Lorentz Covariance of the $P(\varphi)_{2}$ Quantum Field Theory without Higher Order Estimates

Yong Moon Park
Department of Physics, Indiana University Bloomington, Indiana, USA

Received October 25, 1972; in revised form April 18, 1973

Abstract

We give a simple proof of Lorentz covariance for the $P(\varphi)_{2}$ model without using the higher order estimates: For each Poincaré transformation $\{a, A\}$ and each bounded region B of Minkowski space there exists a unitary operator U which correctly transforms the Heisenberg picture field operator: $U \varphi(f) U^{*}=\varphi\left(f_{\{a, A\rangle}\right), f \in C_{o}^{\infty}(B)$.

I. Introduction

The Lorentz covariance of boson field theories in two dimensional space-time was first studied by Cannon and Jaffe [1] for the $\left(\varphi^{4}\right)_{2}$ model in the sense of Haag-Kastler axioms [4]. Their results were extended to the $P(\varphi)_{2}$ by Rosen [9]. In each case, higher order estimates were used to study the corresponding models. It is well known that most of the results for the $P(\varphi)_{2}$ model can be obtained by using the hypercontractive property of the semi-group $e^{-t H_{0}}[2,3,5,11]$. Recent results by Klein have shown the self-adjointness of the locally correct generator of Lorentz transformation for the $P(\varphi)_{2}$ interaction by introducing the $L_{2}(Q, d \mu)$ representation of Fock space \mathscr{F} [7].

The main purpose of this paper is to simplify the proof of Lorentz covariance for the $P(\varphi)_{2}$ interaction by using the hypercontractive properties of the semigroups generated by the locally correct Hamiltonian and Lorentzian. We shall follow the method developed by Cannon and Jaffe [1]. However, we are able to prove the main theorems of references [1] and [9] using only hypercontractive semi-groups; we don't use the higher order estimates.

The locally correct Hamiltonian we shall consider has the form

$$
\begin{equation*}
H(g)=H_{0}+H_{I}(g) \tag{1.1}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{I}(g)=\int: P(\varphi(x)): g(x) d x \tag{1.2}
\end{equation*}
$$

where H_{0} is the free boson Hamiltonian, $P(\alpha)$ a polynomial of degree $2 n$ with positive leading coefficient, $\varphi(x)$ the free boson field at time $t=0$ and $g(x) \in L_{1}(R) \cap L_{2}(R)$ is a positive function. Then $H(g)$ is essentially self-adjoint on $D\left(H_{0}\right) \cap D\left(H_{I}(g)\right)$ and bounded below [2,3,5]. The Heisenberg picture field operators $\varphi(f)$ formally given by

$$
\begin{equation*}
\varphi(f)=\int e^{i t H(g)} \varphi(x) e^{-i t H(g)} f(x, t) d x d t \tag{1.3}
\end{equation*}
$$

are essentially self-adjoint on any core for $(H(g)+b)^{\frac{1}{2}}$ [3], provided $f=\bar{f} \in C_{0}^{\infty}(B)$ for B any bounded open subset in space-time.

Let $\mathscr{A}(B)$ be the von Neumann algebra generated by the operators

$$
\left\{e^{i \varphi(f)}: f=\bar{f} \in C_{0}^{\infty}(B)\right\} .
$$

Let $\left\{a, \Lambda_{\beta}\right\}$ be a Poincaré transformation of two space-time dimensions defined by

$$
\begin{equation*}
\left\{a, \Lambda_{\beta}\right\}(x, t)=(x \cosh \beta+t \sinh \beta+\alpha, x \sinh \beta+t \cosh \beta+\tau) \tag{1.4}
\end{equation*}
$$

where $a=(\alpha, \tau)$. For functions $f(x, t)$

$$
\begin{equation*}
f_{\left\{a, \Lambda_{\beta}\right\}}(x, t)=f\left(\left\{a, \Lambda_{\beta}\right\}^{-1}(x, t)\right) . \tag{1.5}
\end{equation*}
$$

The main result [1, Theorem 2.1.1 and 9, Theorem 1.1] is
Theorem 1.1. Let $\{a, \Lambda\}$ be a Poincaré transformation. The transformation

$$
\begin{equation*}
\varphi(x, t) \rightarrow \varphi(\{a, \Lambda\}(x, t)) \tag{1.6}
\end{equation*}
$$

is locally unitarilly implemented in \mathscr{F}. That is, for every bounded set $R \subset R^{2}$, there exists a unitary operator U_{B} such that, for all $f \in C_{0}^{\infty}(B)$,

$$
\begin{equation*}
U_{B} \varphi(f) U_{B}^{*}=\varphi\left(f_{\{a, A\}}\right) \tag{1.7}
\end{equation*}
$$

The Lorentz covariance of the field operators can be extended to the case of the algebra $\mathscr{A}(B)$. According to Cannon and Jaffe [1, Section 2.2] the problem reduces to the case of pure Lorentz rotations for the bounded region B^{\prime} such that $B^{\prime} \cup \Lambda B^{\prime} \subset B_{I}$, where B_{I} is the causal shadow of any interval $I=[a, b]$ in $R^{+}=\{x>0\}$. This is, for $f \in C_{0}^{\infty}\left(B_{I}\right)$, supp $f \cup$ supp $f_{A_{\beta}} \subset B_{I}$, there is a unitary operator U such that

$$
\begin{equation*}
U \varphi U^{*}=\varphi\left(f_{\Lambda_{\beta}}\right) \tag{1.8}
\end{equation*}
$$

The above reduction is a consequence of the space-time covariance of the field operators. For more detailed discussion of the connection between the above statement and Theorem 1.1 we refer the reader to Cannon and Jaffe [1]. In proving the theorem, we follow closely the notation used in references [1, 2, 7].

II. The Locally Correct Hamiltonian and Lorentzian

In this section we summarize some well-known results given in references [3, 4,5] on the locally correct Hamiltonian and the generator of Lorentz rotations (Lorentzian), and we also prove some useful relations between $H(g)$ and the Lorentzian which we use in the following section.

We introduce the spectral representation of Fock space \mathscr{F} with respect to the maximal abelian algebra generated by the spectral projections for free field operators. \mathscr{F} is then represented as $L_{2}(Q, d q)$ with probability measure $d q$. In this space the Fock vacuum Ω_{0} is represented by the function 1 and the algebra generated by the spectral projections of free field operators is the algebra of bounded multiplication operators $L_{\infty}(Q, d q)$.

We first state the known results for H_{0} and $H(g)$. The reader may find these results in the references (See Proposition II.2, Proposition II.17, and Theorem II. 16 in Ref. [5] and Lemma A. 2 in Ref. [10]).

Lemma 2.1. (a) $e^{-t H_{0}}$ is a contractive semi-group in $L_{p}(Q, d q)$ for all $p \geqq 1$ and $t \geqq 0$.
(b) $e^{-t H_{0}}$ is a strongly continuous semi-group for $1 \leqq p<\infty$.
(c) For $2 \leqq p<\infty$ there exist $t_{0}(p) \geqq 0$ such that for $t \geqq t_{0}(p), e^{-t H_{0}}$ is a bounded map from $L_{2}(Q, d q)$ to $L_{p}(Q, d q)$.

Proposition 2.2. (a) $H(g)=H_{0}+H_{I}(g)$ is essentially self-adjoint on $D\left(H_{0}\right) \cap D\left(H_{I}(g)\right)$ and bounded below.
(b) $e^{-t H(g)}$ is bounded in $L_{p}(Q, d q)$ for all $t \geqq 0$ and $1<p<\infty$.
(c) For $2 \leqq p<\infty$ there exists $T_{0}(p) \geqq 0$ such that for $t \geqq T_{0}(p) e^{-t H(g)}$ is bounded map from $L_{2}(Q, d q)$ to $L_{p}(Q, d q)$.

Also we shall need:
Lemma 2.3. (a) $C^{\infty}\left(H_{0}\right)=\bigcap_{n=1}^{\infty} D\left(H_{0}^{n}\right)$ is a core for $H(g)$.
(b) For $T \geqq T_{0}(p)$ for any $p>2, e^{-T H(g)} L_{2}(Q, d q) \subset D\left(H_{0}\right)$.

Remark. Lemma 2.3 (a) was proved by Simon [10]. However, we give here a slightly different proof based on the techniques we will be using later.

Proof. (a) Let $D_{t}=e^{-t H(g)} L_{\infty}(Q, d q)$. Then $D_{t} \subset L_{p}(Q, d q)$ for all $p<\infty$ and $D_{t} \subset D\left(H_{0}\right) \cap D\left(H_{I}(g)\right)$. (See proof of Theorem II.16, Ref. [5].) Also D_{t} is a core for $H(g)$. For any $\varphi \in D_{t}$, let $\varphi_{\varepsilon}=e^{-\varepsilon H_{0}} \varphi$. Then $\varphi_{\varepsilon} \xrightarrow{s} \varphi$ in $L_{p}(Q, d q)$ for $p<\infty$ by Lemma 2.1 (b), and

$$
\begin{aligned}
\left\|H(g)\left(\varphi_{\varepsilon}-\varphi\right)\right\| \leqq & \left\|H_{0}\left(\varphi_{\varepsilon}-\varphi\right)\right\|+\left\|H_{I}(g)\left(\varphi_{\varepsilon}-\varphi\right)\right\| \leqq\left\|\left(1-e^{-\varepsilon H_{0}}\right) H_{0} \varphi\right\| \\
& +\left\|H_{I}(g)\right\|_{4}\left\|\varphi_{\varepsilon}-\varphi\right\|_{4} \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Since $e^{-\varepsilon H_{0}} D_{t} \subset C^{\infty}\left(H_{0}\right)$, this proves (a).
(b) For any $\psi \in L_{2}(Q, d q)$, choose a sequence of vectors $\left\{\psi_{i}\right\}$, $\psi_{i} \in \mathrm{~L}_{\infty}(Q, d q)$, such that $\psi_{i} \stackrel{s}{\rightarrow} \psi$ in $L_{2}(Q, d q)$. Then $e^{-T H(g)} \psi_{i} \stackrel{s}{\rightarrow} e^{-T H(g)} \psi$ in $L_{2}(Q, d q)$ and for $T \geqq T_{0}(p), p>2$, we have that for $p^{-1}+q^{-1}=1$

$$
\begin{equation*}
\left\|H_{I}(g) e^{-T H(g)}\left(\psi_{i}-\psi\right)\right\| \leqq\left\|H_{I}(g)\right\|_{q}\left\|e^{-T H(g)}\left(\psi_{i}-\psi\right)\right\|_{p} \leqq \mathrm{const}\left\|\psi_{i}-\psi\right\|_{2} \tag{2.1}
\end{equation*}
$$

by Theorem $2.2(\mathrm{c})$. Since $D_{T} \subset D\left(H_{0}\right) \cap D\left(H_{I}(g)\right)$, we have that

$$
\begin{aligned}
& \left\|H_{0} e^{-T H(g)}\left(\psi_{i}-\psi_{j}\right)\right\| \leqq\left\|H(g) e^{-T H(g)}\left(\psi_{i}-\psi_{j}\right)\right\|+\left\|H_{I}(g) e^{-T H(g)}\left(\psi_{i}-\psi_{j}\right)\right\| \\
& \leqq\left\|H(g) e^{-T H(g)}\right\|\left\|\psi_{i}-\psi_{j}\right\|_{2}+\mathrm{const}\left\|\psi_{i}-\psi_{j}\right\|_{2} \rightarrow 0 \quad \text { as } \quad i, j \rightarrow \infty
\end{aligned}
$$

Thus $\left\{e^{-T H(g)} \psi_{i}\right\}$ is an H_{0}-convergent sequence. Since H_{0} is closed, $e^{-T H(g)} \psi \in D\left(H_{0}\right)$ and $H_{0} e^{-T H(g)} \psi_{i} \xrightarrow{s} H_{0} e^{-T H(g)} \psi$ in $L_{2}(Q, d q)$.

The locally correct Lorentzian
where

$$
\begin{gather*}
M\left(g_{0}, g_{1}\right)=M_{0}\left(g_{0}\right)+H_{I}\left(g_{1}\right) \tag{2.2}\\
M_{0}\left(g_{0}\right)=\alpha H_{0}+H_{0}\left(g_{0}\right) \tag{2.3}\\
H_{0}\left(g_{0}\right)=\frac{1}{2} \int:\left[\pi(x)^{2}+(\nabla \varphi(x))^{2}+m^{2} \varphi(x)^{2}\right]: g_{0}(x) d x \tag{2.4}
\end{gather*}
$$

$\alpha>0, g_{0}, g_{1} \in \mathscr{S}(R)$ and $g_{0}, g_{1}, \geqq 0$, was introduced and studied by Cannon and Jaffe [1] for the $\left(\varphi^{4}\right)_{2}$ theory, and their results have been extended to the $\left(\varphi^{2 n}\right)_{2}$ by Rosen [9]. Recently Klein [7] has proved the existence of a probability measure $d \mu$ on Q-space such that the Fock space \mathscr{F} can be represented by $L_{2}(Q, d \mu)$ and $e^{-t M_{0}\left(g_{0}\right)}$ has the sane properties on $L_{p}(Q, d \mu)$ as $e^{-t H_{0}}$ on $L_{p}(Q, d q)$. We renormalize $M_{0}\left(g_{0}\right)$ such that $M_{0}\left(g_{0}\right) \geqq 0$.

Lemma 2.4. (a) $e^{-t M_{0}\left(g_{0}\right)}$ is a contraction in $L_{p}(Q, d \mu)$ for all $t \geqq 0$ and all $p \geqq 1$.
(b) $e^{-t M_{0}\left(g_{0}\right)}$ is a strongly continuous semi-group on $L_{p}(Q, d \mu)$ for $1 \leqq p<\infty$.
(c) For $2 \leqq p<\infty$ there exists $t_{0}(p) \geqq 0$ such that $e^{-t M_{0}\left(g_{0}\right)}$ is a contraction from $L_{2}(Q, d \mu)$ to $L_{p}(Q, d \mu)$ for $t \geqq t_{0}(p)$.

Proposition 2.5. (a) $M\left(g_{0}, g_{1}\right)=M_{0}\left(g_{0}\right)+H_{I}\left(g_{1}\right)$ is essentially selfadjoint on $D\left(M_{0}\left(g_{0}\right)\right) \cap D\left(H_{I}\left(g_{1}\right)\right)$ and bounded below.
(b) $e^{-t M\left(g_{0}, g_{1}\right)}$ is bounded on $L_{p}(Q, d \mu)$ for all $t \geqq 0$ and for all $1<p<\infty$.
(c) For $2 \leqq p<\infty$ there exists $T_{0}(p) \geqq 0$ such that for $T \geqq T_{0}(p)$ - $e^{-T M\left(g_{0}, g_{1}\right)}$ is a bounded map from $L_{2}(Q, d \mu)$ to $L_{p}(Q, d \mu)$.

Lemma 2.6. (a) $C^{\infty}\left(M_{0}\left(g_{0}\right)\right)$ is a core for $M\left(g_{0}, g_{1}\right)$.
(b) For $T \geqq T_{0}(p)$ for any $p>2, e^{-T M\left(g_{0}, g_{1}\right)} L_{2}(Q, d \mu) \subset D\left(M_{0}\left(g_{0}\right)\right)$.

Proof of Lemma 2.4-Lemma 2.6. Lemma 2.4(a), (c) and Proposition 2.5 (a) are Klein's results [7, Theorem I and Corollary of Theorem II].

The rest of the results can be proved by the techniques used in proving Lemma 2.1 - Lemma 2.3 after replacing $H_{0}, H(g)$ and $L_{p}(Q, d q)$ by $M_{0}\left(g_{0}\right), M\left(g_{0}, g_{1}\right)$ and $L_{p}(Q, d \mu)$ respectively.

The remainder of this section is devoted to investigating some useful properties of $M_{0}\left(g_{0}\right)$ and $M\left(g_{0}, g_{1}\right)$. We note that $H_{0}\left(g_{0}\right)$ is symmetric operator defined on $D\left(H_{0}\right)$ [1] and can be written as

$$
\begin{align*}
& H_{0}\left(g_{0}\right)=H_{0,1}\left(g_{0}\right)+H_{0,2}\left(g_{0}\right)=\int W_{1}\left(k, k^{\prime}\right) a^{*}(k) a\left(k^{\prime}\right) d k d k^{\prime} \tag{2.5}\\
& +\int W_{2}\left(k, k^{\prime}\right)\left[a^{*}(k) a^{*}\left(-k^{\prime}\right)+a(-k) a\left(k^{\prime}\right)\right] d k d k^{\prime},
\end{align*}
$$

where the kernel $W_{2}\left(k, k^{\prime}\right)$ of $H_{0,2}\left(g_{0}\right)$ belongs to $L_{2}(R)$. We introduce the following operators

$$
\begin{align*}
& P(g)=\frac{1}{2} \int:[\pi(x) \nabla \varphi(x)+(\nabla \varphi(x)) \pi(x)]: g(x) d x, \tag{2.6}\\
& \dot{P}(g)=H_{0}(g)-m^{2} \int: \varphi(x)^{2}: g(x) d x \tag{2.7}
\end{align*}
$$

for $g=\bar{g} \in \mathscr{S}(R) . P(g)$ and $\dot{P}(g)$ are also symmetric operators on $D\left(H_{0}\right)$ [1]. Furthermore we have

Lemma 2.7. (a) $M_{0}\left(g_{0}\right)$ is a self-adjoint operator and it is bounded below.
(b) The following operators are all bounded:
and

$$
\begin{array}{cc}
M_{0}\left(g_{0}\right)\left(H_{0}+1\right)^{-1}, & P(g)\left(H_{0}+1\right)^{-1}, \quad \dot{P}(g)\left(H_{0}+1\right)^{-1} \\
H_{0}\left(M_{0}\left(g_{0}\right)+b\right)^{-1} \tag{2.8}
\end{array}
$$

for some positive constant b.
Proof. (a) This lemma can be obtained from Theorem 5.3, Ref. [1] by setting $g_{1}(x)=0$.
(b) The boundedness of the first three operators in (2.8) is proven in Theorem 3.2.1, Ref. [1]. We consider the last operator. We have that on $D\left(H_{0}\right) \times D\left(H_{0}\right)$

$$
\begin{align*}
M_{0}\left(g_{0}\right)^{2}=\left(\alpha H_{0}+H_{0}\left(g_{0}\right)\right)^{2} & =\alpha^{2} H_{0}^{2}+\alpha\left[H_{0}\left(g_{0}\right) H_{0}+H_{0} H_{0}\left(g_{0}\right)\right]+H_{0}\left(g_{0}\right)^{2} \\
& \geqq\left(\alpha^{2}-\varepsilon\right) H_{0}^{2}-d(\varepsilon) \tag{2.9}
\end{align*}
$$

from Lemma 4.2, Ref. [1]. Choose ε sufficiently small so that $\alpha^{2}-\varepsilon>0$. Then boundedness of the last operator in (2.8) follows from the above inequality and the self-adjointness of $M_{0}\left(g_{0}\right)$ on $D\left(H_{0}\right)$.

Let D_{o} be the dense domain of vectors in \mathscr{F} with finite number of particles and wave functions in $C_{0}^{\infty}\left(R^{n}\right)$. Notice that the wave functions have compact support in momentum space and consequently D_{0} is invariant under H_{0}. Then D_{o} is a core for H_{o}^{n} for any n, since any vector $\varphi \in D_{o}$ is an analytic vector for H_{0}^{n} and moreover $D_{o} \subset C^{\infty}\left(H_{0}\right)$. We denote
that

$$
\begin{align*}
(\operatorname{ad} A)^{n} B & =\left[A,(\operatorname{ad} A)^{n-1} B\right],(\operatorname{ad} A)^{0} B=B . \\
R & =\left[M_{0}\left(g_{0}\right)+b\right]^{-1}, \tag{2.10}
\end{align*}
$$

and

$$
H_{0,2}{ }^{(j)}=2^{j} \int W_{2}\left(k, k^{\prime}\right)\left[a^{*}(k) a^{*}\left(-k^{\prime}\right)+(-1)^{j} a(-k) a\left(k^{\prime}\right)\right] d k d k^{\prime}
$$

We note that $H_{0,2}^{(j)} R$ and $R H_{0,2}^{(j)}$ are bounded operators for any j by the boundedness of (2.8).

Lemma 2.8. As an operator relation on $D\left(H_{0}^{n}\right)$

$$
\begin{equation*}
(\operatorname{ad} N)^{n} R=M_{n}, \tag{2.11}
\end{equation*}
$$

where M_{n} is some bounded operator for any n.
Proof. First we consider (2.11) for the case for $n=1$. By direct computation on $D_{o} \times D_{o}$, we obtain

$$
\begin{equation*}
\left[N, M_{0}\left(g_{0}\right)+b\right]=H_{0,2}^{(1)}\left(g_{0}\right) \tag{2.12}
\end{equation*}
$$

Each term in (2.12) is bounded on $D\left(H_{0}\right) \times D\left(H_{0}\right)$ by Lemma 2.7. Therefore (2.12) holds on $D\left(H_{0}\right) \times D\left(H_{0}\right)$, since H_{0} is essentially self-adjoint on D_{o}. Thus we have that as bounded operators

$$
\begin{equation*}
[N, R]=(-1) R H_{0,2}^{(1)}\left(g_{0}\right) R \tag{2.13}
\end{equation*}
$$

Hence the Lemma holds for the case of $n=1$.
From (2.13) we obtain that on $D\left(H_{0}^{2}\right) \times D\left(H_{0}^{2}\right)$

$$
\begin{align*}
(\operatorname{ad} N)^{2} R & =(-1)^{2} R\left[H_{0,2}^{(1)}\left(g_{0}\right) R\right]^{2} 2!+(-1) R H_{0,2}^{(2)}\left(g_{0}\right) R \tag{2.14}\\
& \equiv M_{2}
\end{align*}
$$

Let $\chi \in D\left(H_{0}^{2}\right)$ and $\varphi \in D\left(H_{0}^{2}\right)$. Then from (2.14) we have

$$
(N \chi,[N, R] \varphi) \leqq \mathrm{const}\|\chi\|\left\{\|[N, R] N \varphi\|+\left\|M_{2} \varphi\right\|\right\} \leqq \text { const }\|\chi\|,
$$

since M_{2} is a bounded operator. Hence (2.14) holds on $D\left(H_{0}^{2}\right)$, since $D\left(H_{0}^{n}\right)$ is a core for $N, n>1$, and so $[N, R] D\left(H_{0}^{2}\right) \subset D(N)$.

By repeating above arguments n times and by noting that on $D\left(M_{0}\left(g_{0}\right)\right)$ $\times D\left(M_{0}\left(g_{0}\right)\right)$

$$
\begin{equation*}
\left[N, H_{0,2}^{(j)}\left(g_{0}\right)\right]=H_{0,2}^{(j+1)}\left(g_{0}\right), \tag{2.15}
\end{equation*}
$$

we prove the lemma.
Proposition 2.9. There exist constant a and b such that for any $n>0$

$$
\begin{equation*}
N^{n} \leqq a\left(M_{0}\left(g_{0}\right)+b\right)^{n} \tag{2.16}
\end{equation*}
$$

Proof. For the cases $n=1,2$, the proposition follows from the boundedness of (2.8). We assume that for given $n>1, N^{n-1} R^{n-1}$ is
bounded. Let $\chi \in C^{\infty}\left(H_{0}\right)$ and $\psi \in R^{n} \varphi$. Then

$$
\begin{equation*}
\left(N \chi, N^{n-1} \psi\right)=\left(R N^{n} \chi,\left(M_{0}\left(g_{0}\right)+b\right) \psi\right) \tag{2.17}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left[N^{n}, R\right] \supset \sum_{i=1}^{n}(-1)^{i+1}(i) N^{n-i}\left[(\operatorname{ad} N)^{i} R\right] \tag{2.18}
\end{equation*}
$$

and since each term in (2.18) is defined on $C^{\infty}\left(H_{0}\right)$ as a corollary of Lemma 2.8, we have that $\left|\left(R N^{n} \chi,\left(M_{0}\left(g_{0}\right)+b\right) \psi\right)\right|=\left|\left(N R \chi, N^{n-1}\left(M_{0}\left(g_{0}\right)+b\right) \psi\right)\right|$

$$
\begin{align*}
& +\left|\sum_{i=1}^{n}(-1)^{i+1}(i)\left((\operatorname{ad} N)^{i} R \chi, N^{n-i}\left(M_{0}\left(g_{0}\right)+b\right) \psi\right)\right| \\
& \leqq \text { const }\|\chi\|\|\varphi\| \tag{2.19}
\end{align*}
$$

Here we have used Lemma 2.8 and the induction hypothesis. Since N^{n} is essentially self-adjoint on $C^{\infty}\left(H_{0}\right), N^{n} R^{n}$ is bounded. This proves the proposition.

Corollary 2.10. (a) $C^{\infty}\left(M_{0}\left(g_{0}\right)\right) \subset C^{\infty}(N)$.
(b) $D\left(H_{0}\right) \cap C^{\infty}(N)$ is a core for $M\left(g_{0}, g_{1}\right)$.

Proof. (a) This follows from Proposition 9.
(b) From the boundedness of (2.8) and part (a) it follows that $C^{\infty}\left(M_{0}\left(g_{0}\right)\right) \subset D\left(H_{0}\right) \cap C^{\infty}(N)$. Using this and Lemma 2.6(a) part (b) follows.

Proposition 2.11. Assume that there exist constants c and d such that $c g \leqq g_{1} \leqq d g$. Then the following operators are bounded:

$$
\begin{equation*}
H(g)^{\frac{1}{2}}\left(M\left(g_{0}, g_{1}\right)+1\right)^{-\frac{1}{2}} \quad \text { and } \quad M\left(g_{0}, g_{1}\right)^{\frac{1}{2}}(H(g)+1)^{-\frac{1}{2}} \tag{2.20}
\end{equation*}
$$

where we have renormalized $H(g)$ and $M\left(g_{0}, g_{1}\right)$ such that these are positive.
Proof. First we prove that on $D\left(H_{0}\right) \cap D\left(N^{n}\right)$

$$
\begin{equation*}
H(g) \leqq \operatorname{const}\left(M\left(g_{0}, g_{1}\right)+1\right) \tag{2.21}
\end{equation*}
$$

Then (2.21) gives the boundedness of $H(g)^{\frac{1}{2}}\left(M\left(g_{0}, g_{1}\right)+1\right)^{-\frac{1}{2}}$, since $D\left(H_{0}\right) \cap D\left(N^{n}\right) \supset D\left(H_{0}\right) \cap C^{\infty}(N)$ is a core for $M\left(g_{0}, g_{1}\right)^{\frac{1}{2}}$.

On $D\left(H_{0}\right) \cap D\left(N^{n}\right)$ we have that

$$
\begin{align*}
a\left(M\left(g_{0}, g_{1}\right)+1\right)-H(g)= & (\alpha a-1) H_{0}+a H_{0}\left(g_{0}\right)+H_{I}\left(a g_{1}-g\right) \\
& + \text { const } . \tag{2.22}
\end{align*}
$$

Choose a large enough so that $\alpha a-1>0$ and $a g_{1}-g \geqq 0$, then the right hand side of (2.22) has a form similar to $M\left(g_{0}, g_{1}\right)$. Thus it is bounded below on $D\left(H_{0}\right) \cap D\left(N^{n}\right)$. This proves the inequality (2.21).

Next we prove that on $D\left(H_{0}\right) \cap D\left(N^{n}\right)$

$$
\begin{equation*}
M\left(g_{0}, g_{1}\right) \leqq \operatorname{const}(H(g)+1) \tag{2.23}
\end{equation*}
$$

But we have that on $D\left(H_{0}\right) \cap D\left(N^{n}\right)$
$a(H(g)+1)-M\left(g_{0}, g_{1}\right)=(a-\alpha) H_{0}-H_{0}\left(g_{0}\right)+H_{I}\left(a g-g_{1}\right)+$ const.
From the boundedness of (2.8) there exists a constant e such that on $D\left(H_{0}\right)$

$$
e H_{0}-H_{0}\left(g_{0}\right) \geqq 0
$$

Again we choose the constant a sufficiently large enough so that $a-\alpha>e>0$ and $a g-g_{1} \geqq 0$. Then $(a-\alpha-e) H_{0}+H_{I}\left(a g-g_{1}\right)$ has a form similar to $H(g)$. Thus the right hand side of (2.23) is bounded below and so we have the inequality (2.23). The proof is complete.

III. Local Lorentz Transformation of Field Operators

In this section we shall study the transformation of the Heisenberg picture field operators $\varphi(f), f=\bar{f} \in C_{o}^{\infty}\left(B^{\prime}\right)$ under the unitary group generated by the local Lorentzian $M\left(g_{0}, g_{1}\right)$ introduced in the previous section. We note that the field operators $\varphi(f)$ are essentially self-adjoint on any core for $H(g)^{\frac{1}{2}}$ and independent of the space cutoff g provided that the support of $g(x)$ is large enough [2,3]. All these properties may be shown without using the higher order estimates (for instance, see Theorem 8.7, Ref. [3]).

The Lorentzian on bounded regions B^{\prime} with $B^{\prime} \cup \Lambda B^{\prime} \subset B_{I}$ has the form

$$
\begin{equation*}
M=\alpha H_{0}+H_{0}\left(x g_{0}\right)+H_{I}\left(x g_{1}\right) \tag{3.1}
\end{equation*}
$$

We impose certain conditions on α, g_{0}, and g_{1} [1], and show that M is an infinitesimal generator for the locally correct Lorentz transformation of the field operators without making use of higher order estimates $[1,9]$. The assumptions are
(a) $\alpha>0, x g_{i}(x)=h_{i}(x)^{2}, h_{i}(x)>0, h_{i} \in C_{o}^{\infty}(R)$,
(b) $\alpha+x g_{0}(x)=x=x g_{1}(x) \quad$ on $\quad I=[a, b] \subset R+$,
(c) $x g_{1}(x)=\left(\alpha+x g_{0}(x)\right) g_{1}(x)$ for all $x \in R$.

The above conditions are satisfied by choosing the suitable α, g_{0} and g_{1} (see Ref. [1], p. 299). We denote B_{I} as

$$
\begin{equation*}
B_{I}=\{(x, t): a+|t|<x<b-|t|\} \tag{3.5}
\end{equation*}
$$

The Hamiltonian (assume the coupling constant $\lambda=1$)

$$
\begin{equation*}
H=H_{0}+H_{I}\left(g_{1}\right) \tag{3.6}
\end{equation*}
$$

is correct in the region $B_{I}[2,3]$.
We shall work with this choice of Hamiltonian H and Lorentzian M. All condition on H and M in the previous section are satisfied, and again we renormalize M and H such that these are positive. According to the discussion at the end of Section I, the following result is sufficient for the proof of Theorem 1.1.

Theorem 3.1. Let $f=\bar{f} \in C_{o}^{\infty}\left(B_{I}\right)$ and $\operatorname{supp} f_{A_{\beta}} \subset B_{I}$. Then

$$
\begin{equation*}
e^{i \beta M} \varphi(f) e^{-i \beta M}=\varphi\left(f_{A \beta}\right) \tag{3.7}
\end{equation*}
$$

as an equality for the self-adjoint operators.
This section is devoted to proving Theorem 3.1. Although the overall structure of the proof is the same as that of Cannon and Jaffe [1, Section 6 and 9 , Section 6], we carry out the proof by using the hypercontractive properties of $e^{-t H}$ and $e^{-t M}$ stated in the previous section. We shall give a sketch of the proof in the last part of this section.

The most difficult part in proving Theorem 3.1 is in controlling the domain for various commutators of H and M. For this reason we introduce the domains
and

$$
\begin{equation*}
D_{T}=e^{-(T+1) H} L_{2}(Q, d q) \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
F_{T}=e^{-(T+1) M} L_{2}(Q, d \mu) \tag{3.9}
\end{equation*}
$$

where $T \geqq T_{0}(4)$. Notice that D_{T} and F_{T} are cores for H^{m} and M^{m} respectively for any $m>0$. We shall need some technical lemmas.

Lemma 3.2. Let A be one of $H_{0}, M_{0}(g), P(g), \dot{P}(g), H$ and M, where $g=\bar{g} \in \mathscr{S}(R)$. For any $m \geqq 0$ we have
(a) $H^{m} D_{T} \subset D(A)$ and $M^{m} F_{T} \subset D(A)$,
(b) $A s \varepsilon \rightarrow 0, \varepsilon>0$,
$A e^{-\varepsilon H_{0}} \Psi \xrightarrow{s} A \Psi, \quad \Psi \in H^{m} D_{T}$,
$A e^{-\varepsilon M_{0}\left(x g_{0}\right)} \Psi \stackrel{s}{\rightarrow} A \Psi, \quad \Psi \in M^{m} D_{T}$.
Proof. (a) Since $H^{m} D_{T} \subset L_{p}(Q, d q)$ for $p \leqq 4$ from Proposition 2.2(c) and since $H_{I}(g) \in L_{p}(Q, d q)$ for $p<\infty$, it follows that $H^{m} D_{T} \subset D\left(H_{I}(g)\right)$. Thus $H^{m} D_{T} \subset D\left(H_{0}\right) \cap D\left(H_{I}(g)\right)$ by Lemma 2.3(b). The first part of (a) follows from Lemma 2.7(b). The second part follows from similar arguments in $L_{p}(Q, d \mu)$.
(b) We first consider the case for $A=H_{0}, M_{0}(g), P(g)$ or $\dot{P}(g)$. We note that for $\Psi \in H^{m} D_{T}$

$$
\begin{aligned}
\left\|A e^{-\varepsilon H_{0}} \Psi-A \Psi\right\| \leqq & \left\|A\left(H_{0}+1\right)^{-1}\right\|\left\|\left(e^{-\varepsilon H_{0}}-1\right)\left(H_{0}+1\right) \Psi\right\| \\
& \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Here we have used Lemma 2.1 (b) and Lemma 2.3(a). For $A=H_{I}(g)$ we also have that for $\Psi \in H^{m} D_{T}$

$$
\left\|H_{I}(g) e^{-\varepsilon H_{0}} \Psi-H_{I}(g) \Psi\right\| \leqq\left\|H_{I}(g)\right\|_{4}\left\|\left(e^{-\varepsilon H_{0}}-1\right) \Psi\right\|_{4} \rightarrow 0
$$

by Lemma 2.1 (b). The case for $A=H$ or M is obvious. This proves the first part of (b). Similar arguments in $L_{p}(Q, d \mu)$ prove the second part.

Theorem 3.3. For any $m \geqq 0$ we have
(a) As operators on $H^{m} D_{T}$ and on $M^{m} F_{T}$

$$
\begin{equation*}
[i H, M]=P\left(\frac{d}{d x}\left(x g_{0}\right)\right) \tag{3.11}
\end{equation*}
$$

(b) As operators on $H^{m} D_{T}$

$$
\begin{equation*}
[i H,[i H, M]]=S \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\dot{P}\left(\frac{d^{2}}{d x^{2}}\left(x g_{0}\right)\right)-H_{I}\left(\frac{d}{d x} g_{1}\right) \tag{3.13}
\end{equation*}
$$

(c) $M H^{m} D_{T} \subset D\left(H^{2}\right)$,

$$
\begin{equation*}
H^{m} D_{T} \subset D\left(M^{\frac{3}{2}}\right) \quad \text { and } \quad M^{m} F_{T} \subset D\left(H^{\frac{3}{2}}\right) \tag{3.14}
\end{equation*}
$$

Proof. For simplification of the proof we only consider the case for $m=0$. The case for arbitrary m will be obvious.
(a) We first prove (3.11) on D_{T}. As bilinear forms on $D_{0} \times D_{0}$ (3.11) holds [1.9]. Since each term in (3.11) is bounded on $D\left(H_{0}+N^{n}\right)$ $\times D\left(H_{0}+N^{n}\right)$ and since D_{0} is a core for $H_{0}+N^{n}$, (3.11) holds on $D\left(H_{0}+N^{n}\right) \times D\left(H_{0}+N^{n}\right)$. Let $\Psi \in D_{T}$ and $\Psi_{\varepsilon}=e^{-\varepsilon H_{0}} \Psi$. Using the identity

$$
(A \Psi, B \Psi)-\left(A \Psi_{\varepsilon}, B \Psi_{\varepsilon}\right)=\left(A\left(\Psi-\Psi_{\varepsilon}\right), B \Psi\right)-\left(A \Psi_{\varepsilon}, B\left(\Psi_{\varepsilon}-\Psi\right)\right)
$$

and

$$
\left\|B \Psi_{\varepsilon}\right\| \leqq\|B \Psi\|+\left\|B\left(\Psi-\Psi_{\varepsilon}\right)\right\|
$$

for $\Psi, \Psi_{\varepsilon} \in D(A) \cap D(B)$, we conclude that

$$
\begin{aligned}
(\Psi,[i H, M] \Psi)-(\Psi, P \Psi)= & {\left[(\Psi,[i H, M] \Psi)-\left(\Psi_{\varepsilon}[i H, M] \Psi_{\varepsilon}\right)\right.} \\
& -\left[(\Psi, P \Psi)-\left(\Psi_{\varepsilon}, P \Psi_{\varepsilon}\right)\right] \\
& \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0
\end{aligned}
$$

by Lemma 3.2, where $P=P\left(\frac{d}{d x}\left(x g_{0}\right)\right)$. By passing to the limit we show the relation (3.11) on $D_{T} \times D_{T}$. Let $\chi, \Psi \in D_{T}$. Then from (3.11) on $D_{T} \times D_{T}$ we find that

$$
\begin{align*}
|(H \chi, M \Psi)| & \leqq\|\chi\|\{\|M H \Psi\|+\|P \Psi\|\} \\
& \leqq \mathrm{const}\|\chi\| \tag{3.16}
\end{align*}
$$

by Lemma 3.2(a). Since D_{T} is a core for $H, M D_{T} \subset D(H)$ and (3.11) holds on D_{T}.

By replacing $e^{-\varepsilon H_{0}}$ by $e^{-\varepsilon M_{0}\left(x g_{0}\right)}$ and D_{T} by F_{T}, and by noting $e^{-\varepsilon M_{0}\left(x g_{0}\right)} F_{T} \subset D\left(H_{0}+N^{n}\right)$ from Corollary 2.10(a) and Lemma 2.4(b) we have proved (3.11) on F_{T}.
(b) As bilinear forms on $D_{T} \times D_{T}$

$$
[i H,[i H, M]]=\left[i H, P\left(\frac{d}{d x}\left(x g_{0}\right)\right)\right]
$$

Here we have used part (a). But on $D_{0} \times D_{0}[1]$

$$
\begin{equation*}
\left[i H, P\left(\frac{d}{d x}\left(x g_{0}\right)\right)\right]=S \tag{3.17}
\end{equation*}
$$

(3.17) also holds on D_{T} by arguments similar to those in proving part (a). Thus (3.12) holds on D_{T} by repeating the similar arguments used in (16).
(c) This follows as a corollary from the theorem (a) and (b), and Proposition 2.11.

For $f=\bar{f} \in C_{o}^{\infty}\left(B_{I}\right)$ we write
and

$$
\begin{align*}
& A(f, t)=\int \varphi(x) f(x, t) d x \tag{3.18}\\
& B(f, t)=\int \pi(x) f(x, t) d x \tag{3.19}
\end{align*}
$$

Then $A(f, t)$ and $B(f, t)$ are essentially self-adjoint on any core of $H^{\frac{1}{2}}$ [3]. We restrict ourselves to functions with support contained in

$$
\begin{equation*}
B_{\varepsilon}=\{(x, t): a+\varepsilon+|t|<x<b-\varepsilon-|t| \text { and }|t|<\varepsilon\}, \tag{3.20}
\end{equation*}
$$

where $\varepsilon>0$ is some small number. Any $f \in C_{o}^{\infty}\left(B_{I}\right)$ can be written as a sum of such function.

By following the main steps in Section 6, Ref. [1] we summarize the proof of Theorem 3.1 with no use of higher order estimates.

Sketch of the Proof of Theorem 3.1. The main steps are as follows:
Step 1. For $\Psi \in D_{T}$ and $\operatorname{supp} f \subset B_{\varepsilon}$ we consider the function

$$
\begin{equation*}
F(t)=i[(M(t) \Psi, \varphi(f) \Psi)-(\varphi(f) \Psi, M(t) \Psi)] \tag{3.21}
\end{equation*}
$$

where $M(t)=e^{i t H} M e^{i t H} . F(t)$ is well defined by Lemma 3.2(a). In fact $F(t)$ is n times continuously differentiable (via Theorem 3.3(a), Proposition 2.11, Lemma 2.7 (b) and Proposition 2.2(c)). Obviously

$$
\begin{gather*}
F^{\prime}(t)=-([H, M(t)] \Psi, \varphi(f) \Psi)-(\varphi(f) \Psi,[H, M(t)] \Psi) \tag{3.22}\\
F^{\prime \prime}(t)=-i([H,[H, M(t)]] \Psi, \varphi(f) \Psi)+i(\varphi(f) \Psi,[H,[H, M(t)]] \Psi) \tag{3.23}
\end{gather*}
$$

Note that each term in (3.22) and (3.23) is well defined by Theorem 3.3.
Step 2. We wish to show that for $|s| \leqq \varepsilon$ and $\operatorname{supp} f \subset B_{\varepsilon}$

$$
\begin{equation*}
\left[S, e^{i s H} \varphi(f) e^{i s H}\right]=0 \quad \text { on } \quad D_{T} \times D_{T} \tag{3.24}
\end{equation*}
$$

Let $W(I)$ be von Neumann algebra generated by the spectral projections of the time zero fields $\int \varphi(x) h_{1}(x) d x$ and $\int \pi(x) h_{2}(x) d x, h_{i}=\bar{h}_{i} \in C_{o}^{\infty}(I)$. Then on $D_{o} \times D_{o}[1]$

$$
\begin{equation*}
[S, W(I)]=0 \tag{3.25}
\end{equation*}
$$

and so also on $D\left(H_{0}^{n}\right) \times D\left(H_{0}^{n}\right)$ by the boundedness of $S\left(H_{0}+1\right)^{-n}$. Using Lemma $3.2(\mathrm{~b})$ one finds that (3.25) holds on $D_{T} \times D_{T}$. Since

$$
e^{i s H} \varphi(f) e^{-i s H}
$$

is affiliated with $W(I)$ for $|s| \leqq \varepsilon$, this gives (3.24).
Step 3. Together with the expansion of $F(t)$ by Taylor's Theorem

$$
F(t)=F(o)+t F^{\prime}(o)+\frac{t^{2}}{2} F^{\prime \prime}(s)
$$

for $|s|<|t|$, (3.22) - (3.24) and Theorem 3.3 we find that

$$
\begin{equation*}
[i M(t), \varphi(f)]=[i M, \varphi(f)]-t\left[i P\left(\frac{d}{d x}\left(x g_{0}\right), \varphi(f)\right)\right] \text { on } D_{T} \times D_{T} \tag{3.26}
\end{equation*}
$$

Step 4. With the technique used in proving Theorem 3.3(a), one expects that

$$
\begin{gather*}
{[i M, A(f, t)]=B(x f, t) \text { on } D_{T}} \\
{\left[i P\left(\frac{d}{d x}\left(x g_{0}\right)\right), A(f, t)\right]=A\left(\frac{\partial}{\partial x} f, t\right) \text { on } D_{T}} \tag{3.27}
\end{gather*}
$$

By passing to the sharp field $(\varphi(f) \rightarrow A(f, t))$ via Theorem 3.3(c) and by using (3.27), (3.26) become

$$
\begin{equation*}
[i M(t), A(f, t)]=B(x f, t)-t A\left(\frac{\partial}{\partial x} f, t\right) \quad \text { on } \quad D_{T} \times D_{T} \tag{3.28}
\end{equation*}
$$

Multiplying (3.28) by $e^{i t H}$ on left and by $e^{-i t H}$ on right, and integrating with respect to t we obtain that

$$
\begin{align*}
{[i M, \varphi(f)] } & =\pi(x f)-\varphi\left(t \frac{\partial f}{\partial x}\right) \\
& =-\varphi\left(x \frac{\partial f}{\partial t}+t \frac{\partial f}{\partial x}\right) \quad \text { on } \quad D_{T} \times D_{T} \tag{3.28}
\end{align*}
$$

Step 5. In order to deduce Theorem 3.1 from (3.28) we must show that (3.28) holds on $D\left(M^{\frac{3}{2}}\right) \times D\left(M^{\frac{3}{2}}\right)$. Each term in (3.28) is bounded on $D\left(H^{\frac{3}{2}}\right) \times D\left(H^{\frac{3}{2}}\right)$ by Proposition 2.11 and the relation $[i H, \varphi(f)]=\pi(f)$ on $D\left(H^{\frac{3}{2}}\right)$. Hence (3.28) holds on $D\left(H^{\frac{3}{2}}\right) \times D\left(H^{\frac{3}{2}}\right)$ and so on $F_{T} \times F_{T}$ by Theorem 3.3(c). Thus (3.28) holds on $D\left(M^{\frac{3}{2}}\right) \times D\left(M^{\frac{3}{2}}\right)$ by Proposition 2.11. In fact, for supp $f \subset B_{\varepsilon}$,

$$
\begin{equation*}
[i M, \varphi(f)]=-\varphi\left(x \frac{\partial f}{\partial t}+t \frac{\partial}{\partial x} f\right) \quad \text { on } \quad D\left(M^{\frac{3}{2}}\right) \tag{3.29}
\end{equation*}
$$

by the method used in (3.16).
Step 6. The relation (3.29) is a differential form of (3.7). We note that

$$
\varphi(x, t)=e^{i t H} \varphi(x) e^{-i t H}
$$

is a bilinear form on $D\left(M^{\frac{1}{2}}\right) \times D\left(M^{\frac{1}{2}}\right)$ and also $D\left(M^{\frac{1}{2}}\right)$ is a core for $\varphi(f)$ by Proposition 2.11. Therefore the relation (3.29) implies Theorem 3.1 by the arguments similar to those used to prove Theorem 6.1, Ref. [1] from Lemma 6.14, Ref. [1].

Acknowledgement. The author wishes to thank Professor J. Challifour for many enlightening discussions, criticisms and helpful suggestions. I also would like to express my appreciation for the extremely helpful comments made by the referee. These have helped me rewrite the paper in much better form.

References

1. Cannon, J., Jaffe, A.: Commun. math. Phys. 17, 261-321 (1970)
2. Glimm, J., Jaffe, A.: Quantum field theory models. In: 1971 Les Houches Lectures, ed. R. Stora, C. De Witt. New York: Gordon and Breach 1972
3. Glimm, J., Jaffe, A.: Boson quantum field models (to appear). In: Mathematics of Contemporary Physics, ed. R. Streater. New York: Academic Press 1972
4. Haag, R., Kastler, D.: J. Math. Phys. 5, 848-861 (1964)
5. Hoegh-Krohn, R., Simon, B.: J. Funct. Anal. 9, No. 2, 127-180 (1972)
6. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1965
7. Klein, A.: Quadratic expressions in a free Boson field, preprint
8. Rosen, L.: Comm. Pure Appl. Math. 24, 417-457 (1971)
9. Rosen, L.: J. Math. Anal. Applic. 32, No. 2, 276--311 (1972)
10. Simon, B.: Math. Ann. 201, 211--220 (1973)
11. Segal, I.: Annals of Math. 92, 462-481 (1970)

Yong Moon Park
Department of Physics
Indiana University
Bloomington, Indiana 47401, USA
Present address:
Department of Mathematical Science
IBM Watson Research Center
Yorktown Heights, N.Y. 10598, USA

