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Abstract. Some inequalities for a general von Neumann algebra, which reduces to
Golden-Thompson and Peierls-Bogolubov inequalities when the von Neumann algebra
has a trace, are proved.

§ 1. Main Results

Golden-Thompson and Peierls-Bogolubov inequalities are extended
to von Neumann algebras, which have traces, by Ruskai [5]. We shall
extend them to a general von Neumann algebra. Because a von Neumann
algebra does not necessarily have a trace, we use the notion of relative
Hamiltonian [3] instead of the trace.

Let 9 be a von Neumann algebra and ¥ be a cyclic and separating
vector. Let y(x)=(xYV, ) for x e M. For a self-adjoint h in M, a vector
Y (h) is defined by

o 1/2 z,,_
)= > [ dey... [ de, dgh ATk ARTRERY, (1)
n=0 0 0
where Ay is the modular operator for . (As we shall see in (3.6), it is
also possible to write W(h) =" *"2¥ where H =log4y.)

Theorem 1. If |V =1, then
[#(h)|* Zexpy(h). (1.2)

Theorem 2.

w(eh) z [P (R (1.3)

The connection with Golden-Thompson and Peierls-Bogolubov
inequalities for finite matrices can be seen as follows.

Let 9 be a finite matrix algebra and Q be a cyclic and separating
vector such that (xQ,Q)=trx for xe M. Let ¥ =(tre?) ?e?2Q for
a self-adjoint 4 in M. Then ¥ is a unit cyclic and separating vector.
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We have Ay hAg'=e'“he™ ' and

1/2
(tre®)'? ¥(h) = Exp,( [ ethe dt) y
0
:e(A+h)/ZQ

due to formulas (5.4) and (2.8) of [2]. Hence we have
1P (h))* =tre ™ /(tred),
p(h) = tr(e? h)/(tre?).
Therefore (1.2) implies
tre? "/(tre) = exp {tr(e? h)/(tre?)}

which is the Peierls-Bogolubov inequality.
Next set ¥ =e?2Q in (1.3). We have

¥ (h)|?=tret ™",
ple") =trete".
Therefore (1.3) implies
tredet = tred*h

which is the Golden-Thompson inequality.

§ 2. Proof of Theorem 1
Lemma 1. Let f(x)=log{|¥(xh)|?} for a real number x. Then
JO) =ypMh)/w(), 2.1)
f"0)=0. (2.2)

Proof. W(xh) is an absolutely convergent power series in x by
Proposition 4.1 of [3] and ¥(xh)+ 0 by Corollary 4.4 of [3]. Hence f(x)
is a C* function of x. Furthermore

1/2
Y, =(d/dx) Y(xh),_o= [ Aph¥dr,
0
1/2
W, =(d/dx)? P(xh),_o=2 [ di [dsdyh Ay h¥.

0

~

o

Since 4% ¥ =, the derivatives of F(x)= || ¥(xh)|* at x =0 are given by
FO)=(Y. ")+, ¥)=yh), (23)

—_
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F'O)=(¥,. ")+ (V. V) +2|¥,|?
=2 f (A2 P2 (1 —u)du.

0

Let E, be the projection onto the one-dimensional space spanned by ¥.
Then

F"(0) = F'(0)*/F(0) = 2$1|(1— JAPPRYIR (1 —uwduz0. (24)
0
)

(2.1) and (2.2) follow from (2.3) and (2.4). Q.E.D.

Lemma 2. log ||¥(xh)| is a convex function of x.

Proof. Let @ =¥ (xh). Then ¥((x + y)h) = ®(yh), by Proposition 4.5
of [3]. If we replace ¥ of Lemma 1 by &, we obtain

(d/dx)* log || ¥(xh)| =3 (d/dy)* log {|@(y1)|*}],-20. Q.E.D.

Remark. Since Y(Lhy +(1 — A hy)=[¥(h,)](Ah; — h,)), Lemma 2
implies the convexity of log || ¥ (h)|| in h.

Proof of Theorem 1. Set f(x)=1log{|| lI’(xh)1| b P =1, we have
f (0)=0. By Lemma 1, we also have f'(0)=1wy(h). By Lemma 2, f(x)
is a C* convex function of x. Hence

F = 10)+ fO0)=y(h),
which is the inequality (1.2). Q.E.D.

§ 3. A Trotter Product Formula

Lemma 3. Let H be a self-adjoint operator. If ¥ is in the domain of
e for a 6 >0, then W is holomorphic in z for Reze (0,5) and con-
tinuous in z for Reze[0,0]. Conversely, if ¥(z) is holomorphic in a
domain D, weakly continuous on its closure D, which contains an open
interval I on the imaginary axis. and Y(z) =" W for ze I, then ¥ is in
the domain of e*" for ze D and ¥(z)=e*" ¥ for ze D.

The first half is immediate from the spectral theory (cf. Lemma 4
in [1]). The proof of the second half is contained in the proof of Propo-
sition 4.12 in [3].

Lemma 4. Let self-adjoint operators H and h, a positive number T
and a vector ¥ in the domain of e™h" for all integers n=0 be given.
Assume that h is bounded and there exist a >0 and K >0 satisfying

leTHhny| <4 K" (3.1)
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for all integers n=0. Then ¥ is in the domain of ¢*" for all complex t
satisfying Ret e [0, T} and

o 1 X1 Xn-1
ptHW Z " { dx, ‘ dx, ... f dx, (3.2)
n=0 0 0 0

e petton-1mxHp ottt =x)H
where the right hand side is absolutely and uniformly convergent.

Proof. By the proof of Theorem 3.1 in [3], the assumption (3.1)
implies that ¥ is in the domain of

Az)y= e Hh . e Hpemnll (3.3)
for all integers n >0 and for z=(z,, ..., z,) satisfying
Rezel ={s;5,=0,....5,=0,(s, +--+5)<T}, (3.4)

that 4,(z) ¥ is weakly continuous and bounded by
I 4,(2) Pl < afmax (| 1], K)}" ! (3.5)

for Reze I, and that A4,(z)¥ is holomorphic in z for Reze IT (the
interior of I"). Hence the integrals on the right hand side of (3.2) exist,
in strong topology for Ret e [0, T) and in weak topology for Ret =T,
and the series converges absolutely and uniformly for Ret e [0, T].
If t =it is pure imaginary, then by Proposition 16 of [2] we have

1

eiI(H+h) — EXP, (“’ ; eixtHi,rhe~ixtH dx) eirH
0

and hence (3.2) holds. By the previous Lemma, ¥ is in the domain of

e for Ret e [0, T] and (3.2) holds for all such t. Q.E.D.
Corollary. ¥ is in the domain of e *"'? and
P (h) = B2 (3.6)

where H =logAy and he IN.
This follows from Lemma 4 and e*? ¥ = V.

Lemma 5. Under the assumption of Lemma 4,

lim (e'#™(1 +n~ ' th)'¥ = lim (1 +n"tthyellimmy = HEM Y (37)

where Ret € [0, T, the limit is in the strong topology for Ret € [0, T) and
in the weak topology for Ret =T.
Proof. Lette [0, T], ¥, ,=e"¥ and

V= Y etHinpeliz=intHing
" O<ji<-<jk=n (3.8)

ek - 1)rH/nhe(n—jk>lH/n "4
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for { £k <n. By (3.5), we have

TS (;)ai . R =max(lhl, K)

where (n) is the number of terms in the summation. Since
m
Y.={"t+n " thy Y= ) (t/n)"¥ 0,
m=0
we have
N n
] - 3 ¢/, zoc Y () (K t/n)*
k=0 =N+

=oc{(1 +n K1)y~

3 mR (- 1) =)

— N —_
for N <n where the right hand side tends to oc(eK‘-— Y. (Ko)"/m !)
m=0
as n—oco. Hence we have lim ¥, =" ¥ by Lemma 4 if we prove

1 Xy Xie - 1
limn ¥, = [dx; [dx,... | dxF(x;. ...,x), (3.9)
n=o 0 0 0

Flxy, o0 x) = A (Ex0 t g = X), on b — X5) t(1 = x) P

Since F(xy,....x;) 1is continuous in x=(x,...,X), strongly for
Ret € [0, T) and weakly for Ret = T, we obtain (3.8) (as a strong or weak
limit according to cases) from the uniform bound (F(xy, ..., x|
<o{max(||h], K)}* and the following observation:

Vin= Z FGn, ji—1/n, ... ji/n).

O<jy<-<)x<n

The second equality of (3.7) is proved in exactly the same manner where
the only difference is that the summation in (3.8) is now for
0<5j, < <j<n Q.E.D.
Remark 1. If H=1ogA, and he I, then the bound (3.1) holds with
a=|¥|, K=|h| and T =1/2. Furthermore, F(x,,...,x,) is strongly
continuous for Ret € [0, 1/2] by Theorem 3.1 in [3]. Therefore (3.7) holds
in strong topology for Ret € [0, 1/2].
Remark 2. Under the assumption of Lemma 4, it is also possible to
prove the usual form of the Trotter product formula:
lim (etH/neth/n)n Y= }l_,rg (eth/netH/n)n Y- et(H+h) ' (310)

n— oo
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For this, we first note the absolute convergence of

20

i S Sk ) kY L (), 1} P
ki=0

kn=0

which is equal to (e'"me™"y" . It is then easy to find out that the
difference

(etHJ'nelhjn)n w_ (etH/n(1 4+t [h))" v

is of the order (1/n) in norm and we obtain (3.10) from (3.7).

§ 4. Some Formulas for Modular Operators

The weak closure of A'/*9* ¥ is denoted by Vi as in [1]. We denote
j(X)=Jgx Jg. The following Lemma is a slightly modified version of
Lemma 7 in [1].

Lemma 6. If AcM, A ' eMand AY €V, then
A= AAY2j(A Y. (4.1)
Proof. By (5.2) of [1], we have Jo A% = A¥. Hence
JANAY =Jp A ' Jg AV =Jp P =Y.
For Q e M, we have
AN JATNQAY = AN QY = ATy Q* ¥ =j(Q*)AY
=JgQ*AY =AYQ AW

where we have used Jy = J,y (Theorem 4(5) of [1]) for the last equality.
Since A has a bounded inverse. A 4y/2j(4™") is closed. Since MAY is a
core of 42, we have

Ay CAAGJ(ATY).

Since Vy =V, (Theorem 4(4) of [1]), we may interchange the role
of ¥ and AW, replacing A by A~ ! at the same time. We then obtain

AY2C AT AZA)

Therefore we have (4.1). Q.E.D.
Lemma 7. If A, A~ ', B.B™ " are all in M and satisfy

BAY? = A2 B* (4.2)

Ag** B AY* =0, 4.3)

ANL = (BAY? (4.4)

2=AALJ(AY, 4.5)
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where @ € Vy, and o€ [0, 1/2], then
A42 =B A% (B~ ). (4.6)

Proof. Since B has a bounded inverse and 4% is self-adjoint, we
have (BAY?)* = A%*B*. Hence (4.2) implies that BA%? is self-adjoint.
(4.4) then implies that 4 A% is positive self-adjoint.

By Lemma 6 of [1], (4.2) implies that ¢7(B) has an analytic continua-
tion ¢(B) e M for Imz e [0, /2] satisfying o(B)* =g, +=(B) and (4.3)
implies that ¢},,(B) = (4¢**BAY*)~ is positive, where (B) for real ¢
denotes the modular automorphism 4§ B4y and (...)” denotes the
closure of (...).

By (4.2), we also have B~ '4%?=A%* B ')*. Hence by the same
reason as above, 6¥(B~ ') has an analytlc continuation ¢¥(B~ ') e M for
Imz e [0, 2/2]. Since 6¥(B)6¥(B~')=0¥(B~ ') ¢/(B) =1 holds for real 1,
it holds for Imze[0,2/2] and hence ¢¥(B~')=¢¥(B)"!. Namely
a¥(B)"teM

From (4.5) and (4.4), we have

A= (BAZ?j(A™Y)
= {BAY*j(B~ ")} (i(B)BAG?j(A™ 1)} .
By (4.4), we have
PiAT) =j(Ap AT = j(BAYY) P =(437j(B) ')
Hence
J(B)BAY (A1) =Bj(B) A" Ay j(A™ )= BAY?j(B) !

When restricted to the domain of 4% (A4~ '). By (4.5). the domain of 43
is the same as the domain of 4%j(4 ™). Therefore

Ap C{BAYj(B™1))2.
Since B and j(B~ ') have bounded inverses, we have
(BAG2 (B 1)) =j(B¥) " 43> B* = Bj(B*) ' 437
where we have used (4.2). By (4.2) again, we have
J(B¥) TN AY? = (43P BY) " =j(BAY) = A2j(B7Y).
Hence BA4%?j(B™ 1) is self-adjoint and
A= (BAYj(B™ )2
Since BAY* = Ay* o}, 4(B) and 4%*j(B~ ") =j(o,4(B) ') 4%* we have
BAY?j(B™ ) = 43" otyya(B)j(alya(B)” 1) 4%* .
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Hence for any f in D(B4%’j(B~ ")) C D(4§*), we have
(f.BAYj(B™Y) f) = (4" 1, 04 (B)j(0a(B) ) 45 ) .

Since d}4(B) € M and j(c%,,(B)~ ') e M are both positive and commute,
we have

BAYj(B~")20.
Hence we have (4.6). Q.ED.

Lemma 8. Assume that aeM", 6(a) has an analytic continuation
c¥(a)e M for Imze[—1,4] and 6¥(a)” ' € M for all such z. Let

D=4y " aay "R 4.7)
Then
Ag "=bALTibTY,  b=0d"4a), 5=2""11 (4.8)
Proof. Let
Q) =0%1)(@) ... ¥ yp(@).  n()=(—-2)2"". (4.9)
Then
d=0Q2" HY.

Since ¢ (a)* = ¢*(a) for real t, we have ¢(a)* = ¢¥(a) and hence

Q* =0itay+n1p @), n)+n(l)=12"". (4.10)

We also have

02h= Q(l)o'fim(w 1)4n(1))(Q(l))

4.11)
=Q()o¥ 2i(n(l)+n(l))(Q(l)*) .

Hence
iy +n1)(@(2D) 2 0. (4.12)

Due to a 20, (4.12) holds also for [ =% (n(l)=0).

For [=2""2 we have n(l)+n(1)=% and hence 0%, Q2™ ') =0.
By Theorem 3(7) of [1], this implies @ € V. By Lemma 6 with
A=0(2™ 1), we have

A2 =004y Y. (4.13)

Ifweseto=2"% A=02™" ¥ and B=Q(2™ * 1) in Lemma 7, then
(i) (4.10) with [=2""*"1 implies (4.2), (ii) (4.12) with [ =2""*"2 implies
(4.3) and (i) (4.11) with [=2""%"1 implies (4.4), where 1 <k<m —1.
Since (4.5) is satisfied for k=1, Lemma 7 implies recursively (4.6) for
k=1,...m—1. The case k=m—1 yields (4.8) due to Q2" *° 1)
=Q()=b for k=m—1. Q.ED.
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§ 5. Proof of Theorem 2
Lemma 9. If he M* and n=0,1,2, ..., then
||(A2 (n+2)hA2 (n+2))2n'{l”<“(A2 (n+1)h2A2 (n+1))2n—1‘}’||. (51)

Proof. We give proof for the following 3 cases in that order: (i) h~ e I
and ¢¥(h) as well as ¢¥(h™!) have analytic continuations to M-valued
entire functions, (i) A~ € I, (iii) general h.

Case (i). By Holder inequality,

4@ < 4*@|* @'~ * Smax {[4° |, [@[}, PeD(4?,

where f <o, A= f/a. Hence it is enough to prove the following 2 in-
equalities:

Ihag™ ™" ") < (45" n2 a5 P (5.2)
(V- IR 4 P [V AV A S (53)

Let hA% =ulhA3| be a polar decomposition, where §=2" nt ),
By Lemma 4 of [4], ue M. Since h™! is bounded, h 4} is closed. Since h
and Ay are strictly positive, h 4} has 0 kernel and dense range. Hence u
must be unitary. Let g=u*heIM. Then ¢ '=h"'ueIM. We have
|h 43 = q 43

Let _

=R AP = (A, W2 AL (5.4)

where ¥ is in the domain of (43 h? 43)*” " due to Theorem 3.1 of [3].

By assumption, both ¢*(h?)=g?(h)*> and c¥(h~ %) =0c’(h™*)* have
analytic continuations to M-valued entire functions ¢*(h?) and o?(h™?).
Since c¥(h?) o¥(h~ %) =cY(h~ )a“’(h y=1 for real z, the same equality
holds for all z. Hence ¢¥(h*) ™! € M for all z. By Lemma 8, we have

AP =bAFib7Y,  b=0h). (5.5)

Since g~ ' is bounded, (q4%)* = 4y q*. Since gAYy =|hA}| is self-
adjoint, (4.2) is satisfied for B=¢g and a =26 =2"". It then implies, by
Lemma 6 of [1], that ¢¥(q) has an analytic continuation ¢(g) € M for
Imze [0, /2]. If x is in the domain of 45** as well as in the domain of
AY*, then

(x, alh4(q) x) = (4p** x. (g 431 457 x) 20

due to g4 =|h 43| = 0. Hence (4.3) is satisfied. Since
(@A) =|hAY)> = Ay h* Ay =b AP =b A%, (5.6)

(4.4) is satisfied for A=b. (5.5) is then the same as (4.5). By Lemma 9
of [4], ® e V. Therefore Lemma 7 is applicable and

Ay =q4%jlq™ ). (5.7)



176 H. Araki

We now have

(hAp)*" ¥ = (R A)*" ¥ = (udgj(@)*" (43)(q)*" @

As we shall see immediately below, ¢?(u) for ¢ =wg has an analytic
continuation to an M-valued entire function ¢?(u). Hence

(40)(@) 1 =02 ,(u) (43j(q))"

Therefore
(hA:SP)Z” —uoﬂ&(u)o’ 2is(U) .. J‘_”(i/z)+i5(u)d5 (5.8)
=(uAy)*" @
Similarly, we have A4 h=|hAy|u* and hence
(AR = (AL u*)>" D . (5.9)

By Theorem 3.1 of [3]. we have
I(uag)*" @l < |u|* | @) =],
I(45u*)>" | < [u*|*" | @] = @] .

This proves (5.2) and (5.3), hence (5.1) for this case.

To prove that ¢(u) (and hence of(u*)=of(u)*) has an analytic
continuation to an entire function, we first remember that ¢*(q) has an
analytic continuation ¢¥(g) for Imze [0, 0]. By (5.6), we have ¢,4(q)q
=¥ (b)=h?. We then have

Ay’ q=a5(q) Mg’ =h*q ' Ag?
and hence
qh‘ZA.;,():A;,éqvl .

Again by Lemma 6 of [1], we obtain an analytic continuation ¢¥(q )
for Imze[0,5] and ¢%(q~')=qh™ % By repeated use of relations

as@)=hq . ahla )=qh *, (5.10)
we obtain analytic continuations for Imz e [kd, ko + §]:
0 iko[ks—1s(h %) ai Oiks— 3;a(h2)--~hzq—10i“3(h_2)
o¥(g)= L ahs_5is(h™H] if k is odd

07 ixsl0ts—1s(h?) .. a5 (h*)qh™?
. Ohs_2is(h™ )] il k is even,

and a similar equation for ¢¥(¢q~'). Reading (5.10) backwards as

q=aj5(q” ")h*. t=h"?ali(q).
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we also obtain ¢¥(q) and ¢¥(q ') for Imz <0. Thus ¢¥(q) and ¢*(q" ")
have analytic continuations to Q-valued entire functions.

Since u=hqg ! and u*=u"'=qgh ', ¢"(u) and ¢(u*) also have
analytic continuations to all z:

alw=cl(h)alqg . ow*)=al(g)or(h™").
By (5.7), we have
Au=u® A%,

where
U =qo¥ Vg™t (k>0),

ut =ol(g u Vg (k<0),

) _

u u.

By Lemma 6 of [1], 6/(u) has an analytic continuation ¢(u) for all z.
Similar conclusion holds for u*.

Case (ii). If_h™'eI, we can write h=e? where Q=Q%*eM.
(Q =logh) Let feD(R). f*=f and consider h,=e?". Then h;'e M
and a'(h;)=expQ(f,) as well as ¢*(h;')=exp—Q(f,) have analytic
continuations. Hence, by case (i). we have (5.1) for h,. Let f, be a sequence
such that Q(f) is uniformly bounded and converges to Q strongly. We
can complete the proof of this case if we show that both sides of (5.1)
with h replaced by h, converges to the same expressions with h. This
follows from the following general results:

Let h*=h;>0, h,e M. ||h;| uniformly bounded and h=Ilimh; (in
strong topology). Then

A5 h A h, . Agh W — A h A h .. AghW|

converges to 0 for fixed o, =0... 2,20 satisfying o, + - +a, <1/2.
[In the present application, the strict inequality oy + --- + o, < 1/2 can
be obtained just by absorbing last Ay factor into ¥ on both sides of (5.1).]
The proof of this general result is achieved by considering h_,-(f,;G) and is
given in the proof of Proposition 4.1 of [3].

Case (iii). For any given he ", we can find a sequence h, e M*
such that A7 '€ IMM", h is uniformly bounded (by |[h])) and h; tends to h
strongly. For h;, we have (5.1) by case (ii). By the same reason as Case (ii),
we obtain (5.1) for the given h from (5.1) for h, by taking the limit n— oc.

Q.E.D.

Corollary. For he M*, n=0.1,... and 2 €[0,27 " 17,
e e L T R R IR AT
|45 (hag " PP W S R (5.12)
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Proof. For the case (i) above. this follows from (5.2) and (5.3) by the
Holder inequality. If 0<a <27 "% then the continuity argument in
the proof of Lemma 9 for cases (ii) and (iii) works and (5.11) is proved
for general h. The case a =2""*1 is obtained from the case a <2~ "*1
by the continuity in a.

By repeated use of (5.1), we obtain

43" hag” " Y| S [AY P S WP

where the last inequality is due to Holder inequality with f =1/4, x =1/2

and due to || 4¢/2h*" V| = ||Jp h*" ¥ | = ||h*" ¥||. By using this inequality

on the right hand side of (5.11), we obtain (5.12). Q.E.D.
Proof of Theorem 2. For any real constant ¢, we have

P(h+c)=[Ph)](c)=e">¥(h)
where the first equality is due to Proposition 4.5 of [3]. Hence
IP(h+ol?=e P> " )=eyple.

Therefore, by taking ¢ = | k||, we may restrict our attention to the case
h=0. By (5.12) with o =0, we obtain

(A +27 DAy ™ PP IS (27" DR ) (5.13)
By taking the limit n— oo and using (3.7), we obtain
02 g < 2

By Corollary to Lemma 4, this is the same as (1.3). Q.E.D.
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