Commun. math. Phys. 34, 167—178 (1973) © by Springer-Verlag 1973

Golden-Thompson and Peierls-Bogolubov Inequalities for a General von Neumann Algebra

Huzihiro Araki

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

Received July 18, 1973

Abstract. Some inequalities for a general von Neumann algebra, which reduces to Golden-Thompson and Peierls-Bogolubov inequalities when the von Neumann algebra has a trace, are proved.

§ 1. Main Results

Golden-Thompson and Peierls-Bogolubov inequalities are extended to von Neumann algebras, which have traces, by Ruskai [5]. We shall extend them to a general von Neumann algebra. Because a von Neumann algebra does not necessarily have a trace, we use the notion of relative Hamiltonian [3] instead of the trace.

Let \mathfrak{M} be a von Neumann algebra and Ψ be a cyclic and separating vector. Let $\psi(x) = (x \Psi, \Psi)$ for $x \in \mathfrak{M}$. For a self-adjoint h in \mathfrak{M} , a vector $\Psi(h)$ is defined by

$$\Psi(h) \equiv \sum_{n=0}^{\infty} \int_{0}^{1/2} dt_1 \dots \int_{0}^{t_{n-1}} dt_n \, \varDelta_{\Psi}^{t_n} h \, \varDelta_{\Psi}^{t_{n-1}-t_n} h \dots \, \varDelta_{\Psi}^{t_1-t_2} h \, \Psi \,, \quad (1.1)$$

where Δ_{Ψ} is the modular operator for Ψ . (As we shall see in (3.6), it is also possible to write $\Psi(h) = e^{(H+h)/2} \Psi$ where $H = \log \Delta_{\Psi}$.)

Theorem 1. If $||\Psi|| = 1$, then

$$\|\Psi(h)\|^2 \ge \exp \psi(h) . \tag{1.2}$$

Theorem 2.

$$\psi(e^h) \ge \|\Psi(h)\|^2 \,. \tag{1.3}$$

The connection with Golden-Thompson and Peierls-Bogolubov inequalities for finite matrices can be seen as follows.

Let \mathfrak{M} be a finite matrix algebra and Ω be a cyclic and separating vector such that $(x\Omega, \Omega) = \operatorname{tr} x$ for $x \in \mathfrak{M}$. Let $\Psi = (\operatorname{tr} e^A)^{-1/2} e^{A/2} \Omega$ for a self-adjoint A in \mathfrak{M} . Then Ψ is a unit cyclic and separating vector.

We have $\Delta_{\Psi}^{t} h \Delta_{\Psi}^{-t} = e^{tA} h e^{-tA}$ and

$$(\operatorname{tr} e^{A})^{1/2} \Psi(h) = \operatorname{Exp}_{\mathbf{r}} \left(\int_{0}^{1/2} ; e^{tA} h e^{-tA} dt \right) \Psi$$
$$= e^{(A+h)/2} \Omega$$

due to formulas (5.4) and (2.8) of [2]. Hence we have

$$\|\Psi(h)\|^{2} = \operatorname{tr} e^{(A+h)} / (\operatorname{tr} e^{A}),$$

$$\psi(h) = \operatorname{tr} (e^{A} h) / (\operatorname{tr} e^{A}).$$

Therefore (1.2) implies

$$\operatorname{tr} e^{A+h}/(\operatorname{tr} e^{A}) \geq \exp\left\{\operatorname{tr} (e^{A}h)/(\operatorname{tr} e^{A})\right\}$$

which is the Peierls-Bogolubov inequality. Next set $\Psi = e^{A/2} \Omega$ in (1.3). We have

$$\|\Psi(h)\|^2 = \operatorname{tr} e^{A+h},$$

$$\psi(e^h) = \operatorname{tr} e^A e^h.$$

Therefore (1.3) implies

 $\operatorname{tr} e^A e^h \ge \operatorname{tr} e^{A+h}$

which is the Golden-Thompson inequality.

§ 2. Proof of Theorem 1

Lemma 1. Let $f(x) = \log \{ \|\Psi(xh)\|^2 \}$ for a real number x. Then

$$f'(0) = \psi(h)/\psi(1),$$
 (2.1)

$$f''(0) \ge 0$$
. (2.2)

Proof. $\Psi(xh)$ is an absolutely convergent power series in x by Proposition 4.1 of [3] and $\Psi(xh) \neq 0$ by Corollary 4.4 of [3]. Hence f(x) is a C^{∞} function of x. Furthermore

$$\Psi_{1} \equiv (d/dx) |\Psi(xh)|_{x=0} = \int_{0}^{1/2} \Delta_{\Psi}^{t} h \Psi dt ,$$

$$\Psi_{2} \equiv (d/dx)^{2} |\Psi(xh)|_{x=0} = 2 \int_{0}^{1/2} dt \int_{0}^{t} ds \Delta_{\Psi}^{s} h \Delta_{\Psi}^{t-s} h \Psi .$$

Since $\Delta_{\Psi}^{t} \Psi = \Psi$, the derivatives of $F(x) \equiv ||\Psi(xh)||^{2}$ at x = 0 are given by

$$F'(0) = (\Psi_1, \Psi) + (\Psi, \Psi_1) = \psi(h), \qquad (2.3)$$

GT and PB Inequalities

$$F''(0) = (\Psi_2, \Psi) + (\Psi, \Psi_2) + 2 \|\Psi_1\|^2$$
$$= 2 \int_0^1 \|\Delta_{\Psi}^{u/2} h \Psi\|^2 (1-u) \, \mathrm{d}u \, .$$

Let E_0 be the projection onto the one-dimensional space spanned by Ψ . Then

$$F''(0) - F'(0)^2 / F(0) = 2 \int_0^1 \|(1 - E_0) \Delta_{\Psi}^{u/2} h \Psi\|^2 (1 - u) \, \mathrm{d}u \ge 0.$$
 (2.4)

(2.1) and (2.2) follow from (2.3) and (2.4).

Lemma 2. $\log || \Psi(xh) ||$ is a convex function of x.

Proof. Let $\Phi \equiv \Psi(xh)$. Then $\Psi((x+y)h) = \Phi(yh)$, by Proposition 4.5 of [3]. If we replace Ψ of Lemma 1 by Φ , we obtain

$$(d/dx)^2 \log ||\Psi(xh)|| = \frac{1}{2} (d/dy)^2 \log \{||\Phi(yh)||^2\}|_{y=0} \ge 0$$
. Q.E.D.

Remark. Since $\Psi(\lambda h_1 + (1 - \lambda)h_2) = [\Psi(h_2)](\lambda(h_1 - h_2))$, Lemma 2 implies the convexity of $\log ||\Psi(h)||$ in *h*.

Proof of Theorem 1. Set $f(x) = \log \{ \| \Psi(xh) \|^2 \}$. If $\| \Psi \| = 1$, we have f(0) = 0. By Lemma 1, we also have $f'(0) = \psi(h)$. By Lemma 2, f(x) is a C^{∞} convex function of x. Hence

$$f(1) \ge f(0) + f'(0) = \psi(h)$$
,

which is the inequality (1.2).

§ 3. A Trotter Product Formula

Lemma 3. Let *H* be a self-adjoint operator. If Ψ is in the domain of $e^{\delta H}$ for a $\delta > 0$, then $e^{zH}\Psi$ is holomorphic in *z* for $\operatorname{Re} z \in (0, \delta)$ and continuous in *z* for $\operatorname{Re} z \in [0, \delta]$. Conversely, if $\Psi(z)$ is holomorphic in a domain *D*, weakly continuous on its closure \overline{D} , which contains an open interval *I* on the imaginary axis, and $\Psi(z) = e^{zH}\Psi$ for $z \in \overline{I}$, then Ψ is in the domain of e^{zH} for $z \in \overline{D}$ and $\Psi(z) = e^{zH}\Psi$ for $z \in \overline{D}$.

The first half is immediate from the spectral theory (cf. Lemma 4 in [1]). The proof of the second half is contained in the proof of Proposition 4.12 in [3].

Lemma 4. Let self-adjoint operators H and h, a positive number T and a vector Ψ in the domain of $e^{TH}h^n$ for all integers $n \ge 0$ be given. Assume that h is bounded and there exist $\alpha > 0$ and K > 0 satisfying

$$\|e^{TH}h^n\Psi\| \le \alpha K^n \tag{3.1}$$

169

Q.E.D.

Q.E.D.

H. Araki

for all integers $n \ge 0$. Then Ψ is in the domain of $e^{t(H+h)}$ for all complex t satisfying Ret $\in [0, T]$ and

$$e^{t(H+h)}\Psi = \sum_{n=0}^{\infty} t^n \int_0^1 dx_1 \int_0^{x_1} dx_2 \dots \int_0^{x_{n-1}} dx_n$$
(3.2)
$$e^{tx_n H} h e^{t(x_{n-1}-x_n)H} h \dots h e^{t(1-x_1)H} \Psi$$

where the right hand side is absolutely and uniformly convergent.

Proof. By the proof of Theorem 3.1 in [3], the assumption (3.1) implies that Ψ is in the domain of

$$A_n(z) \equiv e^{z_1 H} h \dots e^{z_{n-1} H} h e^{z_n H}$$
(3.3)

for all integers n > 0 and for $z = (z_1, ..., z_n)$ satisfying

$$\operatorname{Re} z \in \overline{I}_n^T \equiv \{s; s_1 \ge 0, \dots, s_n \ge 0, (s_1 + \dots + s_n) \le T\}, \qquad (3.4)$$

that $A_n(z)\Psi$ is weakly continuous and bounded by

$$||A_n(z)\Psi|| \le \alpha \{\max(||h||, K)\}^{n-1}$$
(3.5)

for $\operatorname{Re} z \in \overline{I}_n^T$, and that $A_n(z) \Psi$ is holomorphic in z for $\operatorname{Re} z \in I_n^T$ (the interior of \overline{I}_n^T). Hence the integrals on the right hand side of (3.2) exist, in strong topology for $\operatorname{Re} t \in [0, T)$ and in weak topology for $\operatorname{Re} t = T$, and the series converges absolutely and uniformly for $\operatorname{Re} t \in [0, T]$. If $t = i\tau$ is pure imaginary, then by Proposition 16 of [2] we have

$$e^{i\tau(H+h)} = \operatorname{Exp}_{\mathsf{r}}\left(\int_{0}^{1}; e^{ix\tau H} i\tau h e^{-ix\tau H} \,\mathrm{d}x\right) e^{i\tau H}$$

and hence (3.2) holds. By the previous Lemma, Ψ is in the domain of $e^{t(H+h)}$ for $\operatorname{Re} t \in [0, T]$ and (3.2) holds for all such t. Q.E.D.

Corollary. Ψ is in the domain of $e^{(H+h)/2}$ and

$$\Psi(h) = e^{(H+h)/2} \Psi \tag{3.6}$$

where $H = \log \Delta_{\Psi}$ and $h \in \mathfrak{M}$.

This follows from Lemma 4 and $e^{xH}\Psi = \Psi$.

Lemma 5. Under the assumption of Lemma 4,

$$\lim_{n \to \infty} \left(e^{tH/n} (1 + n^{-1} th) \right)^n \Psi = \lim_{n \to \infty} \left((1 + n^{-1} th) e^{tH/n} \right)^n \Psi = e^{t(H+h)} \Psi$$
(3.7)

where $\text{Ret} \in [0, T]$, the limit is in the strong topology for $\text{Ret} \in [0, T)$ and in the weak topology for Ret = T.

Proof. Let $t \in [0, T]$, $\Psi_{0,n} \equiv e^{tH} \Psi$ and

$$\Psi_{k,n} \equiv \sum_{\substack{0 < j_1 < \cdots < j_k \leq n \\ \cdots e^{(j_k - j_{k-1})tH/n} h e^{(j_2 - j_1)tH/n} h \cdots \\ \cdots e^{(j_k - j_{k-1})tH/n} h e^{(n - j_k)tH/n} \Psi}$$
(3.8)

for $1 \leq k \leq n$. By (3.5), we have

$$|\Psi_{m,n}|| \leq {n \choose m} lpha \overline{K}^m, \ \overline{K} = \max(||h||, K)$$

where $\binom{n}{m}$ is the number of terms in the summation. Since

$$\Psi_n \equiv \{e^{tH/n}(1+n^{-1}th)\}^n \Psi = \sum_{m=0}^n (t/n)^m \Psi_{m,n},$$

we have

$$\left\| \Psi_n - \sum_{k=0}^N (t/n)^k \Psi_{k,n} \right\| \leq \alpha \sum_{k=N+1}^n \binom{n}{k} (\bar{K}t/n)^k$$

= $\alpha \left\{ (1 + n^{-1} \bar{K}t)^n - \sum_{m=0}^N m!^{-1} (\bar{K}t)^m \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{m-1}{n}\right) \right\},$

for $N \leq n$ where the right hand side tends to $\alpha \left(e^{\overline{K}t} - \sum_{m=0}^{N} (\overline{K}t)^m / m! \right)$ as $n \to \infty$. Hence we have $\lim_{n \to \infty} \Psi_n = e^{t(H+h)} \Psi$ by Lemma 4 if we prove

$$\lim_{n \to \infty} n^{-k} \Psi_{k,n} = \int_{0}^{1} dx_1 \int_{0}^{x_1} dx_2 \dots \int_{0}^{x_{k-1}} dx_k F(x_1, \dots, x_k), \qquad (3.9)$$

$$F(x_1, \dots, x_k) = A_{k+1}(tx_k, t(x_{k-1} - x_k), \dots, t(x_1 - x_2), t(1 - x_1)) \Psi.$$

Since $F(x_1, ..., x_k)$ is continuous in $x = (x_1, ..., x_k)$, strongly for $\operatorname{Re} t \in [0, T)$ and weakly for $\operatorname{Re} t = T$, we obtain (3.8) (as a strong or weak limit according to cases) from the uniform bound $||F(x_1, ..., x_k)|| \leq \alpha \{\max(||h||, K)\}^k$ and the following observation:

$$\Psi_{k,n} = \sum_{0 < j_1 < \dots < j_k \leq n} F(j_k/n, j_{k-1}/n, \dots, j_1/n)$$

The second equality of (3.7) is proved in exactly the same manner where the only difference is that the summation in (3.8) is now for $0 \le j_1 < \cdots < j_k < n$. Q.E.D.

Remark 1. If $H = \log \Delta_{\Psi}$ and $h \in \mathfrak{M}$, then the bound (3.1) holds with $\alpha = ||\Psi||$, K = ||h|| and T = 1/2. Furthermore, $F(x_1, ..., x_k)$ is strongly continuous for $\operatorname{Re} t \in [0, 1/2]$ by Theorem 3.1 in [3]. Therefore (3.7) holds in strong topology for $\operatorname{Re} t \in [0, 1/2]$.

Remark 2. Under the assumption of Lemma 4, it is also possible to prove the usual form of the Trotter product formula:

$$\lim_{n \to \infty} \left(e^{tH/n} e^{th/n} \right)^n \Psi = \lim_{n \to \infty} \left(e^{th/n} e^{tH/n} \right)^n \Psi = e^{t(H+h)} \Psi \,. \tag{3.10}$$

H. Araki

For this, we first note the absolute convergence of

$$\sum_{k_1=0}^{\infty} \dots \sum_{k_n=0}^{\infty} e^{tH/n} \{ (th/n)^{k_1}/k_1 ! \} \dots e^{tH/n} \{ (th/n)^{k_n}/k_n ! \} \Psi$$

which is equal to $(e^{tH/n}e^{th/n})^n\Psi$. It is then easy to find out that the difference

$$(e^{tH/n}e^{th/n})^n \Psi - (e^{tH/n}(1+n^{-1}th))^n \Psi$$

is of the order (1/n) in norm and we obtain (3.10) from (3.7).

§ 4. Some Formulas for Modular Operators

The weak closure of $\Delta^{1/4} \mathfrak{M}^+ \Psi$ is denoted by V_{Ψ} as in [1]. We denote $j(x) = J_{\Psi} x J_{\Psi}$. The following Lemma is a slightly modified version of Lemma 7 in [1].

Lemma 6. If
$$A \in \mathfrak{M}$$
, $A^{-1} \in \mathfrak{M}$ and $A \Psi \in V_{\Psi}$, then

$$\Delta_{A\Psi}^{1/2} = A \Delta_{\Psi}^{1/2} j(A^{-1}). \qquad (4.1)$$

Proof. By (5.2) of [1], we have $J_{\Psi} A \Psi = A \Psi$. Hence

$$j(A^{-1})A\Psi = J_{\Psi}A^{-1}J_{\Psi}A\Psi = J_{\Psi}\Psi = \Psi.$$

For $Q \in \mathfrak{M}$, we have

$$A \Delta_{\Psi}^{1/2} j(A^{-1}) Q A \Psi = A \Delta_{\Psi}^{1/2} Q \Psi = A J_{\Psi} Q^* \Psi = j(Q^*) A \Psi$$
$$= J_{\Psi} Q^* A \Psi = \Delta_{A\Psi}^{1/2} Q A \Psi$$

where we have used $J_{\Psi} = J_{A\Psi}$ (Theorem 4(5) of [1]) for the last equality. Since A has a bounded inverse. $A \Delta_{\Psi}^{1/2} j(A^{-1})$ is closed. Since $\mathfrak{M}A\Psi$ is a core of $\Delta_{A\Psi}^{1/2}$, we have

$$\Delta_{A\Psi}^{1/2} \subset A \Delta_{\Psi}^{1/2} j(A^{-1}).$$

Since $V_{\Psi} = V_{A\Psi}$ (Theorem 4(4) of [1]), we may interchange the role of Ψ and $A\Psi$, replacing A by A^{-1} at the same time. We then obtain

$$\Delta_{\Psi}^{1/2} \subset A^{-1} \Delta_{A\Psi}^{1/2} j(A) .$$
 Q.E.D.

Therefore we have (4.1).

Lemma 7. If A, A^{-1}, B, B^{-1} are all in \mathfrak{M} and satisfy

$$B \Delta_{\Psi}^{\alpha/2} = \Delta_{\Psi}^{\alpha/2} B^* , \qquad (4.2)$$

$$\Delta_{\Psi}^{-\alpha/4} B \Delta_{\Psi}^{\alpha/4} \ge 0, \qquad (4.3)$$

$$A \Delta_{\boldsymbol{\Psi}}^{\alpha} = (B \Delta_{\boldsymbol{\Psi}}^{\alpha/2})^2 , \qquad (4.4)$$

$$\Delta_{\Phi}^{\alpha} = A \, \Delta_{\Psi}^{\alpha} J(A^{-1}) \,, \tag{4.5}$$

where $\Phi \in V_{\Psi}$ and $\alpha \in [0, 1/2]$, then

$$\Delta_{\Phi}^{\alpha/2} = B \Delta_{\Psi}^{\alpha/2} j(B^{-1}) .$$

$$(4.6)$$

Proof. Since *B* has a bounded inverse and Δ_{Ψ}^{α} is self-adjoint, we have $(B \Delta_{\Psi}^{\alpha/2})^* = \Delta_{\Psi}^{\alpha/2} B^*$. Hence (4.2) implies that $B \Delta_{\Psi}^{\alpha/2}$ is self-adjoint. (4.4) then implies that $A \Delta_{\Psi}^{\alpha}$ is positive self-adjoint.

By Lemma 6 of [1], (4.2) implies that $\sigma_t^{\alpha}(B)$ has an analytic continuation $\sigma_z^{\psi}(B) \in \mathfrak{M}$ for Im $z \in [0, \alpha/2]$ satisfying $\sigma_z^{\psi}(B)^* = \sigma_{i\alpha/2 + \overline{z}}^{\psi}(B)$ and (4.3) implies that $\sigma_{i\alpha/4}^{\psi}(B) = (\Delta_{\overline{\Psi}}^{\alpha/4} B \Delta_{\Psi}^{\alpha/4})^-$ is positive, where $\sigma_t^{\psi}(B)$ for real tdenotes the modular automorphism $\Delta_{\Psi}^{i_t} B \Delta_{\Psi}^{-i_t}$ and $(\ldots)^-$ denotes the closure of (\ldots) .

By (4.2), we also have $B^{-1} \Delta_{\Psi}^{\alpha/2} = \Delta_{\Psi}^{\alpha/2} (B^{-1})^*$. Hence by the same reason as above, $\sigma_t^{\psi}(B^{-1})$ has an analytic continuation $\sigma_z^{\psi}(B^{-1}) \in \mathfrak{M}$ for Im $z \in [0, \alpha/2]$. Since $\sigma_z^{\psi}(B) \sigma_z^{\psi}(B^{-1}) = \sigma_z^{\psi}(B^{-1}) \sigma_z^{\psi}(B) = 1$ holds for real t, it holds for Im $z \in [0, \alpha/2]$ and hence $\sigma_z^{\psi}(B^{-1}) = \sigma_z^{\psi}(B)^{-1}$. Namely $\sigma_z^{\psi}(B)^{-1} \in \mathfrak{M}$.

From (4.5) and (4.4), we have

$$\begin{split} \mathcal{\Delta}^{\alpha}_{\Phi} &= (B \, \mathcal{\Delta}^{\alpha/2}_{\Psi})^2 \, j(A^{-1}) \\ &= \{B \, \mathcal{\Delta}^{\alpha/2}_{\Psi} \, j(B^{-1})\} \, \{j(B) \, B \, \mathcal{\Delta}^{\alpha/2}_{\Psi} \, j(A^{-1})\} \, . \end{split}$$

By (4.4), we have

$$\Delta_{\Psi}^{\alpha} j(A^{-1}) = j(\Delta_{\Psi}^{-\alpha} A^{-1}) = j(B \Delta_{\Psi}^{\alpha/2})^{-2} = (\Delta_{\Psi}^{\alpha/2} j(B)^{-1})^{2}.$$

Hence

$$j(B) B \Delta_{\Psi}^{\alpha/2} j(A^{-1}) = B j(B) \Delta_{\Psi}^{-\alpha/2} \Delta_{\Psi}^{\alpha} j(A^{-1}) = B \Delta_{\Psi}^{\alpha/2} j(B)^{-1}$$

When restricted to the domain of $\Delta_{\Psi}^{\alpha} j(A^{-1})$. By (4.5), the domain of Δ_{Φ}^{α} is the same as the domain of $\Delta_{\Psi}^{\alpha} j(A^{-1})$. Therefore

 $\Delta_{\boldsymbol{\Phi}}^{\alpha} \subset \{ B \Delta_{\boldsymbol{\Psi}}^{\alpha/2} j(B^{-1}) \}^2 .$

Since *B* and $j(B^{-1})$ have bounded inverses, we have

$$(B \Delta_{\Psi}^{\alpha/2} j(B^{-1}))^* = j(B^*)^{-1} \Delta_{\Psi}^{\alpha/2} B^* = B j(B^*)^{-1} \Delta_{\Psi}^{\alpha/2},$$

where we have used (4.2). By (4.2) again, we have

$$j(B^*)^{-1} \Delta_{\Psi}^{\alpha/2} = j(\Delta_{\Psi}^{\alpha/2} B^*)^{-1} = j(B \Delta_{\Psi}^{\alpha/2})^{-1} = \Delta_{\Psi}^{\alpha/2} j(B^{-1}).$$

Hence $B \Delta_{\Psi}^{\alpha/2} j(B^{-1})$ is self-adjoint and

$$\Delta_{\boldsymbol{\Phi}}^{\alpha} = \{B \Delta_{\boldsymbol{\Psi}}^{\alpha/2} j(B^{-1})\}^2 .$$

Since $B \Delta_{\Psi}^{\alpha/4} = \Delta_{\Psi}^{\alpha/4} \sigma_{i\alpha/4}^{\psi}(B)$ and $\Delta_{\Psi}^{\alpha/4} j(B^{-1}) = j(\sigma_{i\alpha/4}^{\psi}(B)^{-1}) \Delta_{\Psi}^{\alpha/4}$ we have $B \Delta_{\Psi}^{\alpha/2} j(B^{-1}) = \Delta_{\Psi}^{\alpha/4} \sigma_{i\alpha/4}^{\psi}(B) j(\sigma_{i\alpha/4}^{\psi}(B)^{-1}) \Delta_{\Psi}^{\alpha/4}$. H. Araki

Hence for any f in $D(B\Delta_{\Psi}^{\alpha/2}j(B^{-1})) \in D(\Delta_{\Psi}^{\alpha/4})$, we have

$$\left(f, B \Delta_{\Psi}^{\alpha/2} j(B^{-1}) f\right) = \left(\Delta_{\Psi}^{\alpha/4} f, \sigma_{i\alpha/4}^{\psi}(B) j(\sigma_{i\alpha/4}^{\psi}(B)^{-1}) \Delta_{\Psi}^{\alpha/4} f\right).$$

Since $\sigma_{i\alpha/4}^{\psi}(B) \in \mathfrak{M}$ and $j(\sigma_{i\alpha/4}^{\psi}(B)^{-1}) \in \mathfrak{M}'$ are both positive and commute, we have

$$B \Delta_{\Psi}^{\alpha/2} j(B^{-1}) \geq 0.$$

Hence we have (4.6).

Lemma 8. Assume that $a \in \mathfrak{M}^+$, $\sigma_t^{\psi}(a)$ has an analytic continuation $\sigma_z^{\psi}(a) \in \mathfrak{M}$ for $\operatorname{Im} z \in [-\frac{1}{2}, \frac{1}{2}]$ and $\sigma_z^{\psi}(a)^{-1} \in \mathfrak{M}$ for all such z. Let

$$\Phi = (\Delta_{\Psi}^{2^{-(m+1)}} a \Delta_{\Psi}^{2^{-(m+1)}})^{2^{(m-1)}} \Psi .$$
(4.7)

Q.E.D.

Then

$$\Delta_{\Phi}^{2^{-m}} = b \, \Delta_{\Psi}^{2^{-m}} j(b^{-1}), \qquad b = \sigma_{-i\delta}^{\psi}(a), \ \delta = 2^{-(m+1)}. \tag{4.8}$$

Proof. Let

$$Q(l) = \sigma^{\psi}_{-in(1)}(a) \dots \sigma^{\psi}_{-in(l)}(a), \qquad n(j) = (j - \frac{1}{2})2^{-m}.$$
(4.9)

Then

$$\Phi = Q(2^{m-1})\Psi.$$

Since $\sigma_t^{\psi}(a)^* = \sigma_t^{\psi}(a)$ for real *t*, we have $\sigma_z^{\psi}(a)^* = \sigma_{\overline{z}}^{\psi}(a)$ and hence

$$Q(l)^* = \sigma_{i(n(l)+n(1))}^{w} Q(l), \qquad n(l) + n(1) = l 2^{-m}.$$
(4.10)

We also have

$$Q(2l) = Q(l) \sigma^{\psi}_{-i(n(l+1)-n(1))}(Q(l))$$

= $Q(l) \sigma^{\psi}_{-2i(n(l)+n(1))}(Q(l)^{*}).$ (4.11)

Hence

$$\sigma_{i(n(l)+n(1))}^{\psi}(Q(2l)) \ge 0.$$
(4.12)

Due to $a \ge 0$, (4.12) holds also for $l = \frac{1}{2} (n(l) = 0)$.

For $l = 2^{m-2}$, we have $n(l) + n(1) = \frac{1}{4}$ and hence $\sigma_{l/4}^{\psi} Q(2^{m-1}) \ge 0$. By Theorem 3 (7) of [1], this implies $\Phi \in V_{\Psi}$. By Lemma 6 with $A = Q(2^{m-1})$, we have

$$\Delta_{\Phi}^{1/2} = Q(2^{m-1}) \Delta_{\Psi}^{1/2} j(Q(2^{m-1})^{-1}).$$
(4.13)

If we set $\alpha = 2^{-k}$, $A = Q(2^{m-k})$ and $B = Q(2^{m-k-1})$ in Lemma 7, then (i) (4.10) with $l = 2^{m-k-1}$ implies (4.2), (ii) (4.12) with $l = 2^{m-k-2}$ implies (4.3) and (iii) (4.11) with $l = 2^{m-k-1}$ implies (4.4), where $1 \le k \le m-1$. Since (4.5) is satisfied for k = 1, Lemma 7 implies recursively (4.6) for k = 1, ..., m-1. The case k = m-1 yields (4.8) due to $Q(2^{m-k-1})$ = Q(1) = b for k = m-1. Q.E.D.

GT and PB Inequalities

§ 5. Proof of Theorem 2

Lemma 9. If $h \in \mathfrak{M}^+$ and n = 0, 1, 2, ..., then

$$\|(\Delta_{\Psi}^{2^{-(n+2)}}h\,\Delta_{\Psi}^{2^{-(n+2)}})^{2^{n}}\Psi\| \leq \|(\Delta_{\Psi}^{2^{-(n+1)}}h^{2}\,\Delta_{\Psi}^{2^{-(n+1)}})^{2^{n-1}}\Psi\|.$$
 (5.1)

Proof. We give proof for the following 3 cases in that order: (i) $h^{-1} \in \mathfrak{M}$ and $\sigma_t^{\psi}(h)$ as well as $\sigma_t^{\psi}(h^{-1})$ have analytic continuations to M-valued entire functions, (ii) $h^{-1} \in \mathfrak{M}$, (iii) general h.

Case (i). By Hölder inequality,

$$\|\varDelta^{\beta}\Phi\| \leq \|\varDelta^{\alpha}\Phi\|^{\lambda} \|\Phi\|^{1-\lambda} \leq \max\{\|\varDelta^{\alpha}\Phi\|, \|\Phi\|\}, \quad \Phi \in \mathcal{D}(\varDelta^{\alpha}),$$

where $\beta \leq \alpha$, $\lambda = \beta/\alpha$. Hence it is enough to prove the following 2 inequalities:

$$\|(h\Delta_{\Psi}^{2^{-(n+1)}})^{2^{n}}\Psi\| \leq \|(\Delta_{\Psi}^{2^{-(n+1)}}h^{2}\Delta_{\Psi}^{2^{-(n+1)}})^{2^{(n-1)}}\Psi\|, \qquad (5.2)$$

$$\|(\varDelta_{\Psi}^{2^{-(n+1)}}h)^{2^{n}}\Psi\| \leq \|(\varDelta_{\Psi}^{2^{-(n+1)}}h^{2}\varDelta_{\Psi}^{2^{-(n+1)}})^{2^{(n-1)}}\Psi\|.$$
(5.3)

Let $h \Delta_{\Psi}^{\delta} = u |h \Delta_{\Psi}^{\delta}|$ be a polar decomposition, where $\delta = 2^{-(n+1)}$. By Lemma 4 of [4], $u \in \mathfrak{M}$. Since h^{-1} is bounded, $h \Delta_{\Psi}^{\delta}$ is closed. Since h and Δ_{Ψ} are strictly positive, $h \Delta_{\Psi}^{\delta}$ has 0 kernel and dense range. Hence u must be unitary. Let $q = u^* h \in \mathfrak{M}$. Then $q^{-1} = h^{-1} u \in \mathfrak{M}$. We have $|h\Delta^{\delta}_{\Psi}| = q\Delta^{\delta}_{\Psi}.$

Let

$$\Phi = \left| h \varDelta_{\Psi}^{\delta} \right|^{2^{n}} \Psi = \left(\varDelta_{\Psi}^{\delta} h^{2} \varDelta_{\Psi}^{\delta} \right)^{2^{(n-1)}} \Psi , \qquad (5.4)$$

where Ψ is in the domain of $(\Delta_{\Psi}^{\delta}h^2 \Delta_{\Psi}^{\delta})^{2^{(n-1)}}$ due to Theorem 3.1 of [3]. By assumption, both $\sigma_t^{\psi}(h^2) = \sigma_t^{\psi}(h)^2$ and $\sigma_t^{\psi}(h^{-2}) = \sigma_t^{\psi}(h^{-1})^2$ have analytic continuations to *M*-valued entire functions $\sigma_z^{\psi}(h^2)$ and $\sigma_z^{\psi}(h^{-2})$. Since $\sigma_z^{\psi}(h^2) \sigma_z^{\psi}(h^{-2}) = \sigma_z^{\psi}(h^{-2}) \sigma_z^{\psi}(h^2) = 1$ for real z, the same equality holds for all z. Hence $\sigma_z^{\psi}(h^2)^{-1} \in \mathfrak{M}$ for all z. By Lemma 8, we have

$$\Delta_{\Phi}^{2\delta} = b \, \Delta_{\Psi}^{2\delta} j(b^{-1}), \qquad b = \sigma_{-i\delta}^{\psi}(h^2). \tag{5.5}$$

Since q^{-1} is bounded, $(q \Delta_{\Psi}^{\delta})^* = \Delta_{\Psi}^{\delta} q^*$. Since $q \Delta_{\Psi}^{\delta} = |h \Delta_{\Psi}^{\delta}|$ is selfadjoint, (4.2) is satisfied for B = q and $\alpha = 2\delta = 2^{-n}$. It then implies, by Lemma 6 of [1], that $\sigma_t^{\psi}(q)$ has an analytic continuation $\sigma_z^{\psi}(q) \in \mathfrak{M}$ for Im $z \in [0, \alpha/2]$. If x is in the domain of $\Delta \overline{\psi}^{\alpha/4}$ as well as in the domain of $\Delta_{\Psi}^{\alpha/4}$, then

$$(x, \sigma_{i\alpha/4}^{\psi}(q)x) = (\varDelta_{\Psi}^{-\alpha/4}x, (q \varDelta_{\Psi}^{\alpha/2}) \varDelta_{\Psi}^{-\alpha/4}x) \ge 0$$

due to $q \Delta_{\Psi}^{\delta} = |h \Delta_{\Psi}^{\delta}| \ge 0$. Hence (4.3) is satisfied. Since

$$(q \,\varDelta_{\Psi}^{\alpha/2})^2 = |h \,\varDelta_{\Psi}^{\delta}|^2 = \varDelta_{\Psi}^{\delta} h^2 \,\varDelta_{\Psi}^{\delta} = b \,\varDelta_{\Psi}^{2\delta} = b \,\varDelta_{\Psi}^{\alpha} \,, \tag{5.6}$$

(4.4) is satisfied for A = b. (5.5) is then the same as (4.5). By Lemma 9 of [4], $\Phi \in V \Psi$. Therefore Lemma 7 is applicable and

$$\Delta_{\boldsymbol{\varphi}}^{\delta} = q \, \Delta_{\boldsymbol{\Psi}}^{\delta} j(q^{-1}) \,. \tag{5.7}$$

We now have

$$(h \Delta_{\Psi}^{\delta})^{2^n} \Psi = (u | h \Delta_{\Psi}^{\delta}|)^{2^n} \Psi = (u \Delta_{\Phi}^{\delta} j(q))^{2^n} (\Delta_{\Phi}^{\delta} j(q))^{-2^n} \Phi.$$

As we shall see immediately below, $\sigma_t^{\phi}(u)$ for $\phi = \omega_{\Phi}$ has an analytic continuation to an *M*-valued entire function $\sigma_z^{\phi}(u)$. Hence

$$\left(\Delta_{\boldsymbol{\Phi}}^{\delta}j(q)\right)^{k}u = \sigma_{-ik\delta}^{\boldsymbol{\phi}}(u) \left(\Delta_{\boldsymbol{\Phi}}^{\delta}j(q)\right)^{k}$$

Therefore

$$(h \Delta_{\Psi}^{\delta})^{2^{n}} \Psi = u \sigma_{-i\delta}^{\phi}(u) \sigma_{-2i\delta}^{\phi}(u) \dots \sigma_{-(i/2)+i\delta}^{\phi}(u) \Phi$$

= $(u \Delta_{\Phi}^{\delta})^{2^{n}} \Phi$. (5.8)

Similarly, we have $\Delta_{\Psi}^{\delta} h = |h \Delta_{\Psi}^{\delta}| u^*$ and hence

$$(\Delta_{\Psi}^{\delta}h)^{2^{n}}\Psi = (\Delta_{\Phi}^{\delta}u^{*})^{2^{n}}\Phi.$$
(5.9)

$$\|(u\Delta_{\Phi}^{\delta})^{2^{n}}\Phi\| \leq \|u\|^{2^{n}} \|\Phi\| = \|\Phi\|,$$

$$\|(\Delta_{\Phi}^{\delta}u^{*})^{2^{n}}\Phi\| \leq \|u^{*}\|^{2^{n}} \|\Phi\| = \|\Phi\|.$$

This proves (5.2) and (5.3), hence (5.1) for this case.

To prove that $\sigma_t^{\psi}(u)$ (and hence $\sigma_t^{\phi}(u^*) = \sigma_t^{\phi}(u)^*$) has an analytic continuation to an entire function, we first remember that $\sigma_t^{\psi}(q)$ has an analytic continuation $\sigma_z^{\psi}(q)$ for $\operatorname{Im} z \in [0, \delta]$. By (5.6), we have $\sigma_{\iota\delta}(q)q = \sigma_{\iota\delta}^{\psi}(b) = h^2$. We then have

$$\Delta_{\Psi}^{-\delta} q = \sigma_{i\delta}^{\psi}(q) \Delta_{\Psi}^{-\delta} = h^2 q^{-1} \Delta_{\Psi}^{-\delta}$$

and hence

$$q h^{-2} \varDelta_{\Psi}^{-\delta} = \varDelta_{\Psi}^{-\delta} q^{-1}$$

Again by Lemma 6 of [1], we obtain an analytic continuation $\sigma_z^{\psi}(q^{-1})$ for $\text{Im} z \in [0, \delta]$ and $\sigma_{\ell\delta}^{\psi}(q^{-1}) = q h^{-2}$. By repeated use of relations

$$\sigma^{\psi}_{\iota\delta}(q) = h^2 q^{-1}, \qquad \sigma^{\psi}_{\iota\delta}(q^{-1}) = q h^{-2}, \qquad (5.10)$$

we obtain analytic continuations for $\text{Im} z \in [k\delta, k\delta + \delta]$:

$$\sigma_z^{\psi}(q) = \begin{cases} \sigma_{z-ik\delta}^{\psi} \left[\sigma_{ik\delta-1\delta}^{\psi}(h^2) \sigma_{ik\delta-3i\delta}^{\psi}(h^2) \dots h^2 q^{-1} \sigma_{i\delta}^{\psi}(h^{-2}) \right] \\ \dots \sigma_{ik\delta-2i\delta}^{\psi}(h^{-2}) \right] & \text{if } k \text{ is odd} \\ \sigma_{z-ik\delta}^{\psi} \left[\sigma_{ik\delta-i\delta}^{\psi}(h^2) \dots \sigma_{i\delta}^{\psi}(h^2) q h^{-2} \right] \\ \dots \sigma_{ik\delta-2i\delta}^{\psi}(h^{-2}) \right] & \text{if } k \text{ is even }, \end{cases}$$

and a similar equation for $\sigma_z^{\psi}(q^{-1})$. Reading (5.10) backwards as

$$q = \sigma_{i\delta}^{\psi}(q^{-1})h^2$$
, $q^{-1} = h^{-2}\sigma_{i\delta}^{\psi}(q)$,

we also obtain $\sigma_z^{\psi}(q)$ and $\sigma_z^{\psi}(q^{-1})$ for Im z < 0. Thus $\sigma_t^{\psi}(q)$ and $\sigma_t^{\psi}(q^{-1})$ have analytic continuations to *Q*-valued entire functions.

Since $u = hq^{-1}$ and $u^* = u^{-1} = qh^{-1}$, $\sigma_t^{\psi}(u)$ and $\sigma_t^{\psi}(u^*)$ also have analytic continuations to all z:

$$\sigma_z^{\psi}(u) = \sigma_z^{\psi}(h) \, \sigma_z^{\psi}(q^{-1}), \qquad \sigma_z^{\psi}(u^*) = \sigma_z^{\psi}(q) \, \sigma_z^{\psi}(h^{-1}).$$

 $\Delta_{\Phi}^{k\delta} u = u^{(k)} \Delta_{\Phi}^{k\delta} ,$

By (5.7), we have

where

$$u^{(k)} = q \, \sigma^{\psi}_{-i\delta}(u^{(k-1)}) q^{-1} \qquad (k > 0) \,,$$

$$u^{(k)} = \sigma^{\psi}_{i\delta}(q^{-1} \, u^{(k+1)}q) \qquad (k < 0) \,,$$

$$u^{(0)} = u \,.$$

By Lemma 6 of [1], $\sigma_t^{\phi}(u)$ has an analytic continuation $\sigma_z^{\phi}(u)$ for all z. Similar conclusion holds for u^* .

Case (ii). If $h^{-1} \in \mathfrak{M}$, we can write $h = e^{Q}$ where $Q = Q^* \in \mathfrak{M}$. $(Q = \log h)$ Let $\tilde{f} \in D(R)$, $f^* = f$ and consider $h_f = e^{Q(f)}$. Then $h_f^{-1} \in M$ and $\sigma_t^{\psi}(h_f) = \exp Q(f_t)$ as well as $\sigma_t^{\psi}(h_f^{-1}) = \exp - Q(f_t)$ have analytic continuations. Hence, by case (i). we have (5.1) for h_f . Let f_j be a sequence such that $Q(f_j)$ is uniformly bounded and converges to Q strongly. We can complete the proof of this case if we show that both sides of (5.1) with h replaced by h_{f_j} converges to the same expressions with h. This follows from the following general results:

Let $h_j^* = h_j > 0$, $h_j \in \mathfrak{M}$, $||h_j||$ uniformly bounded and $h = \lim h_j$ (in strong topology). Then

 $\|\Delta_{\Psi}^{\alpha_1}h_i\Delta_{\Psi}^{\alpha_2}h_i\dots\Delta_{\Psi}^{\alpha_n}h_i\Psi - \Delta_{\Psi}^{\alpha_1}h\Delta_{\Psi}^{\alpha_2}h\dots\Delta_{\Psi}^{\alpha_n}h\Psi\|$

converges to 0 for fixed $\alpha_1 \ge 0 \dots \alpha_n \ge 0$ satisfying $\alpha_1 + \dots + \alpha_n < 1/2$. [In the present application, the strict inequality $\alpha_1 + \dots + \alpha_n < 1/2$ can be obtained just by absorbing last Δ_{Ψ} factor into Ψ on both sides of (5.1).] The proof of this general result is achieved by considering $h_j(f_{\beta}^G)$ and is given in the proof of Proposition 4.1 of [3].

Case (iii). For any given $h \in \mathfrak{M}^+$, we can find a sequence $h_j \in \mathfrak{M}^+$ such that $h_j^{-1} \in \mathfrak{M}^+$, h_j is uniformly bounded (by ||h||) and h_j tends to h strongly. For h_j , we have (5.1) by case (ii). By the same reason as Case (ii), we obtain (5.1) for the given h from (5.1) for h_n by taking the limit $n \to \infty$. Q.E.D.

Corollary. For $h \in \mathfrak{M}^+$, $n = 0, 1, ... and \alpha \in [0, 2^{-(n+1)}]$,

$$\|\Delta_{\Psi}^{\alpha}(h\Delta_{\Psi}^{2^{-(n+1)}})^{2^{n}}\Psi\| \leq \|(\Delta_{\Psi}^{2^{-(n+1)}}h^{2}\Delta_{\Psi}^{2^{-(n+1)}})^{2^{(n-1)}}\Psi\|, \quad (5.11)$$

 $\|\Delta_{\Psi}^{\alpha}(h\Delta_{\Psi}^{2^{-(n+1)}})^{2^{n}}\Psi\| \leq \|h^{2^{n}}\Psi\|.$ (5.12)

Proof. For the case (i) above, this follows from (5.2) and (5.3) by the Hölder inequality. If $0 \le \alpha < 2^{-(n+1)}$, then the continuity argument in the proof of Lemma 9 for cases (ii) and (iii) works and (5.11) is proved for general *h*. The case $\alpha = 2^{-(n+1)}$ is obtained from the case $\alpha < 2^{-(n+1)}$ by the continuity in α .

By repeated use of (5.1), we obtain

$$\|(\Delta_{\Psi}^{2^{-(n+2)}}h\Delta_{\Psi}^{2^{-(n+2)}})^{2^{n}}\Psi\| \leq \|\Delta_{\Psi}^{1/4}h^{n}\Psi\| \leq \|h^{2^{n}}\Psi\|$$

where the last inequality is due to Hölder inequality with $\beta = 1/4$, $\alpha = 1/2$ and due to $\|\Delta_{\Psi}^{1/2} h^{2^n} \Psi\| = \|J_{\Psi} h^{2^n} \Psi\| = \|h^{2^n} \Psi\|$. By using this inequality on the right hand side of (5.11), we obtain (5.12). Q.E.D.

Proof of Theorem 2. For any real constant c, we have

$$\Psi(h+c) = \left[\Psi(h)\right](c) = e^{c/2}\Psi(h)$$

where the first equality is due to Proposition 4.5 of [3]. Hence

$$\|\Psi(h+c)\|^2 = e^c \|\Psi(h)\|^2, \quad \psi(e^{h+c}) = e^c \psi(e^h).$$

Therefore, by taking c = ||h||, we may restrict our attention to the case $h \ge 0$. By (5.12) with $\alpha = 0$, we obtain

$$\|\{(1+2^{-(n+1)}h)\Delta_{\Psi}^{2^{-(n+1)}}\}^{2^{n}}\Psi\| \leq \|(1+2^{-(n+1)}h)^{2^{n}}\psi\|.$$
(5.13)

By taking the limit $n \rightarrow \infty$ and using (3.7), we obtain

$$||e^{(H+h)/2}\Psi|| \leq ||e^{h/2}\Psi||$$
.

By Corollary to Lemma 4, this is the same as (1.3). Q.E.D.

References

- 1. Araki, H.: Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule. Preprint RIMS-120. Submitted to Pacific J. Math. for publication
- 2. Araki, H.: Expansional in Banach algebras. Ann. Sci. École Norm. Super. 6, 67-84 (1973)
- Araki, H.: Relative Hamiltonian for faithful states of von Neumann algebras. Publ. RIMS 9. 165–209 (1973)
- 4. Araki, H.: One-parameter family of Radon-Nikodym theorems for a von Neumann algebra. RIMS preprint.
- 5. Ruskai, M. B.: Commun. math. Phys. 26, 280-289 (1972)

H. Araki Research Institute for Mathematical Sciences Kyoto University Kyoto, Japan