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Abstract. Some inequalities for a general von Neumann algebra, which reduces to
Golden-Thompson and Peierls-Bogolubov inequalities when the von Neumann algebra
has a trace, are proved.

§ 1. Main Results

Golden-Thompson and Peierls-Bogolubov inequalities are extended
to von Neumann algebras, which have traces, by Ruskai [5]. We shall
extend them to a general von Neumann algebra. Because a von Neumann
algebra does not necessarily have a trace, we use the notion of relative
Hamiltonian [3] instead of the trace.

Let $R be a von Neumann algebra and Ψ be a cyclic and separating
vector. Let ιp(x) = (xΨ, Ψ) for x e 9Jί. For a self-adjoint h in 9M, a vector
Ψ(h) is defined by

oo 1/2 r n _ !

ψ(h)= £ J d t j . . . J dtnΔ
tφhΔtφ-*-t"h...Δtj-t2hΨ, (1.1)

n = 0 Ό Ό

where ΔΨ is the modular operator for Ψ. (As we shall see in (3.6), it is
also possible to write Ψ(h) = e(H + h}/2Ψ where H = logΔΨ.)

Theorem 1. If\\Ψ\\ = l, then

\\Ψ(h)\\2^expιp(h). (1.2)

Theorem 2.

ιp(eh}^\\Ψ(h)\\2. (1.3)

The connection with Golden-Thompson and Peierls-Bogolubov
inequalities for finite matrices can be seen as follows.

Let 9Jt be a finite matrix algebra and Ω be a cyclic and separating
vector such that (xΩ,Ω) = trx for xeϊR. Let Ψ = (tτeAΓll2eAI2Ω for
a self-adjoint A in 9K. Then Ψ is a unit cyclic and separating vector.
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We have Δ*Ψh ΔΨ

l = etAhe~tA and

l \ etAhe~tA dt\Ψ
V b /

= e(A + h)/2Ω

due to formulas (5.4) and (2.8) of [2]. Hence we have

Therefore (1.2) implies

tr eA + V(tr eA) ̂  exp { tr (eA h)/(tτ eA) }

which is the Peierls-Bogolubov inequality.
Next set Ψ = eA/2Ω in (1.3). We have

Therefore (1.3) implies

treAeh^tτeA + h

which is the Golden-Thompson inequality.

§ 2. Proof of Theorem 1

Lemma 1. Let f(x) = log{\\Ψ(xh)\\2} for a real number x. Then

(2.1)

(2.2)

Proof. Ψ(xh) is an absolutely convergent power series in x by
Proposition 4.1 of [3] and Ψ(xh) φ 0 by Corollary 4.4 of [3]. Hence f(x]
is a C00 function of x. Furthermore

1/2 ί

Since ΔψΨ = Ψ, the derivatives of F(x)= \\Ψ(xh)\\2 at x=0 are given by

F(0) = (ΨlΛ Ψ) + (Ψ, ΨJ = ψ(h) , (2.3)
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F'(0) - (Ψ2< Ψ} + (Ψ, Ψ2) + 2 1 1 Ψi ||
2

i
= 2 J \ \ A ψ 2 h Ψ \ \ 2 ( i - u ) d u .

Ό

Let £0 be the projection onto the one-dimensional space spanned by Ψ.
Then

i
F"(0) - F(0)2/F(0) - 2 J ||(1 - E0}Δψ2h Ψ\\2 (1 - u) du ̂  0 . (2.4)

Ό

(2.1) and (2.2) follow from (2.3) and (2.4). Q.E.D.

Lemma 2. log || Ψ(xh)\\ is a convex function of x.

Proof. Let Φ= Ψ(xh). Then Ψ((x + y)h) = Φ(yh), by Proposition 4.5
of [3]. If we replace Ψ of Lemma 1 by Φ, we obtain

(d/dx)2log||^(x/ι)Hi(d/dy)2log{| |Φ(3;/ί)| |2}μo^O. Q.E.D.

Remark. Since Ψ(λh± + (\ -λ)h2) = [lF(/ί2)] (λ(hγ -/ι2)), Lemma 2
implies the convexity of log || Ψ(h)\\ in h.

Proof of Theorem 1. Set f ( x ) = \og{\\Ψ(xh)\\2}. If | |<F| | - 1, we have
/(0) = 0. By Lemma 1, we also have f ' ( 0 ) = ψ(h). By Lemma 2, f ( x )
is a C°° convex function of x. Hence

which is the inequality (1.2). Q.E.D.

§ 3. A Trotter Product Formula

Lemma 3. Let H be a self-adjoint operator. If Ψ is in the domain of
edίi for a δ >0, then ezHΨ is holomorphic in z for Reze (0, δ) and con-
tinuous in z for Reze[0, £]. Conversely, if _Ψ(z) is holomorphic in a
domain D, weakly continuous on its closure D, which contains an open
interval I on the imaginary axis, and Ψ(z) = ezHΨ for ze I, then Ψ is in
the domain of ezίl for ZE D and Ψ(z) = ezH Ψ for ze D.

The first half is immediate from the spectral theory (cf. Lemma 4
in [1]). The proof of the second half is contained in the proof of Propo-
sition 4.12 in [3].

Lemma 4. Let self-adjoint operators H and h, a positive number T
and a vector Ψ in the domain of eτίίhn for all integers rc^O be given.
Assume that h is bounded and there exist α>0 and K >0 satisfying

\\^aKn (3.1)
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for all integers n ̂  0. Then Ψ is in the domain of et(H + h} for all complex t
satisfying Re t e [0, T] and

f r j d x ! J 1 d x 2 . . . J C n J 1 d x π (3.2)

where the right hand side is absolutely and uniformly convergent.

Proof. By the proof of Theorem 3.1 in [3], the assumption (3.1)
implies that Ψ is in the domain of

An(z) = eZίHh...ez"-lHhez"H (3.3)

for all integers rc>0 and for z = (z l 5 ..., zn) satisfying

Rezei?' = {s;s 1^0,...,5 I l^O,(5 1 + ...+s I I)^T}, (3.4)

that An(z) Ψ is weakly continuous and bounded by

\\An(z)Ψ\\^a{max(\\hlK}γ^ (3.5)

for Reze/^, and that An(z)Ψ is holomorphic in z for Reze/ n

τ (the
interior of 4T). Hence the integrals on the right hand side of (3.2) exist,
in strong topology for Re t e [0, T) and in weak topology for Re t = T,
and the series converges absolutely and uniformly for Reίe[0, T].
If t = iτ is pure imaginary, then by Proposition 16 of [2] we have

and hence (3.2) holds. By the previous Lemma, Ψ is in the domain of
et(H + h) for Reί 6 ̂  τ-| and (3 2) holds for all such t. Q.E.D.

Corollary. Ψ is in the domain of e

(H+h)/2 and

ψ(h) = e(H + h)/2Ψ (3.6)

where H = logzl^ and h e SPΐ.

This follows from Lemma 4 and exlί Ψ = Ψ.

Lemma 5. Under the assumption of Lemma 4,

lim (etH/n(\ + n" 1 th))n Ψ = lim ((1 + n~ l th)etH/n)n Ψ = et(H+h} Ψ (3.7)
n-> oo n-+oo

where Reί e [0, T], the limit is in the strong topology for Reί e [0, T) and
in the weak topology for Re t = T.

Proo/. Let ί 6 [0, T], Ψ0n = etH Ψ and

y fc,»Ξ Σ ^ i f
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for 1 ̂  k rg n. By (3.5), we have

αXm , K = max(||fe||,.K)
m '

where I is the number of terms in the summation. Since
\m)

n
ψ _ (ptHln(4 i - 1 f f a \ ) n ψ _ ^ (tln\mψΎn — \V \L-rri in}] Ύ — ^ W"/ i m,π ,

we have

V

/ N -
for N^n where the right hand side tends to α ( e κ t — ^ (Kt)m/ml

as n->oo. Hence we have lim Ψn = et(H + h)Ψ by Lemma 4 if we prove

l i m n - f c ! P Λ , » = ί d x 1 f dx2 ... j dx.F^, .... Xfc) , (3.9)
n^°° 0 0 0

xk ,

Since F(x l 9 ..., xfe) is continuous in x = (x1? ...,x f c), strongly for
Reί e [0, T) and weakly for Reί = T, we obtain (3.8) (as a strong or weak
limit according to cases) from the uniform bound ||F(xr, ..., xk)||
gα{max(| |/z| |, K)}k and the following observation:

The second equality of (3.7) is proved in exactly the same manner where
the only difference is that the summation in (3.8) is now for
0 g jί < <jk < n. Q.E.D.

Remark 1. If H = \ogAΨ and h e 9K, then the bound (3.1) holds with
α =115?| |, K-||/ι| | and T=l/2. Furthermore, F(x l 5 . . . ,x f c ) is strongly
continuous for Reί e [0, 1/2] by Theorem 3.1 in [3]. Therefore (3.7) holds
in strong topology for Reί e [0, 1/2].

Remark 2. Under the assumption of Lemma 4, it is also possible to
prove the usual form of the Trotter product formula:

lim (e

tH/n

e

th/nγ ψ = lim ^In^Hlnγ ψ _ et
n—> co n~>• oo



172 H. Araki

For this, we first note the absolute convergence of

f ... f e f H l n { ( t h / n ) ^ / k l \ } . . . e f H l n { ( t h / n ^ n / k n \ } Ψ ,
k ι = 0 kn = 0

which is equal to (e

ίH/n

e

ΐh/nγψ^ it is then easy to find out that the
difference

(etH/neth/nγ ψ _ ^tH/n^ + „- 1 ̂ n ψ

is of the order (l/ri) in norm and we obtain (3.10) from (3.7).

§ 4. Some Formulas for Modular Operators

The weak closure of zl : /4$R + Ψ is denoted by VΨas in [1]. We denote
j(x) = JΨxJΨ. The following Lemma is a slightly modified version of
Lemma 7 in [1].

Lemma 6. // A e 9JΪ, A ~ ] 6 9JΪ and A Ψ e Kp, ίhβn

J^ = ̂ ^/2jμ-1). (4.1)

Proof. By (5.2) of [1], we have J^yl^-yl^. Hence

j (A' l)A Ψ = JΨA~ l JΨA Ψ = JΨ Ψ = Ψ .

For Q E ΪR, we have

Ψ = AA^2Q Ψ = A JΨQ* Ψ =j(Q*}A Ψ

= JΨQ*AΨ = ΔQAΨ

where we have used JΨ = JAψ (Theorem 4(5) of [1]) for the last equality.
Since A has a bounded inverse. AA^2j(A~1) is closed. Since WIAΨ is a
core of Δ]lψ, we have

A^CAΔ^2j(A'1).

Since VΨ= VAΨ (Theorem 4(4) of [1]), we may interchange the role
of Ψ and A Ψ, replacing A by A ~ * at the same time. We then obtain

Therefore we have (4.1). Q.E.D.

Lemma 7. // A, A ~ \ β, B~ 1 are all in 3JΪ and satisfy

BΔψ2 = Δψ2B*, (4.2)

, (4.3)

, (4.4)

1 ) , (4.5)
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where Φ e VΨ and α e [0, 1/2], then

A*φ

2 = BAψ2j(B~ί). (4.6)

Proof. Since # has a bounded inverse and Δψ is self-adjoint, we
have (BΔψ2}* = Aψ2B*. Hence (4.2) implies that BAψ2 is self-adjoint.
(4.4) then implies that AAψ is positive self-adjoint.

By Lemma 6 of [1], (4.2) implies that σ?(B} has an analytic continua-
tion σz

v(B)e9Jϊ for Imze [0, α/2] satisfying σz

v(£)* = σ?l2 + Έ(B) and (4.3)
implies that σ?l4(B) = (Aψ*l4BAψ4)~ is positive, where σr

v(B) for real t
denotes the modular automorphism AψBAψ1* and (...)" denotes the
closure of (...).

By (4.2), we also have B'1 Aψ2 = Aψ2(B~{)*. Hence by the same
reason as above, σ/^JB"1) has an analytic continuation <72

v(J3~1)eSD il for
Imz e [0, α/2]. Since σ?(B) σ^}(B'1} = σ^(B~l) σ?(B) = 1 holds for real ί,
it holds for Imze [6, α/2] and hence σ^^'^-σ/^)"1. Namely
^(^"^an.

From (4.5) and (4.4), we have

By (4.4), we have

Hence

When restricted to the domain of Aψj(A~1). By (4.5), the domain of Δφ
is the same as the domain of Δ ψ j ( A ~ l ) . Therefore

Since B &ndj(B~ λ) have bounded inverses, we have

(BΔψ2j(B- 1}Y =j(B*Γ' Aψ2B* = Bj(B*Γ 1 Aψ2 ,

where we have used (4.2). By (4.2) again, we have

j(B*Γ ί Aψ2 =j(A#2B*Γ1

Hence BA^2j(B~ ^ is self-adjoint and

Since BAψ4 = Aψ*σ?l4(B) and A^j(B'ί)=j(σ^l4(B)'1)A^4 we have
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Hence for any / in Ό(BΔ^2j(B~1))cΌ(Δ^l we have

Since σ^Λ/4(B) e 501 and j(σ^/4(B)~ *) e 50i' are both positive and commute,
we have

BΔψ2j(B-1}^.
Hence we have (4.6). Q.E.D.

Lemma 8. Assume that αe50l+, ^(a) has an analytic continuation
σ*(a) e 50Ϊ for Imz e [ - ϋ] and σz^(α)~ 1 e 501 /or all such z. Lei

zl|-w^fozl2-^-i), b = (j!!:iί(α), 5-2'(m + 1 ). (4.8)

Proof. Let

β(0-σ^n(1)(α)...σ^.n(0(α), n(/')^(/'- i)2~m . (4.9)

Then

Since σt

v(α)* = σf

v(α) for real ί, we have σz

φ(α)* = σ^(α) and hence

6(0* - <(o + nu))β(^ n(l) + n(l) = /2-"1 . (4.10)

We also have

(41

= Q()^2iwl}+n(1}).

Hence
<π(I, + Λα))(β(20)^0. (4.12)

Due to a ̂  0, (4.12) holds also for / = i (n(/) - 0).
For l-2m'2, we have n(/) + n(l) = i and hence σ^4ρ(2m~1)^0.

By Theorem 3(7) of [1], this implies Φ e 7 .̂ By Lemma 6 with
/l-ρ(2m~1), we have

Δ%2 = Q(2m~ i)Δ^!2j(Q(2m- 1)- ̂  . (4.13)

If we set α - 2~ fc, A - β(2m~k) and 5 - β(2w~/c~ :) in Lemma 7, then
(i) (4.10) with l = 2m~k~l implies (4.2), (ii) (4.12) with l = 2m~k~2 implies
(4.3) and (iii) (4.11) with i = 2m~k-ί implies (4.4), where l ^ k ^ m - 1 .
Since (4.5) is satisfied for fc=l, Lemma 7 implies recursively (4.6) for
fe=l,...,m-l. The case fc = m - l yields (4.8) due to β(2m~ fc~1)
= β(l) = b for fe = m - 1 . Q.E.D.
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§ 5. Proof of Theorem 2

Lemma 9. // ft e Wl+ and n = 0, 1, 2, . . . , ίfterc

||(J£-(Π + 2 ) ΛJ£- ( Π + 2^^ (5.1)

Proof. We give proof for the following 3 cases in that order : (i) h~ 1 e 9JI
and σf

ψ(ft) as well as σ^ft"1) have analytic continuations to M-valued
entire functions, (ii) ft"1 e$R, (iϋ) general ft.

(i). By Holder inequality,

where β^α, λ = β/oc. Hence it is enough to prove the following 2 in-
equalities :

l^-^^h)2^^^^^1^^^^^-1^!. (5.3)

Let hAψ = u\hAψ\ be a polar decomposition, where δ = 2~(n+1\
By Lemma 4 of [4], w e 501. Since ft" 1 is bounded, ftzl^ is closed. Since ft
and zlip are strictly positive, hΔψ has 0 kernel and dense range. Hence u
must be unitary. Let q = u*h£Wl. Then q~l =h~iue($R. We have
|ftzj£,| = gzi£,.

Let
Φ-jftzl^|2 Π ίF-(z1^ft2z1^)2 ( n" : )Ψ, (5.4)

where Ψ is in the domain of (Zl^ft2 J$,)2(n~1} due to Theorem 3.1 of [3].
By assumption, both σ?(h2) = σ?(h)2 and σ ί

v(ft"2) = σ t

v(h~1)2 have
analytic continuations to M-valued entire functions σz

v(ft2) and σ^(h~2).
Since σz

ψ(ft2)σ/(ft"2)-σz

φ(ft~2)σ^(ft2)- 1 for real z, the same equality
holds for all z. Hence of (ft2)" i e $R for all z. By Lemma 8, we have

Δl^bΔξfXb-1), b = σ*iδ(h2). (5.5)

Since g"1 is bounded, (^^1^)* = ̂ ^*. Since qΔδ

Ψ = \hΔψ\ is self-
adjoint, (4.2) is satisfied for B=q and α = 2<5 = 2~". It then implies, by
Lemma 6 of [1], that σt

φ(q) has an analytic continuation σz

v(g)e9ER for
Imz e [0, α/2]. If x is in the domain of Δψ"14 as well as in the domain of
z1$4, then

due to qΔψ = \hΔψ ^0. Hence (4.3) is satisfied. Since

2 - |ftzJ^|2 - Δδ

Ψh2Δd

Ψ = bΔ2

P

ό = bΔ«Ψ, (5.6)

(4.4) is satisfied for A = b. (5.5) is then the same as (4.5). By Lemma 9
of [4], Φe VΨ. Therefore Lemma 7 is applicable and

i ) . (5.7)
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We now have

(hΔδ

Ψ}2" Ψ = (M I hΔ\,\Γ Ψ = MJy(i))2" (Aδ

φj(q))- 2"Φ .

As we shall see immediately below, σf(ύ) for φ — ωφ has an analytic
continuation to an M-valued entire function σf(ύ). Hence

Therefore

(hΔδ

Ψ)2nψ = uσφ

iδ(u}σφ

2iδ(u)...σt(il2) + iδ(u)Φ

= (uΔδ

φ)
2nΦ.

Similarly, we have Aψh = \hΔψ u* and hence

(Δδ

Ψh}2nΨ = (Aδ

φu*}2nΦ, (5.9)

By Theorem 3.1 of [3]. we have

\\(Δ*φu*)2nΦ\\£\\u*\\2n\\Φ\\ =

This proves (5.2) and (5.3), hence (5.1) for this case.
To prove that σ?(u) (and hence σf(u*) = σf(u)*) has an analytic

continuation to an entire function, we first remember that σt

ψ(q) has an
analytic continuation σ?(q) for Imze[0, δ]. By (5.6), we have σlδ(q)q
= σv(b) = h2. We then have

and hence

qh~2Δψd = Aψδq'1 .

Again by Lemma 6 of [1], we obtain an analytic continuation σ^q'1)
for Imze[0, (5] and σϊp

δ(q~] ) = qh~2. By repeated use of relations

Ή(<l) = h2q-1 σ?δ(q-i) = qh-2, (5.10)

we obtain analytic continuations for Imze [k<5, fc<5 + (5]:

'σ?-ikMδ-lδ(h2)σ?kδ^^

...σ^-2/^-2)] if k is odd

°Z 1 ^lkδ^kδ_iδ(h2) ... σ?δ(h2)qh-2

-^ό_2 f,(Λ-2)] if k is even,

and a similar equation for σ^(q~l\ Reading (5.10) backwards as

= σ - l h \ ~ l = h~ 2 σ ( ) ,
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we also obtain σ^(q) and σ^q'1) for Imz<0. Thus σ?(q) and σ?(q~^)
have analytic continuations to g-valued entire functions.

Since u^hq"1 and u* = u~i=qh~i, σ}p(u) and σ?(u*) also have
analytic continuations to all z:

σ?(u) = σ?(h) σ^q-i). σ?(u*) = σ?(q) σ*(h~l].

By (5.7), we have

where
l i ( k ) „ ~ψ /,,1/e- lh „- 1 Π, ^ Γ\\u =q(τ.Lifi(u )q (k > u j ,

u — cr^(^ ι/ ζf) (k < 0),

By Lemma 6 of [1], σ^(u) has an analytic continuation σf(u) for all z.
Similar conclusion holds for w*.

Case(ii). If /Γ1^, we can write /ι-ee where ρ = β*e»ί.
(β - log h.) Let /E D(R), /* = / and consider hf = eQ(f\ Then hj 1 E M
and σί

v(/ι/) = expβ(/ί) as well as σ^(hj 1) = exp — β(/t) have analytic
continuations. Hence, by case (i). we have (5.1) for hf. Let /7 be a sequence
such that Q(fj) is uniformly bounded and converges to Q strongly. We
can complete the proof of this case if we show that both sides of (5.1)
with h replaced by hf converges to the same expressions with h. This
follows from the following general results:

Let h* = hj>Q, ^EΪR, \\hj\\ uniformly bounded and h = limhj (in
strong topology). Then

converges to 0 for fixed α 1 ^ 0 . . . α w ^ 0 satisfying a^-\ — +α π <l/2.
[In the present application, the strict inequality α : H ----- h α π < 1/2 can
be obtained just by absorbing last AΨ factor into Ψ on both sides of (5.1).]
The proof of this general result is achieved by considering hj(ff) and is
given in the proof of Proposition 4.1 of [3].

Case (in). For any given /ιe$R+, we can find a sequence /ιJe9Jl+

such that h~l e9JΪ + , hj is uniformly bounded (by \\h\\) and hj tends to h
strongly. For hj, we have (5.1) by case (ii). By the same reason as Case (ii),
we obtain (5.1) for the given h from (5.1) for hn by taking the limit π-»oo.

Q.E.D.

Corollary. For / ιe9W + , n = 0, 1, ... and αe [0, 2"(n+1)],

^\\(A^(n + 1)h2A^(n + ιγn~1}Ψ\\, (5.11)

{n+")2nΨ\\^\\h2nΨ\\. (5.12)
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Proof. For the case (i) above, this follows from (5.2) and (5.3) by the
Holder inequality. If 0^α<2~ ( n + 1 ) , then the continuity argument in
the proof of Lemma 9 for cases (iί) and (iii) works and (5.11) is proved
for general h. The case α = 2~(n+ 1} is obtained from the case α < 2~(n+ 1)

by the continuity in α.
By repeated use of (5.1), we obtain

\\(A^(n + 2)hΔ2~(n + 2))2nψ\\ ^ \\Δ^hnΨ\\ ^ \\h2nψ\\

where the last inequality is due to Holder inequality with β = 1/4, α = 1/2
and due to \\Δψ2h2nΨ\\ = \\JΨh2"Ψ\\ = \\h2nψ\\. By using this inequality
on the right hand side of (5.11), we obtain (5.12). Q.E.D.

Proof of Theorem 2. For any real constant c, we have

Ψ(h + c) = [_Ψ(hJ] (c) = ecl2 Ψ(h)

where the first equality is due to Proposition 4.5 of [3]. Hence

Therefore, by taking c= \\h\\, we may restrict our attention to the case
fc^O. By (5.12) with α = 0, we obtain

By taking the limit n-» oo and using (3.7), we obtain

\\e(H + h)l2Ψ\\^\\eh/2Ψ\\.

By Corollary to Lemma 4, this is the same as (1.3). Q.E.D.
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