρ must either be all half integral or all integral since the super-
selection rule between integral and half-integral spin is a consequence
of the unique action of αL on the observable algebra (αL represents the
Poincare group not its covering group). Now M(p) is a positive-definite
matrix for p on the positive mass hyperboloid and \\Ψ'\\2 is positive so
using (6.12) we get b). To prove a) we note that

\{F'{p\M{p)F'{p))dΩ+{p)

= \(F{-p\M(p)F{

Hence Ψ is in the domain of Jρ and

Thus J'ρΨ->JρΨ is a densely defined isometry with dense range and its
extension C is a unitary operator intertwining %™ and °U™ by (6.8) and
(6.15). This completes the proof.

It is known from models that the connexion between spin and
statistics does not necessarily hold in the presence of infinite mass and
spin degeneracies [9,10]. Presumably a) above and Theorem 6.5 below
are valid without the restriction to finite degeneracies.

We turn now to self-conjugate sectors where we may choose ρ = ρ 1 7 .
Since ρ is irreducible, R is a scalar multiple of R by Theorem 3.1 a and
from (3.7) we have _

R = ± R . (6.22)

The sign in (6.22) determines the sign of J2. If B = {ρ; B} e.

JρBΨ = {ρ;ρ(B*)RΩ},

J2 BΩ = {ρ; ρ(R*) ρ2(B) RΩ} = {ρ; ρ{R*) RBΩ} ,

and by (3.6) and (6.22) we get

J2 = ±I (6.23)

on its domain of definition. Naturally (6.23) also holds for Jρ considered
as a densely defined operator on M"ρ

m. We call the self-conjugate sector ξ
corresponding to ρ real or pseudoreal according as J2 is +1 or —/.

1 7 Here we temporarily abandon a previous convention. Compare footnote 13.
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Now if Ψ = Eρ({m}) BΩ where B is strictly localized and regularized
over 0>, then by (6.23) and the definition of C

J'eCJ'βJβΨ=±J'βΨ.

Hence if C denotes the extension of J'Q CJ'Q to Jfρ

m we have

C=±C1. (6.24)

6.5. Theorem. Let ξ be a pseudoreal sector, m a mass occurring in it
with finite multiplicity. Then a particle with mass m and charge ξ cannot
be its own antiparticle. Consequently there must be an even number of
particles with mass m and spin s in the sector ξ.

Proof. A particle coincides with its own antiparticle if the corre-
sponding irreducible subspace of Jtif™ is an eigenspace of C. Let the
corresponding eigenvalue be λ. But this irreducible subspace must then
also be an eigenspace of CDJ'ρCJf

ρ with eigenvalue X, and of CC with
eigenvalue λλ = \. Thus CC=I and comparing with (6.24) the sector
must be real contrary to hypothesis.

In models where each sector is associated with a representation of
the gauge group [11], [4] a self-conjugate sector is associated with a
representation unitarily equivalent to its complex conjugate. The con-
dition R = ± R translates directly into group theoretical language using
the results of [4] and it can be shown that, in the terminology of
Wigner [12], R = R if the representation of the gauge group is (poten-
tially) real and R = - R if it is pseudoreal. If the gauge group is the
isospin group SU(2), the pseudoreal representations correspond to half
integral isospin and we may recognize that Theorem 6.5 is just a variant
of Carruthers' Theorem [3].

VII. Collision Theory

The construction of scattering states is done in close analogy to
standard procedure in quantum field theory18. We sketch the line of
argument but suppress full proofs of those statements which can be
easily obtained combining the techniques of Section IV with known
results of quantum field theory. We shall emphasize instead those aspects
where unfamiliar features appear namely the metric of the scattering
states and the definition of transition probabilities and amplitudes.

The first step is the construction of almost local creation operators
for each type of particle. Suppose the sector ξ contains single particle
states with mass m and assume as usual that m is isolated from the other
parts of the mass spectrum in the sector ξ. Pick a ρ e Δs in the class ξ,

1 8 See e.g. [13, Chapter VI].
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an element B' = {ρ; B'} e & and a function g on Minkowski space,
absolutely integrable and such that the support of its Fourier transform
intersects S(ρ) only on the mass hyperboloid p2 = m2; put

B=\ax{B')g{x)d*x. (7.1)

Then BΩ describes (if it does not vanish) a single particle state with
charge ξ and mass m. If B' is chosen strictly local and g is a test func-
tion in class ίf then B will be almost local (quasilocal of infinite order)
and (xx{B) differentiable in the norm topology with respect to x. Let /
be a smooth, positive frequency solution of the Klein-Gordon equation
with mass m, specifically

Then, with B as above, we define

Bf(t)= J ax(B)f(x)d3x (7.3)

and show, as usual, that the state vector

Ψ = Bf(t)Ω = {ρ;Ψ} (7.4)

is independent of t. Furthermore, if we vary B\ g and / within the stated
restrictions we obtain by (7.4) a set <£™ of state vectors Ψ which is dense
in Jf™. In fact Ψ e <£™ if Ψ = F{P) BΏ where B' is strictly local and
F G @(4) with suppFnS(ρ) C {p/p2 =m2}.

. As a next step we look at the time dependence of objects of the form

β π ( ί ) . . . β 1 ( ί ) β with Bk(t)Ω = Ψk. (7.5)

Here we suppose that we have picked n "creation operators"

constructed as described above but not necessarily referring to particles
of the same mass or charge. We have written B^t) as a shorthand for
B^(t) where the/) are smooth solutions of the respective Klein-Gordon
equations. Furthermore we shall choose the f{ to have disjoint supports
in velocity space1 9. This device, suggested in [14] simplifies the sub-
sequent discussion and suffices for our purpose.

The study of the asymptotic behaviour of smooth solutions of the
Klein-Gordon equation given by Ruelle [15] leads us to conclude as in
[14, 16] that, for large |ί|, the Bk(t) are localized spacelike to each other

1 9 The velocity of the ith particle is related to its momentum by v = (ρ2 + m 2 ) ~ 1 / 2 p.
Thus we have to choose the supports of the fx appropriately.
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up to terms which decrease in norm faster than any inverse power of |ί|.
Therefore applying the spacelike commutation relations of the field
bundle (Proposition 4.2) and iterating it using [1 Theorem 4.2] we have
for any permutation p of the n factors and any JV > 0:

\t\N-\\Bp-Hn)(t)...Bp-Hl)(t)-sp(Qu...,Qn)o(Bn^

This leads to

7.1. Proposition. Given single particle states *PkeJ£™*, fc= 1, 2,...,w5

whose velocity supports are mutually disjoint, pick Bk(t) = Bfl(t) as above
with Bk(t)Ω=Ψk so that the velocity supports of the fk are mutually
disjoint then the strong limits of (7.5) exist for ί-> + oo and depend only
on the one particle states Ψk. We shall write

lim Bn(t)...B1{t)Ω = Ψnx ... χψlt
ί-> - oo

(7.7)
lim Bn(t)...B1(t)Ω = Ψn°x ... °x Ψi .

The rate of convergence in (7.7) is faster than any inverse power of \t\.
Further the scattering states have the expected behaviour under permuta-
tions of the arguments and Poincarέ transformations:

; (7.8)

(Ψn x x Ψ,) = (β(L) Ψn) x x (W(L) Ψx), Le &. (7.9)

The corresponding equations hold if "in" is replaced everywhere by "out".

Sketch of Proof The time derivative of any Bk(t) is the sum of two
terms each of the same form as a Bk(t) and it annihilates Ω since Bk(ή Ω
is time independent. Differentiating (7.5) with respect to t and using the
asymptotic commutation relations (7.6) to shift the time derivatives to
the right, we find that the norm of the time derivative of (7.5) decreases
for large |ί| faster than any inverse power of |ί|. This proves that (7.5)
converges to a limit as ί-» + oo faster than any inverse power of |ί|.
If Cf(t) is another creation operator for Ψk chosen as above so that
(Cf(t) — Bk(t)) Ψ = 0 and if the velocity support of/ is disjoint from that
of fj for jΦk then arguing as before we see that the time limits are un-
changed if Bk(t) is replaced by Cf(t) in (7.5). Since our creation operators
Cf(t) for Ψk may be chosen such that the velocity support of/ is con-
tained in an arbitrary neighbourhood of that of Ψk, a finite chain of such
replacements will lead us from any one choice of the Bk(t) to any other.
Thus the limits in (7.7) depend only on the one particle states. Eq. (7.8)
is an immediate consequence of (7.6) and (7.7). To prove (7.9) we first
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note that

= ocL(Bn(t))... α L ( ^ ( ί ) ) Ω . (7.10)

Also αL(£fc(ί)) Ω = %(L) Ψk e <£™*. The velocity supports of the %{L) Ψk

are still mutually disjoint (the transformation law of velocity is inde-
pendent of the mass). Choosing creation operators C{®(t)= Ck{t) for
the ^(L) Ψk with the velocity support of gk in a sufficiently small
neighbourhood of that of %(L) Ψk we may arrange that, for L in some
neighbourhood of the identity in ^, Ck(t) and ocL(Bj(t)) are localized
spacelike to each other for j φ k up to terms which decrease in norm
faster than any inverse power of |ί|. Hence, by the usual arguments, we
may replace the oiL(Bk(t)) by Ck(t) in (7.10) successively for k= 1,2, ...n
without altering the limits of (7.10) as ί-> ± oo. This proves (7.9) for L in
some neighbourhood of the identity in,0>. The same result holds if Ψk is re-
placed by °lί{L) Ψk, k = 1,2, ...,n in (7.9). But 9 is path-connected so
(7.9) must hold for all L e ^ completing the proof of the Proposition.

Although the definition of the products x and x in (7.7) is not
manifestly covariant, we have shown in the course of proving (7.9) that
it is independent of the choice of Lorentz frame.

We study next the metric of scattering states. As in the case of field
theory this will follow from the approximate factorization (clustering
properties) of vacuum expectation values to which the next two lemmas
refer.

7.2. Lemma. Let

β - f e ^ e ^ ) , i=l,2,

with Θ1 spacelike to Θ2 and

r = sup{\t\/Θ1+(t,0)CΘ'2}.

If T is an arbitrary intertwiner from ρ1 to ρ2 and Eo denotes the projector
on the subspace ofPoincare invariant vectors in the representation ρx then
for any n>0 there is a number an9 independent of the Bt and T, such that

\(B2Ω, T(I-E0) BγΩ)\ <flBr-"d(ρ1)| |B1 | | | |B 2 | | | |Γ| | . (7.11)

Proof. Recall that we assumed at the beginning of this section that
the single particle hyperboloids are isolated. This demands in particular
that there is a lowest mass ra0 φ 0 in the theory because otherwise (by
Section V) the spectrum in the vacuum sector would contain all mass
values and then there could be no gap above the lowest hyperboloid in
any sector. We now follow closely an adaptation of the technique devel-
oped by Ruelle [15] and Araki [17] as used in [18]. Therefore the
explanation can be kept brief. We choose an infinitely differentiable
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function / of one variable such that f(ω) = 1 for ω ̂  m0 and f(ω) = 0
for ω ̂  0. Define for γ > 0

fy(t) =(2π)~1 J/(ω) e - ί ω ί - y ω d ω ^ l y = J/y(t) α f(β) dί .

Then we have (see Lemma 5.1)

(/-JE 0 )fl 1 ί2 = l i m f l I y β ; B\yΩ=0. (7.12)

Thus by Proposition 4.4 and Eq. (4.10)

t ~ \ ( 7 ' 1 3 )

according to (7.12)

The integrand vanishes for |ί | < r according to (4.12). Thus

MyB2n\\<2d(Q1)
1f2 WB.WWB^^f^ήldt. (7.14)

The choice of / depends on none of the symbols on the left hand side
of (7.11) and, from the construction of fv one sees that lim j |/r(0l dt

y"° \}\>r

decreases faster than any inverse power of r. Combining this information
with (7.14), (7.13) and remembering that | | R ρ J = φ i ) 1 / 2 we get (7.11).

7.3. Lemma. Let

where Θ1KJΘ3 is spacelike to # 2 u $ 4 , Γ = ( ρ 3 ρ 4 | T | ρ 1 ρ 2 ) . Set

a) // ρ1 = ρ 3 e As then

\(B^B3Ω9TB2B1Ω)-(B3Ω9B1Ω){B4Ω9φ1(T)B2Ω)\

<..r-mπιβ,ι. ( 7 1 5 )

for any n>0 with an depending only on the charges of the Bt. Here φί

is the left inverse of ρλ and φί{T) = (ρ4\φ1(T)\ρ2).
b) // ρx and ρ 3 from Λs are inequίvalent then similarly

| ( f f 4 f l 3 O , Γ β 2 β 1 f l ) | < α n r - " | | Γ | | Π ll^ill ( 7 1 5 * )
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Proof. Shifting B3 we get, using (4.12), (4.17) and (4.10), (4.11)

{BAB3Ω, TB2BXΩ)

We split the vector B\B1Ω into its component in the subspace of
Poincare invariant vectors (projector Eo) and the orthogonal com-
ponent. The contribution of the latter may be rearranged in a form to
which Lemma 7.2 applies with B\ # 4 replacing B2, B\ B± replacing Bx

in (7.11). The complicated intertwiner in the middle is composed of
ε-factors, R*3 and Γ; thus its norm is bounded by d(ρ3)

1/2 \\T\\. The
whole contribution containing I — Eo is therefore bounded by the
estimates on the right hand side of (7.14). We still have to compute the
contribution containing Eo. If ρι,ρ3eAs are inequivalent then Eo= 0
(Theorem 3.1). This proves part b) of the lemma. If ρ3 = ρ1 e Δs then Eo

is 1-dimensional and the normalized invariant vector is given by
d(Qι)~1/2 RQlΩ [see Lemma 2.2c and (3.8)]. Therefore this contribution
factorizes as

(β 4 f l ,Γβ 2 f l)(« ρ i ί2,β t

3 f l 1 f l)

The second factor in (7.16) equals (B3Ω, B^Ω). It remains to show that
T = φ1(T). For this purpose it is convenient to change the order in
some of the cross products using [1; Theorem 4.3]. Thus

Γ x Iξi = e(ρl5 ρλ ρ4) ° (Ih x T) ° s(ρ1 ρ2, ρj ,

The product of several ε-factors always leads to one resultant ε which
corresponds to the overall permutation made [1; Theorem 4.2].
Therefore we can write

Γ = d f o Γ 1 («* x IJ o (ε(ρ1? ρx) x /ρ4) o (/^ x Γ)

o(ε(ρ1,ρ1)x/ρ 2)o(^ iχ/ρ 2).

Using (3.7) and (3.14) we get

T'-diρJ-'iRlxIJo^ x T)o(Rρι χ/J

This completes the proof.
This last lemma and the consistent use of single particle states with

disjoint supports in velocity space allow us to derive the metric of
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scattering states without having to prove cluster properties of general
truncated vacuum expectation values of elements of the field bundle.

7.4. Proposition. Let

ΦkeJ?™ k=ί,2,...,n
and

Ψke&?, k=U2,...,n

be two sets of single particle states, each set having mutually disjoint
supports in momentum space, then

(Φ,,x ... x Φu Ψn'x ... x ψί)= X ω'l(p){Φn, Ψpin))... (Φ l 9 Ψp{1)).

(7.17)

The summation extends over all permutations and ωn

λ is the trace state on
the permutation group multiplicative on disjoint cycles and taking the value
λk~ι on a k-cycle (see [1; Proposition 5.2]). The same relation holds if
"in" is replaced by "out" in (7.17).

Proof Let Sk and S'k denote the momentum supports of Ψk and Φk

respectively. Since each set of state vectors has mutually disjoint supports
in momentum (velocity) space, we can subdivide the supports in the
following way: let {<%k}k=ι,2,...,n be an open covering of 1R3 such that
°HknSj is empty if kή=j and {θk}k=lt2t...,n a partition of the unity sub-
ordinate to the covering {%}, then we set ΦKm = θm(P)Φke &™.
Defining {%} and {θ'k} similarly we set Ψ^^Θ^P) Ψ}. The supports of
Φkm and Ψjj are disjoint unless k = l and j = m. Now Φk Y

j, and since (7.7) is linear in each state vector we see that it
i

suffices to prove (7.17) for the case where Φk may be paired off with
Ψp(k) so that the sets SkuS {k) are mutually disjoint. Now picking
Bh(t)=B^{t) and CΛ(ί)=c£>(ί) with Ψk=Bk(f)Ω and Φk=Ck(t)Ω
and taking the supports of fk and gk in a sufficiently small neighborhood
of Sk and S'k respectively, Ck(t) and Bp{k)(t) will be localized spacelike to
BpU)(t) and C}(f) for jΦ/c up to terms which decrease in norm faster
than any inverse power of |ί|. The left hand side of (7.17) is the limit of

{Cn(t)...C1(t)Ω,Bn(t)...B1(t)Ω) as ί - > - o o .

Using (7.6) and applying Lemma 7.2 repeatedly we have

lim (Cπ(ί).. . C 1 ( ί ) f l , β Λ ( ί ) . . . β i ( ί ) β )
|ί|-»oo

= ^JCn(t)... C^ήΩ.ε^Hp) Bm{t)... Bp{i)(t)Ω)



78 S. Doplicher et al.

where we have used [1; Proposition 5.2] to deduce the last equality.
If q is a permutation distinct from p we can find at least one k such that
the momentum supports of Φk and Ψm are disjoint giving (Φk, ψq(k))=0.
Therefore the sum on the right hand side of (7.17) reduces in the case
considered to the one term computed above and the proposition is
proved.

We may use this result to extend the definition of the asymptotic
products to arbitrary particle configurations. To this end we introduce
a variant of the usual tensor power of a Hubert space which takes the
statistics parameter λ into account and reduces if λ = + 1 or — 1 to the
usual totally symmetric or totally antisymmetric tensor power respec-
tively. Let X%n be the n-th tensor power of a Hubert space X\ it carries
a unitary representation ε{n) of Ψ(n) defined by

The operator

is positive semidefinite. If Eλ denotes the projection onto the range of
Mλ then we define JΓ®A" to be the Hubert space spanned by the vectors

Ψn®x'~®λΨi=EλΨn®...®Ψ1 (7.19)

with the scalar product

(Φ,Ψ)*®λn = (Φ,MλΨ)^». (7.20)

If U is a unitary operator on Jf then we define U0λU by

U*Λn{Ψn®λ'~ ®λΨι) = (UΨn) ®λ" ®ΛUΨί) (7.21)

and note that £/-• U®λtι is a unitary representation of the unitary group
of Jf. We also have a unitary representation ε^} of Ψ(n) defined on
Jf ®λn by

λ-'®λΨί) = Ψp-Hn)®λ" ®λΨp-Hίy (7.22)

From Proposition 7.4 we see that the mapping

Vn®λ ~®λΨ1^Ψn

iZ- xΨ, (7.23)

is defined on a total set in (J^m)®A" and is scalar-product preserving.
It thus extends by linearity and continuity to a linear isometry Vm on
(jΓρ

m)®A" whose image one would naturally call the incoming n- particle
states with mass m and charge ξ, the class of ρ. (J^ρ

m)Θ Λ" carries a unitary
representation °U®λn of 0* induced via (7.21) by the action on the 1-particle



Local Observables and Particle Statistics II 79

space and a representation ε(

λ

n) of the permutation group. We have

VinW®*n(L) = %(L)Vin

f Le0>, (7.24)

Vinε^(p) = εf{p) F i n , p e P ( n ) . (7.25)

The tensor power ®λn thus not only describes the metric of the scattering
states but also the transformation properties of these states under the
Poincare group and the permutation group.

In the course of this contruction we have also extended the definition
of the asymptotic product so that (7.17) is valid for arbitrary particle
configurations. We note in passing that the technique used in Proposi-
tion 7.4 to prove (7.17) also shows that if Φk, Ψk k= 1,2,..., n are as in
Proposition 7.4 and if S = (ρn\S\ρn) then

(Φn x - . x Φl9 SΨn x x ψt) = X Tren(SfiW(p)) Π {Φp ΨPU)) (7.26)

where Tΐρn is the trace state on ρ"(5l)' defined in [1; Proposition 6.6].
Naturally (7.26) is then valid by extension for arbitrary particle con-
figurations. It is also easy to see what happens if the 1-particle states
in (7.17) are not all taken from the same sector. Here we need Lemma 7.3 b
to show that a pairing of Φk with Ψp(k) involving particles from different
sectors does not contribute.

In discussing the structure of scattering states involving several types
of particles we shall reduce the redundancy in the description as much
as possible by conventions. We choose once and for all one morphism
for each sector, we keep the factors Ψ{ referring to the same type of
particle together and we keep the different types of particle in a fixed
order. At this point it may be worthwhile to clarify what is meant by
"type of particle" in this context when one has a degeneracy for some
charge and mass. We may then adopt either one of two attitudes. The
first is to consider the linear space spanned by all the state vectors with
this charge, and mass as the single particle space of one type of particle.
Alternatively we could split this space in some way into its irreducible
components under the Poincare group and consider each component
as a different type of particle. If the second course is adopted we have
to avoid considering linear combinations of state vectors corresponding
to different such components in asymptotic products and we have to
adopt an ordering convention as discussed above. Bearing these con-
ventions in mind we may summarize the preceding discussion as

7.5. Theorem. The Hubert space of state vectors describing outgoing
(or incoming) configurations of nt particles of type ί, n2 particles of
type 2 etc. is isomorphic to
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The next (and last) topic to be discussed is the definition of tran-
sition probabilities and their relation to transition amplitudes. Let us use
the term "configuration of particles" to mean a set of single particle
states and let us abbreviate such a configuration by one letter α. Picking
for each single particle state entering into α a normalized state vector
Ψk we denote the normalized asymptotic product state vector by Ψe

a

x

and the corresponding state by ωex ("ex" standing for either "in" or "out").
The fibre of ΨQX will be denoted by ρa.

Our task is now to relate collision cross-sections to the mathe-
matical objects Ψ^\ ωe

a

x. In a collision experiment one prepares a state
which (ideally) corresponds to the information that the particle con-
figuration α existed at ί-> — oo. This information results from an
(optimal) study of the motion of each individual particle entering into
α at a time before the collision when the particles are still far separated.
It is natural to identify the physical state so prepared with the state ω™
in our formalism. In field theoretical treatments of collision theory
involving only particles with simple charges (no parastatistics) this
identification is not questioned. There, however, ω™ is a pure state
whereas in the general case (non-simple charges) ω1" is a mixture and
every pure component of it describes the same asymptotic motion of the
individual particles at ί-» — oo. Therefore in making this identification
one asserts that preparing the configuration by means of uncorrelated
sources for the individual particles produces the specific mixture ω™
(uniquely determined by α) in which the various pure components,
corresponding to the same configuration, occur with precisely specified
weights ("the natural weights"). This assertion should be checked by
discussing a realistic experimental arrangement for preparing the state
but such a study falls outside the scope of this paper.

Given the state ωj" one is interested in the probability of finding the
configuration β at ί-> + oo. This may be called the "transition proba-
bility wβa from the configuration α to the configuration /?" but it would
be somewhat misleading to call it the transition probability from the
"initial state ω^n" to the "final state ωJJut" since specifying an asymptotic
configuration does not (in general) determine a unique state and the
experimental arrangement does not treat the configurations α and β on an
equal footing. The particle sources determine a state (ω^n); the final
detector arrangement determines a projection E°βUt selecting the con-
figuration β. According to the general rules of quantum physics

Wβ^ωTiEf1). (7.27)

How is E°β

ut expressed in our mathematical frame? If we idealize the
detector arrangement as an asymptotic measurement at ί-> + 00 it is
clear that E«ut cannot belong to the quasilocal algebra 51 but may be
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regarded as the limit of a sequence in 91 which converges in the weak
topology induced by all the states of interest. It is convenient then to
consider the following "universal" representation of 91: choose in each
class ξeΛJJ one morphism ρξ and define π as the direct sum of all
the representations

® (7.28)

All states of interest may be described as density matrices in this repre-
sentation (positive trace class operators of trace one in the representation
space Jfπ). Thus E™1 can be represented as the projection on the sub-
space oϊj^π spanned by all the state vectors of pure states corresponding
to the configuration β at t-+ + oo. It is thus the "support projection" [19]
of ωf\ i.e. the smallest projection in π(2l)" satisfying

ωf\Efx)=\. (7.29)

Thus E°β

ut is uniquely determined by ω^ut and wβa by the two states
in out

To make this explicit let us discuss the decomposition of ωj x . The
representation ρa (in which ωG

a

x is a vector state) will in general contain
a representation ρξ with a multiplicity lξ. We have for such a ξ a basis
of lξ orthogonal isometric intertwiners Ίiξ=:(ρa\Tiξ\Qξ):

T^oT/^δ^; y = 1,2, . . . ,/<, (7.30)

Σ Z#°#* = V (7.31)
ξ i=ί

We know that lξ is finite and differs from zero only for a finite number
of charges so that the sum over ξ in (7.31) contains only a finite number
of non-vanishing terms. We have, by (7.31)

ω?{A) = (Ψί\ ρΛ(Λ) Σ Pΰ V* Ψ«X) = Σ (*?> Q^) Ψf), (7.32)
u \ ξ,i I ξ,i

where
Ψf = Ίlξ*Ψlx (7.33)

may be considered as a vector in (the ^-component of) the representa-
tion π defined in (7.28).

7.6. Lemma. Let the single particle states entering in α be mutually
orthogonal. Then, with Ψf defined by (7.33)

(ΨΪ,Ψf) = d{ξ)d{Qj-iδij. (7.34)

Proof. We have
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We have computed expressions of this form in (7.26). If the single particle
states in (7.26) are mutually orthogonal and Φk= Ψk then only the term
where p is the identity permutation contributes. This holds equally well
if the single particle states in (7.26) do not all have the same charge.
Hence

The part of the commutant of ρα(9ί) corresponding to charge ξ is iso-
morphic to the algebra of all lξ x lξ matrices in such a way that 7J*7J**
corresponds to the matrix unit whose only non-vanishing entry is in the
(/, i) position. Hence [1; Proposition 6.6] gives (7.34) as required.

7.7. Theorem. Let the single particle states entering in the configura-
tion α be mutually orthogonal. Then the state ω&x corresponds to a density
matrix W*x in the representation π which is given by

Wr = Yjd(ξ)d(ρa)-1P^(ξ). (7.35)
ξ

The summation extends over those charges which are contained in ρa with
multiplicity Z^φO. Plx{ζ) is the projection on the Iξ-dimensional space
spanned by the vectors Ψf of Eq. (7.33). The support of ωQX is accordingly
represented by

E? = ΣPeΆξ) (7-36)
ξ

and the transition probability is given by

ξ ς

The transition amplitudes may be written as

jj^iQ^tejiξ) (Ψ?\ TjiΨ?), (7.38)
where

Vi = Wξ\Qd°Wξ*\Q«)- ( 7 3 9 )

Thus the amplitudes (7.38) play the role of 5-matrix elements. However,
one has to bear in mind that \Aξ

βj.ai\
2 cannot be measured in any experi-

ment if either lξ or ϊξ is greater than one 2 0 .

2 0 Note that some lξ will be > 1 unless d(ξ)= 1 for all ξeAJJ. In fact, let ρ e Δs

appear only once in the decomposition of ρρρ then the subspace of intertwiners from ρ
to ρρρ is one-dimensional. Since the intertwiners R and ρ(R) (where R and R are defined
as in Section 3) both belong to this space, they must be proportional and by (3.6), (3.8)
we see that d{ρ) = 1.



Local Observables and Particle Statistics II 83

Appendix

The question of whether a sector can have infinite statistics (λ = 0)
is still open. However if any such sectors exist, their properties would
be very different from those of the sectors with finite statistics discussed
in this paper. We shall show here that a covariant sector with positive
energy having a conjugate sector in the sense of Theorem 3.1 must
have λ φ 0.

We shall use the following lemma.

A.I. Lemma. Let ρ be irreducible with infinite statistics and let
W = (ρρ1\W\ήandV = (ρ2ρ\V\ι)be intertwίners then ρ2(W)* V = 0.

Proof. It suffices to consider the case F φ O ; let φ be the left inverse
of ρ defined by V*Vφ(A)=V*ρ2(A)V9 Ae% and set S = {ρ2\S\ρ1)
= (IQ2*W*)o(VxIQι). Then S*S = S*ρ2(W)*V = ρ1{W)*S*V9 hence

= ρ1(W)*V*Vφ{W). (A.I)

However by [ί Theorems 4.2 and 4.3],

W = βfe ρρj ρ(W) = ρ(ε(ρ, Ql)) ερρ(W)

so φ(W) = ε(ρ,ρι)φ{ερ) W = 0 since ρ has infinite statistics. Thus from
(A.I), S*S = 0 which implies S = ρ2{W)*V = 0 as required.

A.2. Proposition. Let ρ be an irreducible, covariant, localized mor-
phίsm with positive energy and infinite statistics, then there is no covariant
localized morphism ρ such that ρρ contains the vacuum representation.

Proof. Let L—>tfίρ(L) be a continuous, unitary representation of the
Poincare group with positive energy and satisfying (1.1) and let L^>XL(ρ)
denote the corresponding cocycle defined in (2.3). Let W = (ρρ\W\ι);
it will suffice to show that W = 0. Now ocL(W) intertwines i and ρLρL

and XL(ρ) intertwines ρ and ρL. Hence ε(ρ, ρL) X L (ρ) - 1 aL(W) intertwines
from i to ρLρ. Thus applying Lemma A. 1 with ρι=ρ and ρ2 = ρL we have

(Q, QL) X^Γ1

However by [1 Theorems 4.2 and 4.3]

ρL(W) = ε(ρρ, ρL) W = φ , ρL) ρ(e(ρ, ρL)) W.
Hence

W*ρ{β(QL,Q))XL(QΓ1<*L(W) = 09 Le0>. (A.2)

Now by (2.3),

(WΩ, %(x) WΩ) = (WΩ, X
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However if ρ is localized in & and G + x C 0'so that ρ and ρx are spacelike,
we see from (A.2) that (WΩ9%(x) WΩ) = 0. Since the function

is the boundary value of a function analytic in 1R4 + iV + it must vanish
identically. Thus WΩ = 0 which implies W = 0 as required.

We have in fact proved rather more than stated in the proposition
because we do not need the full Poincare covariance of ρ and ρ. It would
suffice if ρ is translation covariant with positive energy and if ρ e Δt in
the sense of [1].

Of course the method of constructing a conjugate given in Section III
breaks down in the case of infinite statistics. On the other hand it is
less clear why one cannot define a conjugate representation using the
construction given in [1; §111] but the basic trouble is that the left
inverse is not unique in the case of infinite statistics. Here too the
behaviour of sectors with finite statistics differs markedly from those
with infinite statistics. In fact if ρ has finite statistics

ω0(Xx(ρ)ΛXx(ρ)-ι)^ω0oφ(Λ), AeM (A3)

as x tends spacelike to infinity (see [1 Theorem 3.9 b]) whereas one can
show that if ρ is irreducible and covariant with positive energy and has
infinite statistics then the states A-^ωo(Xx(ρ) AX^ρ)'1) do not converge
as x tends spacelike to infinity and no limit point of these states is
locally normal.

Acknowledgements. Our interest in the theorem of Carruthers originated in con-
versations with Michael Chanowitz, which we gratefully acknowledge. We would also
thank Raymond Stora and Henri Epstein for fruitful discussions concerning the material
of Section VI. We gratefully acknowledge the hospitality and support extended to us at
various stages of this work by the Centre Universitaire de Marseille-Luminy, the Istituto
di Fisica dell'Universita di Roma and the CNR of Italy.

References

1. Doplicher,S., Haag,R., Roberts,J.E.: Commun. math. Phys. 23, 199—230 (1971)
2. Epstein, H.: J. Math. Phys. 8, 750—767 (1967)
3. Carruthers,P.: J. Math. Phys. 9, 928—945 (1968)
4. Doplicher,S., RobertsJ.E.: Commun. math. Phys. 28, 331—348 (1972)
5. Doplicher,S., Haag,R., RobertsJ.E.: Commun. math. Phys. 15, 173—200 (1969)
6. Eilenberg,S., Kelly,G.M.: Closed categories. In: Proceedings of the Conference on

Categorical Algebra, La Jolla 1965. Berlin-Heidelberg-New York: Springer 1966
7. Borchers,H.J.: Commun. math. Phys. 1, 281—307 (1965)
8. Wightman,A.S.: Analytic functions of several complex variables. Lectures at

Les Houches Summer School 1960. Paris: Hermann 1960
9. Feldman,G., Matthews,P.T.: Phys. Rev. 151, 1176—1180 (1966)



Local Observables and Particle Statistics II 85

10. Streater,R.F.: Local fields with the wrong connection between spin and statistics.
Commun. math. Phys. 5, 88—96 (1967)

11. Doplicher,S., Haag,R., Roberts, J.E.: Commun. math. Phys. 13, 1—23 (1969)
12. Wigner,E.P.: Group theory. New York: Academic Press 1959
13. Jost,R.: The general theory of quantized fields. Providence, Rhode Island: Am. Math.

Soc. 1965
14. Hepp,K.: Commun. math. Phys. 1, 95—111 (1965)
15. Ruelle,D.: Helv. Phys. Acta 35, 147 (1962)
16. Araki,H., Haag,R.: Commun. math. Phys. 4, 77—91 (1967)
17. Araki,H.: Lecture notes, ETH, Zurich (1961/62)
18. Haag,R., Swieca,J.A.: Commun. math. Phys. 1, 308—320 (1965)
19. Dixmier, J.: Les algebres d'operateurs dans Γespace Hilbertien. Paris: Gauthier-Villars

1969

S. Doplicher R. Haag
Istituto Nazionale di Fisica Nucleare J. E. Roberts
and Istituto Matematico G. Castelnuovo II. Institut fur Theoretische Physik
Universita di Roma der Universitat
Roma, Italy D-2000 Hamburg 50, Luruper Chaussee 149

Federal Republic of Germany






