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Abstract. We give a simple proof of Lorentz covariance for the P(φ)2 model without
using the higher order estimates: For each Poincare transformation {a, A} and each bounded
region B of Minkowski space there exists a unitary operator U which correctly transforms
the Heisenberg picture field operator: Uφ(f) U* = φ(f(a,Λ}\ fe C*(B).

I. Introduction

The Lorentz covariance of boson field theories in two dimensional
space-time was first studied by Cannon and Jaffe [1] for the (φ4)2

model in the sense of Haag-Kastler axioms [4]. Their results were
extended to the P(φ)2 by Rosen [9]. In each case, higher order estimates
were used to study the corresponding models. It is well known that most
of the results for the P(φ)2 model can be obtained by using the hyper-
contractive property of the semi-group e~tH° [2, 3, 5, 11]. Recent results
by Klein have shown the self-adjointness of the locally correct generator
of Lorentz transformation for the P(φ)2 interaction by introducing the
L2(Q, dμ) representation of Fock space !F [7].

The main purpose of this paper is to simplify the proof of Lorentz
covariance for the P(φ)2 interaction by using the hypercontractive prop-
erties of the semigroups generated by the locally correct Hamiltonian and
Lorentzian. We shall follow the method developed by Cannon and
Jaffe [1]. However, we are able to prove the main theorems of references
[1] and [9] using only hypercontractive semi-groups; we don't use the
higher order estimates.

The locally correct Hamiltonian we shall consider has the form

HI(g) (1.1)

with
) : g ( x ) d x 9 (1.2)
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where H0 is the free boson Hamiltonian, P(α) a polynomial of degree 2n
with positive leading coefficient, φ(x) the free boson field at time t = 0
and g(x)e Li(R}πL2(R) is a positive function. Then H(g) is essentially
self-adjoint on D(#0)nD (#,(#)) and bounded below [2,3,5]. The
Heisenberg picture field operators φ(f) formally given by

φ(f) = j eitH(β)φ(x) e~itH(9}f(x, f) dxdt (1.3)

are essentially self-adjoint on any core for (H(g) + b)i [3], provided
/ — /e CJ(β) for £ any bounded open subset in space-time.

Let jtf(B) be the von Neumann algebra generated by the operators

Let {a, Aβ} be a Poincare transformation of two space-time dimensions
defined by

[a, Λβ} (x, ί) = (xcoshβ 4- ίsinhjS + α, xsinhβ + ίcoshjS + τ) (1.4)

where a — (α, τ). For functions /(x, f)

f{^Aβ)(^t} = f({a,AβΓί(x,t)). (1.5)

The main result [1, Theorem 2.1.1 and 9, Theorem 1.1] is

Theorem 1.1. Let [a, A} be a Poincare transformation. The trans-
formation

^φ({a,A}(x,ή) (1.6)

is locally unitarilly implemented in 3F. That is, for every bounded set
RCR2, there exists a unitary operator UB such that, for all /6C^(J3),

UBφ(f)US = φ ( f ( a , A } ) . (1.7)

The Lorentz covariance of the field operators can be extended to the
case of the algebra stf(β\ According to Cannon and Jaffe [1, Section 2.2]
the problem reduces to the case of pure Lorentz rotations for the bounded
region Bf such that B'vΛB' cBf, where Bj is the causal shadow of any
interval / = [0, b~\ in JR+ = {x > 0}. This is, for /e CQ($I\ supp /u supp
fΛ C Bj, there is a unitary operator U such that

(1.8)Aβ

The above reduction is a consequence of the space-time covariance of the
field operators. For more detailed discussion of the connection between
the above statement and Theorem 1.1 we refer the reader to Cannon
and Jaffe [1]. In proving the theorem, we follow closely the notation
used in references [1, 2, 7].



Lorentz Covaπance 181

II. The Locally Correct Hamiltonian and Lorentzian

In this section we summarize some well-known results given in
references [3, 4, 5] on the locally correct Hamiltonian and the generator of
Lorentz rotations (Lorentzian), and we also prove some useful relations
between H(g) and the Lorentzian which we use in the following section.

We introduce the spectral representation of Fock space J*7 with
respect to the maximal abelian algebra generated by the spectral pro-
jections for free field operators. J^ is then represented as L2(Q, dq) with
probability measure dq. In this space the Fock vacuum Ω0 is represented
by the function 1 and the algebra generated by the spectral projections
of free field operators is the algebra of bounded multiplication operators
L^(Q,dq).

We first state the known results for HQ and H(g). The reader may find
these results in the references (See Proposition TI.2, Proposition II. 17,
and Theorem 11.16 in Ref. [5] and Lemma A.2 in Ref. [10]).

Lemma 2.1. (a) e~tH° is a contractive semi-group in Lp(Q,dq) for
all p^i and t ̂  0.

(b) e~tH° is a strongly continuous semi-group for 1 ̂ p<oo.
(c) For 2 ̂  p < oo there exist t0(p) ^ 0 such that for t ̂  ί0(p), e~tH° is a

bounded map from L2(Q, dq) to Lp(Q, dq).

Proposition 2.2. (a) H(g) = H0 + H^g) is essentially self -adjoint on
Z)(//0)nD(H/(gf)) and bounded below.

(b) e~tH(9} is bounded in Lp(Q,dq) for all t ̂ 0 and 1 <p<oo.
(c) For 2 ̂  p < oo there exists T0(p) ^ 0 such that for t ̂  T0(p) e~tH(9]

is bounded map from L2(β, dq) to Lp(Q, dq).

Also we shall need:

Lemma 2.3. (a) C°°(H0)= f) D(Hζ) is a core for H(g).

(b) For T^ T0(p) for any p> 2, e~τH^L2(& dq) C D(H0).

Remark. Lemma 2.3 (a) was proved by Simon [10]. However, we
give here a slightly different proof based on the techniques we will be
using later.

Proof, (a) Let Dt = e'tH(g]L^(Q, dq). Then Dt C Lp(β, dq) for all p < oo
and DίGD(/ί0)nD(//I(^)). (See proof of Theorem 11.16, Ref. [5].) Also
Dt is a core for H(g). For any φeD,, let φε = e~είί°φ. Then φε-^φ in
Lp(Q,, dq) for p < co by Lemma 2.1 (b), and

\\H(g) (φt - φ)\\ £ \\H0(φt - φ)\\ + \\H,(g) (φε - φ)\\ ^ ||(1 - e~^) H0φ\\

\\φt-φ\\^Q as ε-»0.

Since e"tH°Dt C C00^), this proves (a).



182 Y. M. Park

(b) For any ψeL2(Q,dq\ choose a sequence of vectors {\pt},
Ψi e LJβ, dq), such that ψ^ψ in L2(Q, dq). Then e~TH(9}\pi^e~TH(9}ψ
in L2(β, dg) and for T ̂  T0(p), p > 2, we have that for p~ l + q~ l = 1

^ (2.1)

by Theorem 2.2 (c). Since DτcD(H0)πD(Hj(g)\ we have that

)̂̂
i - V j - ^ O as i,./->oo .

Thus {e~TH(9)ψι} is an /f0 -convergent sequence. Since H0 is closed,

0) and H0e-TH(9}ψί^H0e-TH(9}φ in L2(Q,dq).
The locally correct Lorentzian

where
M0(00) = α/ί0 + H0(£0), (2.3)

#ofeo) = i f : [π(x)2 + (FφM)2 + m2φ(x)2] : flf0(x) dx , (2.4)

α>0, ^o,^! 6^(.R) and gQygly ^0, was introduced and studied by
Cannon and Jaffe [1] for the (φ4)2 theory, and their results have been
extended to the (φ2n)2 by Rosen [9]. Recently Klein [7] has proved the
existence of a probability measure dμ on Q-space such that the Fock
space ^ can be represented by L2(Q,dμ) and e~tMo(9o} has the sane
properties on Lp(Q,dμ) as e~tH° on Lp(Q,dq). We renormalize M0(00)
such that MO feo) ̂ 0.

Lemma 2.4. (a) e~
tMo(9o} is a contraction in Lp(Q, dμ) for allt^O and

allp^i.
(b) e~tMo(9o) is a strongly continuous semi-group on Lp(Q,dμ) for

(c) For 2 ̂  p < oo there exists t0(p) §; 0 such that e~
tMo(oo} ιs a contrac-

tion from L2(Q9 dμ) to Lp(Q, dμ) for t ̂  tQ(p).

Proposition 2.5. (a) M(g0, g v ) = M0(g[0) + H/(#ι) ιs essentially self-
adjoint on D(M0(gQ))r^D(HI(gi)) and bounded below.

(b) e-
tM(g°'0l) is bounded on Lp(Q, dμ)for all t ̂ 0 and for all 1 <p< oo.

(c) For 2^p<oo ί/z^r^ exists Γ0(p)^0 5wc/z ί/zαί /or T^T0(p)
• e-™(β°>9ί} is a bounded map from L2(Q, dμ) to Lp(Q, dμ).

Lemma 2.6. (a) CCO(M0(^0)) is a core for M(g0,gί).
(b) For T^ T0(p) /or ^y p>2, ^"TM(^βl)L2(β,d//)CD(M0te0)).

Proof of Lemma 2. 4 - Lemma 2. 6. Lemma 2.4 (a), (c) and Proposi-
tion 2. 5 (a) are Klein's results [7, Theorem I and Corollary of Theorem II].
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The rest of the results can be proved by the techniques used in proving
Lemma 2.1 - Lemma 2.3 after replacing H0, H(g) and Lp(Q,dq) by
M0(#o), M (0o, 00 and Lp(β, dμ) respectively. |

The remainder of this section is devoted to investigating some useful
properties of M0(g0) and M(g0,g1). We note that H0(00) is symmetric
operator defined on D(H0) [1] and can be written as

HM - HO, i too) + #0,2(20) ̂  J Wifo fc') «*(fc) α(fc')

-f J Wj(fe, fc') [α*(/c) α*( - fc') + α( - fe) α(fc') '

where the kernel W2(k,k) of Hoa(g0) belongs to L2(R). We introduce
the following operators

(2.6)

- HO (g) - m2 f : φ(x)2 : 0(χ) rfx (2.7)

for 0 = 0 e £f(K). P(g) and JP(^f) are also symmetric operators on D(H0) [1].
Furthermore we have

Lemma 2.7. (a) M0(00) is α self -adjoint operator and it is bounded
below.

(b) The following operators are all bounded:

, , , / o o λand (2.8)
HoίMotooί + fc)"1

for some positive constant b.

Proof, (a) This lemma can be obtained from Theorem 5.3, Ref. [1] by
setting #ι(x) = 0.

(b) The boundedness of the first three operators in (2.8) is proven in
Theorem 3.2.1, Ref. [1]. We consider the last operator. We have that on
D(H0)xD(H0)

0) H0 + H0H0(g0)] + H0

^(a2-ε)H2

)-d(ε) (2.9)

from Lemma 4.2, Ref. [1]. Choose ε sufficiently small so that α2 — ε > 0.
Then boundedness of the last operator in (2.8) follows from the above
inequality and the self-adjointness of M0(00) on D(H0).

Let D0 be the dense domain of vectors in ̂  with finite number of
particles and wave functions in CQ(R"). Notice that the wave functions
have compact support in momentum space and consequently D0 is
invariant under H0. Then D0 is a core for H" for any n, since any vector
φ e D0 is an analytic vector for Hζ and moreover D0 C C°°(fί0). We denote
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that
(adA)n B = \_A, (adA)n~l β], (adA)° B = B.

and

We note that H$2 R and R H$2 are bounded operators for any j by the
boundedness of (2.8).

Lemma 2.8. As an operator relation on D(H$)

where Mn is some bounded operator for any n.

Proof. First we consider (2.11) for the case for n= 1. By direct com-
putation on D0 x D0, we obtain

Each term in (2.12) is bounded on D(#0) x D(H0) by Lemma 2.7. Therefore
(2.12) holds on D(H0) xD(H0\ since H0 is essentially self-adjoint on D0.
Thus we have that as bounded operators

[_N,R] = (-\)RH^2(g0)R

Hence the Lemma holds for the case of n — 1 .
From (2.13) we obtain that on D(H0

2) x D(H0

2)

(adN)2R = (-i)2RlH^(g0)RY2\ + (-

= M2.

(2.13)

Let χ E D(HQ) and φ 6 D(HQ). Then from (2.14) we have

N,Λ]φ)^ const ||χ|| {||[ΛΓ,R] Nφ|| + ||M2φ||}^ const |

since M2 is a bounded operator. Hence (2.14) holds on Ό(HQ\ since
D(Hζ) is a core for N, n > 1, and so [N, jR] D(//0

2) C D(N).
By repeating above arguments n times and by noting that on D(M0(g0))

we prove the lemma. |

Proposition 2.9. There exist constant a and b such that for any n>0

(2.16)

Proof. For the cases rc=l,2, the proposition follows from the
boundedness of (2.8). We assume that for given n>l,Nn~1Rn~ί is
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bounded. Let χ e C°°(H0) and ιpeRnφ. Then

(2.17)
Since

[JV",K]D X (-ly + HOΛ^ΈadNyK] (2.18)
i= 1

and since each term in (2.18) is defined on C°°(H0) as a corollary of
Lemma 2.8, we have that
|(RΛΓ"χ, (M0(0o) -f ft) φ)| = |(ΛΓKχ, N"- ' (M0(00) + ft) φ)|

^ const || χ || || <p ||. (2.19)

Here we have used Lemma 2.8 and the induction hypothesis. Since Nn is
essentially self-adjoint on C°°(//0), NnRn is bounded. This proves the
proposition. |

Corollary 2.10. (a) C«>(M0(g0))c C°°(N).
(b) D(H0)nC"(N) is a core for M(gθ9gί).

Proof, (a) This follows from Proposition 9.
(b) From the boundedness of (2.8) and part (a) it follows that

Cco(M0(g0))cD(H0)r\CίX3(N). Using this and Lemma 2.6 (a) part (b)
follows. I

Proposition 2.11. Assume that there exist constants c and d such that
cg^g} ^dg. Then the following operators are bounded:

H(g)-(M(g0,gι)+iΓ- and M(g0,g^(H(g)+ 1)-* , (2.20)

where we have renormalized H(g] and M(g0, gλ] such that these are positive.

Proof. First we prove that on D(H0)πD(Nn)

H(g) ^ const(M(#0, 9l) + 1) . (2.21)

Then (2.21) gives the boundedness of H(g)^ ( M ( g Q , g i ) - i - i)~~2, since
D(H0)nD(Nn}^D(H0)nCcc(N) is a core for

On D(H0)nD(Nn) we have that

9ι) + 1) - H(g) = (aa -i)H0 + aH0(g0) + HI(agi - g)

+ const . (2.22)

Choose a large enough so that αα — 1 > 0 and agl — g ̂  0, then the right
hand side of (2.22) has a form similar to M(g0,g1). Thus it is bounded
below on D(H0)r\D(Nn). This proves the inequality (2.21).
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Next we prove that on D(#0)nD(N")

M(00,0ι)^ const (H(0)+l). (2.23)

But we have that on D(H0}πD(Nn)

a(H(g)+i)-M(g0,g1) = (a-a)H0-H0(g0) + HI(ag-g1) + const. (2.23)

From the boundedness of (2.8) there exists a constant e such that on

Again we choose the constant a sufficiently large enough so that
α — α > e > 0 and flg — #ι^0. Then (a — a — e)H0 + HI(ag — g]) has a
form similar to H(g). Thus the right hand side of (2.23) is bounded below
and so we have the inequality (2.23). The proof is complete. |

III. Local Lorentz Transformation of Field Operators

In this section we shall study the transformation of the Heisenberg
picture field operators φ(f\ f = feC™(B') under the unitary group
generated by the local Lorentzian M(gQ,g]) introduced in the previous
section. We note that the field operators φ(f) are essentially self-adjoint
on any core for H(g)^ and independent of the space cutoff g provided that
the support of g(x) is large enough [2, 3]. All these properties may be
shown without using the higher order estimates (for instance, see Theo-
rem 8.7, Ref. [3]).

The Lorentzian on bounded regions B' with J3'u ΛB' C Bj has the form

M = αH0 + H0(χ00) + H^xgJ . (3.1)

We impose certain conditions on α, gθ9 and g^ [1], and show that M is an
infinitesimal generator for the locally correct Lorentz transformation
of the field operators without making use of higher order estimates
[1,9]. The assumptions are

(a) α>0, x g i ( x ) = hi(x)2

9 hi(x)>V, hteC?(R)< (3.2)

(b) α 4- xg0(x) = x = xg^x) on I = [α, b] C R+, (3.3)

(c) xgl(x) = (oi + x g o ( x ) ) g ι ( x ) for all xeR. (3.4)

The above conditions are satisfied by choosing the suitable α, gQ and g^
(see Ref. [1], p. 299). We denote Bj as

BI={(x,t):a+\t\<x<b-\t\}. (3.5)
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The Hamiltonian (assume the coupling constant λ = 1)

H = H0 + HI(gi) (3.6)

is correct in the region Bj [2, 3],
We shall work with this choice of Hamiltonian H and Lorentzian M.

All condition on H and M in the previous section are satisfied, and again
we renormalize M and H such that these are positive. According to the
discussion at the end of Section I, the following result is sufficient for the
proof of Theorem 1.1.

Theorem 3.1. Let f = feG"(BI) and suppfΛβCBj. Then

eiβMφ(f}e-iβM = φ(fΛβ) (3.7)

as an equality for the self-adjoint operators.

This section is devoted to proving Theorem 3.1. Although the overall
structure of the proof is the same as that of Cannon and Jaffe [1, Section 6
and 9, Section 6], we carry out the proof by using the hypercontractive
properties of e~tH and e'tM stated in the previous section. We shall give
a sketch of the proof in the last part of this section.

The most difficult part in proving Theorem 3.1 is in controlling the
domain for various commutators of H and M. For this reason we
introduce the domains

Dτ = e-(T+1)HL2(Q9dq) (3.8)
and

(3.9)

where T^ 7^(4). Notice that Dτ and Fτ are cores for Hm and Mm respec-
tively for any m > 0. We shall need some technical lemmas.

Lemma 3.2. Let A be one of H0, M0(g\ P(g\ P(g\ H and M, where
\ For any m ̂  0 we have

(a) HmDτcD(A) and MmFτcD(A), (3.9)

(b) As ε->0, ε>0,

ΨeHmDτ, (3.10)

Ψ, Ψe MmDT .

Proof, (a) Since HmDτcLp(Q,dq) for p^4 from Proposition 2.2 (c)
and since H j ( g ) e L p ( Q 9 d q ) for p<oo, it follows that HmDτcD(Hj(g}).
Thus HmDτcD(H0)πD(Hj(g)) by Lemma 2.3 (b). The first part of (a)
follows from Lemma 2.7 (b). The second part follows from similar
arguments in Lp(Q,dμ).



188 Y. M. Park

(b) We first consider the case for A = H0, M0(g\ P(g) or P(g). We note
that for ΨEHmDτ

as

Here we have used Lemma 2.1(b) and Lemma 2.3 (a). For A = Hj(g]
we also have that for ΨeHmDτ

HH^e-^Ψ-H^g) Ψ\\ ^ H

by Lemma 2.1 (b). The case for A = H or M is obvious. This proves the
first part of (b). Similar arguments in Lp(Q, dμ) prove the second part. |

Theorem 3.3. For any m ̂  0 we have

(a) As operators on HmDT and on MmFT

(b) As operators on HmDT

S, (3.12)
where

.1^ \ If] \
(3.13)

(c) MHmDTCD(H2), (3.14)

HmDτcD(Mi) and MmFTCD(H^). (3.15)

Proof. For simplification of the proof we only consider the case for
m = 0. The case for arbitrary m will be obvious.

(a) We first prove (3.11) on Dτ. As bilinear forms on D0 x D0 (3.11)
holds [1.9]. Since each term in (3.11) is bounded on D(H0 + Nn]
xD(H0 + Nn) and since D0 is a core for H0 + Nn, (3.11) holds on
D(H0 + Nn}xD(H0 + N"}. Let ψ e Dτ and Ψε = e~εH°Ψ. Using the
identity

(A Ψ,BΨ)- (A Ψε, BΨε) = (A(Ψ- Ψε\ BΨ)-(A Ψε, B(Ψε - Ψ)}

and

for Ψ9 Ψε e D(A)nD(B), we conclude that

(Ψ, [zfl, M] Ψ) - (Ψ, PΨ} = [(Ψ, [ifl, M] Ψ) - (Ψε[iH, M] Ψε)

-[_(Ψ9PΨ)-(Ψε9PΨε]]

->0 as ε-^0
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by Lemma 3.2, where P = P —— (xg0) By passing to the limit we show
\dx

the relation (3.11) on DτxDτ. Let χ,ΨeDτ. Then from (3.11) on
Dτ x Dτ we find that

\(Hχ,MΨ)\ ^ \\χ\\ {\\MHΨ\\ + \\PΨ\\}
(J.lo)

^ const || χ ||

by Lemma 3.2 (a). Since Dτ is a core for H, MDT C D(H) and (3.1 1) holds
on Dτ.

By replacing e'είί° by e~
εMo(X9o} and Dτ by Fτ, and by noting

e-*M°(χ^FτCD(H0 + Nn) from Corollary 2.10(a) and Lemma 2.4(b)
we have proved (3.1 1) on Fτ.

(b) As bilinear forms on Dτ x Dτ

Here we have used part (a). But on D0 x D0[l]

(xg0}} =S. (3.17)

(3.17) also holds on Dτ by arguments similar to those in proving part (a).
Thus (3.12) holds on Dτ by repeating the similar arguments used in (16).

(c) This follows as a corollary from the theorem (a) and (b), and
Proposition 2.11. |

For / = /E C? (Bj) we write

A ( f , t ) = $ φ ( x ) f ( x , t ) d x (3.18)
and

= $ π ( x ) f ( x , t ) d x . (3.19)

Then A(f, t) and B(f, ή are essentially self-adjoint on any core of H^ [3].
We restrict ourselves to functions with support contained in

B ε = { ( x , t ) : a + ε + \t\<x<b-ε-\t\ and | f | < ε } , (3.20)

where ε>0 is some smalί number. Any /E C^(Bj) can be written as a
sum of such function.

By following the main steps in Section 6, Ref. [1] we summarize the
proof of Theorem 3.1 with no use of higher order estimates.

Sketch of the Proof of Theorem 3. 1. The main steps are as follows :

Step i. For Ψ E Dτ and supp/ C Bε we consider the function

F(t) = i[_(M(t) Ψ, φ(f) Ψ) - (φ(f) Ψ, M(t) Ψ)~] , (3.21)
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where M(t) = eitHMeίtH. F(t) is well defined by Lemma 3.2(a). In fact
F(t) is n times continuously differentiable (via Theorem 3.3 (a), Proposi-
tion 2.11, Lemma 2.7 (b) and Proposition 2.2 (c)). Obviously

F(ί) = - ([H, M(ί)] Ψ, φ(f) Ψ) ~ (φ(f) Ψ, [H, M(ί)] )̂ (3.22)

F"(ί) = -i([H^H,M(t)-]~]Ψ,φ(f)Ψ) + i(φ(f)Ψ^H^H,M(t)-]']Ψ}. (3.23)

Note that each term in (3.22) and (3.23) is well defined by Theorem 3.3.

Step 2. We wish to show that for \s\ ^ ε and supp/ C Bε

[_S,eίsHφ(f}eίsH]=Q on DτxDτ. (3.24)

Let W(I) be von Neumann algebra generated by the spectral projections
of the time zero fields \ φ ( x ) h 1 ( x ) d x and \ π ( x ) h 2 ( x ) d x , hi = ht e C™(I).
Then on D 0 xD 0 [ l ]

[S,W r(/)]=0, (3.25)

and so also on D(Hn

0)x D(Hn

0] by the boundedness of S(H0+l)~n.
Using Lemma 3.2(b) one finds that (3.25) holds on Dτ x Dτ. Since

eisHφ(f)e-isH

is affiliated with W(I) for |s| ^ ε, this gives (3.24).

5. Together with the expansion of F(t) by Taylor's Theorem

t2

tF'(o)+—F"(s)

for |s| < |ί|, (3.22) - (3.24) and Theorem 3.3 we find that

z'M(t), φ(/)] - pM, φ(/)] -t\iP(-— (xg0), φ(f) on DτxDτ. (3.26)

Step 4. With the technique used in proving Theorem 3.3 (a), one
expects that

pM, A(f, ί)] = B(xf, t) on Dτ,

on Dτ.

By passing to the sharp field (φ(f)-^ A(f,t)) via Theorem 3.3(c) and
by using (3.27), (3.26) become

on DτxDτ. (3.28)
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Multiplying (3.28) by eitH on left and by e~itH on right, and integrating
with respect to t we obtain that

(3.28)
on D*D

Step 5. In order to deduce Theorem 3.1 from (3.28) we must show that
(3.28) holds on D(M*) x D(M*). Each term in (3.28) is bounded on
D(H^}xD(H^} by Proposition 2.11 and the relation D'H,φ(/)] = π(/)
on D(H*\ Hence (3.28) holds on D(H^} x D(H1} and so on Fτ x Fτ by
Theorem 3.3 (c). Thus (3.28) holds on D(M*) x D(Mi) by Proposition 2.1 1.
In fact, for supp/ C Bε,

on D(M-) (3.29)

by the method used in (3.16).

Step 6. The relation (3.29) is a differential form of (3.7). We note that

φ(x,t) = eίtHφ(x)e-ίΐH

is a bilinear form on D(M^) x D(M*) and also D(M*) is a core for φ(f)
by Proposition 2.11. Therefore the relation (3.29) implies Theorem 3.1
by the arguments similar to those used to prove Theorem 6.1, Ref. [1]
from Lemma 6.14, Ref. [1]. |
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