Golden-Thompson and Peierls-Bogolubov Inequalities for a General von Neumann Algebra

Huzihiro Araki
Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

Received July 18. 1973

Abstract

Some inequalities for a general von Neumann algebra, which reduces to Golden-Thompson and Peierls-Bogolubov inequalities when the von Neumann algebra has a trace, are proved.

§ 1. Main Results

Golden-Thompson and Peierls-Bogolubov inequalities are extended to von Neumann algebras, which have traces, by Ruskai [5]. We shall extend them to a general von Neumann algebra. Because a von Neumann algebra does not necessarily have a trace, we use the notion of relative Hamiltonian [3] instead of the trace.

Let \mathfrak{M} be a von Neumann algebra and Ψ be a cyclic and separating vector. Let $\psi(x)=(\mathrm{x} \Psi, \Psi)$ for $x \in \mathfrak{M}$. For a self-adjoint h in \mathfrak{M}, a vector $\Psi(h)$ is defined by

$$
\begin{equation*}
\Psi(h) \equiv \sum_{n=0}^{\infty} \int_{0}^{1 / 2} \mathrm{~d} t_{1} \ldots \int_{0}^{t_{n-1}} \mathrm{~d} t_{n} \Delta_{\Psi}^{t_{n}} h \Delta_{\Psi}^{t_{n}-1-t_{n}} h \ldots \Delta_{\Psi}^{t_{1}-t_{2}} h \Psi \tag{1.1}
\end{equation*}
$$

where Δ_{Ψ} is the modular operator for Ψ. (As we shall see in (3.6), it is also possible to write $\Psi(h)=e^{(H+h) / 2} \Psi$ where $H=\log \Delta_{\Psi}$.)

Theorem 1. If $\|\Psi\|=1$, then

$$
\begin{equation*}
\|\Psi(h)\|^{2} \geqq \exp \psi(h) \tag{1.2}
\end{equation*}
$$

Theorem 2.

$$
\begin{equation*}
\psi\left(e^{h}\right) \geqq\|\Psi(h)\|^{2} \tag{1.3}
\end{equation*}
$$

The connection with Golden-Thompson and Peierls-Bogolubov inequalities for finite matrices can be seen as follows.

Let \mathfrak{M} be a finite matrix algebra and Ω be a cyclic and separating vector such that $(x \Omega, \Omega)=\operatorname{tr} x$ for $x \in \mathfrak{M}$. Let $\Psi=\left(\operatorname{tr} e^{A}\right)^{-1 / 2} e^{A / 2} \Omega$ for a self-adjoint A in \mathfrak{M}. Then Ψ is a unit cyclic and separating vector.

We have $\Delta_{\Psi}^{t} h \Delta_{\Psi}^{-t}=e^{t A} h e^{-t A}$ and

$$
\begin{aligned}
\left(\operatorname{tr} e^{A}\right)^{1 / 2} \Psi(h) & =\operatorname{Exp}_{\mathrm{r}}\left(\int_{0}^{1 / 2} ; e^{t A} h e^{-t A} \mathrm{~d} t\right) \Psi \\
& =e^{(A+h) / 2} \Omega
\end{aligned}
$$

due to formulas (5.4) and (2.8) of [2]. Hence we have

$$
\begin{aligned}
\|\Psi(h)\|^{2} & =\operatorname{tr} e^{(A+h)} /\left(\operatorname{tr} e^{A}\right) \\
\psi(h) & =\operatorname{tr}\left(e^{A} h\right) /\left(\operatorname{tr} e^{A}\right)
\end{aligned}
$$

Therefore (1.2) implies

$$
\operatorname{tr} e^{A+h} /\left(\operatorname{tr} e^{A}\right) \geqq \exp \left\{\operatorname{tr}\left(e^{A} h\right) /\left(\operatorname{tr} e^{A}\right)\right\}
$$

which is the Peierls-Bogolubov inequality.
Next set $\Psi=e^{A / 2} \Omega$ in (1.3). We have

$$
\begin{aligned}
\|\Psi(h)\|^{2} & =\operatorname{tr} e^{A+h} \\
\psi\left(e^{h}\right) & =\operatorname{tr} e^{A} e^{h} .
\end{aligned}
$$

Therefore (1.3) implies

$$
\operatorname{tr} e^{A} e^{h} \geqq \operatorname{tr} e^{A+h}
$$

which is the Golden-Thompson inequality.

§ 2. Proof of Theorem 1

Lemma 1. Let $f(x)=\log \left\{\|\Psi(x h)\|^{2}\right\}$ for a real number x. Then

$$
\begin{align*}
& f^{\prime}(0)=\psi(h) / \psi(1), \tag{2.1}\\
& f^{\prime \prime}(0) \geqq 0 . \tag{2.2}
\end{align*}
$$

Proof. $\Psi(x h)$ is an absolutely convergent power series in x by Proposition 4.1 of [3] and $\Psi(x h) \neq 0$ by Corollary 4.4 of [3]. Hence $f(x)$ is a C^{∞} function of x. Furthermore

$$
\begin{aligned}
\left.\Psi_{1} \equiv(\mathrm{~d} / \mathrm{d} x) \Psi(x h)\right|_{x=0} & =\int_{0}^{1 / 2} \Delta_{\Psi}^{t} h \Psi \mathrm{~d} t \\
\left.\Psi_{2} \equiv(\mathrm{~d} / \mathrm{d} x)^{2} \Psi(x h)\right|_{\lambda=0} & =2 \int_{0}^{1 / 2} \mathrm{~d} t \int_{0}^{t} \mathrm{~d} s \Delta_{\Psi}^{s} h \Delta_{\Psi}^{t-s} h \Psi
\end{aligned}
$$

Since $\Delta_{\Psi}^{t} \Psi=\Psi$, the derivatives of $F(x) \equiv\|\Psi(x h)\|^{2}$ at $x=0$ are given by

$$
\begin{equation*}
F^{\prime}(0)=\left(\Psi_{1} \cdot \Psi\right)+\left(\Psi, \Psi_{1}\right)=\psi(h), \tag{2.3}
\end{equation*}
$$

$$
\begin{aligned}
F^{\prime \prime}(0) & =\left(\Psi_{2}, \Psi\right)+\left(\Psi, \Psi_{2}\right)+2\left\|\Psi_{1}\right\|^{2} \\
& =2 \int_{0}^{1}\left\|\Delta_{\Psi}^{u / 2} h \Psi\right\|^{2}(1-u) \mathrm{d} u .
\end{aligned}
$$

Let E_{0} be the projection onto the one-dimensional space spanned by Ψ. Then

$$
\begin{equation*}
F^{\prime \prime}(0)-F^{\prime}(0)^{2} / F(0)=2 \int_{0}^{1}\left\|\left(1-E_{0}\right) \Delta_{\Psi}^{u / 2} h \Psi\right\|^{2}(1-u) \mathrm{d} u \geqq 0 \tag{2.4}
\end{equation*}
$$

(2.1) and (2.2) follow from (2.3) and (2.4).
Q.E.D.

Lemma 2. $\log \|\Psi(x h)\|$ is a convex function of x.
Proof. Let $\Phi \equiv \Psi(x h)$. Then $\Psi((x+y) h)=\Phi(y h)$, by Proposition 4.5 of [3]. If we replace Ψ of Lemma 1 by Φ, we obtain

$$
(\mathrm{d} / \mathrm{d} x)^{2} \log \|\Psi(x h)\|=\left.\frac{1}{2}(\mathrm{~d} / \mathrm{d} y)^{2} \log \left\{\|\Phi(y h)\|^{2}\right\}\right|_{y=0} \geqq 0 \text {. Q.E.D. }
$$

Remark. Since $\Psi\left(\lambda h_{1}+(1-\lambda) h_{2}\right)=\left[\Psi\left(h_{2}\right)\right]\left(\lambda\left(h_{1}-h_{2}\right)\right)$, Lemma 2 implies the convexity of $\log \|\Psi(h)\|$ in h.

Proof of Theorem 1. Set $f(x)=\log \left\{\|\Psi(x h)\|^{2}\right\}$. If $\|\Psi\|=1$, we have $f(0)=0$. By Lemma 1, we also have $f^{\prime}(0)=\psi(h)$. By Lemma 2, $f(x)$ is a C^{∞} convex function of x. Hence

$$
f(1) \geqq f(0)+f^{\prime}(0)=\psi(h),
$$

which is the inequality (1.2).
Q.E.D.

§ 3. A Trotter Product Formula

Lemma 3. Let H be a self-adjoint operator. If Ψ is in the domain of $e^{\delta H}$ for a $\delta>0$, then $e^{z H} \Psi$ is holomorphic in z for $\operatorname{Re} z \in(0, \delta)$ and continuous in z for $\operatorname{Re} z \in[0, \delta]$. Conversely, if $\Psi(z)$ is holomorphic in a domain D, weakly continuous on its closure \bar{D}, which contains an open interval I on the imaginary axis, and $\Psi(z)=e^{z H} \Psi$ for $z \in I$, then Ψ is in the domain of $e^{z H}$ for $z \in \bar{D}$ and $\Psi(z)=e^{z H} \Psi$ for $z \in \bar{D}$.

The first half is immediate from the spectral theory (cf. Lemma 4 in [1]). The proof of the second half is contained in the proof of Proposition 4.12 in [3].

Lemma 4. Let self-adjoint operators H and h, a positive number T and a vector Ψ in the domain of $e^{T H} h^{n}$ for all integers $n \geqq 0$ be given. Assume that h is bounded and there exist $\alpha>0$ and $K>0$ satisfying

$$
\begin{equation*}
\left\|e^{T H} h^{n} \Psi\right\| \leqq \alpha K^{n} \tag{3.1}
\end{equation*}
$$

for all integers $n \geqq 0$. Then Ψ is in the domain of $e^{t(H+h)}$ for all complex t satisfying $\operatorname{Re} t \in[0, T]$ and

$$
\begin{gather*}
e^{t(H+h)} \Psi=\sum_{n=0}^{\infty} t^{n} \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{x_{1}} \mathrm{~d} x_{2} \ldots \int_{0}^{x_{n}-1} \mathrm{~d} x_{n} \tag{3.2}\\
e^{t x_{n} H} h e^{t\left(x_{n}-1-x_{n}\right) H} h \ldots h e^{t\left(1-x_{1}\right) H} \Psi
\end{gather*}
$$

where the right hand side is absolutely and uniformly convergent.
Proof. By the proof of Theorem 3.1 in [3], the assumption (3.1) implies that Ψ is in the domain of

$$
\begin{equation*}
A_{n}(z) \equiv e^{z_{1} H} h \ldots e^{z_{n-1} H} h e^{z_{n} H} \tag{3.3}
\end{equation*}
$$

for all integers $n>0$ and for $z=\left(z_{1}, \ldots, z_{n}\right)$ satisfying

$$
\begin{equation*}
\operatorname{Re} z \in \bar{I}_{n}^{T} \equiv\left\{s ; s_{1} \geqq 0, \ldots, s_{n} \geqq 0,\left(s_{1}+\cdots+s_{n}\right) \leqq T\right\} \tag{3.4}
\end{equation*}
$$

that $A_{n}(z) \Psi$ is weakly continuous and bounded by

$$
\begin{equation*}
\left\|A_{n}(z) \Psi\right\| \leqq \alpha\{\max (\|h\|, K)\}^{n-1} \tag{3.5}
\end{equation*}
$$

for $\operatorname{Re} z \in \bar{I}_{n}^{T}$, and that $A_{n}(z) \Psi$ is holomorphic in z for $\operatorname{Re} z \in I_{n}^{T}$ (the interior of \bar{I}_{n}^{T}). Hence the integrals on the right hand side of (3.2) exist, in strong topology for $\operatorname{Re} t \in[0, T)$ and in weak topology for $\operatorname{Re} t=T$, and the series converges absolutely and uniformly for $\operatorname{Re} t \in[0, T]$. If $t=i \tau$ is pure imaginary, then by Proposition 16 of [2] we have

$$
e^{i \tau(H+h)}=\operatorname{Exp}_{\mathrm{r}}\left(\int_{0}^{1} ; e^{i x \tau H} i \tau h e^{-i x \tau H} \mathrm{~d} x\right) e^{i \tau H}
$$

and hence (3.2) holds. By the previous Lemma, Ψ is in the domain of $e^{t(H+h)}$ for $\operatorname{Re} t \in[0, T]$ and (3.2) holds for all such t.
Q.E.D.

Corollary. Ψ is in the domain of $e^{(H+h) / 2}$ and

$$
\begin{equation*}
\Psi(h)=e^{(H+h) / 2} \Psi \tag{3.6}
\end{equation*}
$$

where $H=\log \Delta_{\Psi}$ and $h \in \mathfrak{M}$.
This follows from Lemma 4 and $e^{x H} \Psi=\Psi$.
Lemma 5. Under the assumption of Lemma 4,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(e^{t H / n}\left(1+n^{-1} t h\right)\right)^{n} \Psi=\lim _{n \rightarrow \infty}\left(\left(1+n^{-1} t h\right) e^{t H / n}\right)^{n} \Psi=e^{t(H+h)} \Psi \tag{3.7}
\end{equation*}
$$

where $\operatorname{Re} t \in[0, T]$, the limit is in the strong topology for $\operatorname{Re} t \in[0, T)$ and in the weak topology for $\operatorname{Re} t=T$.
Proof. Let $t \in[0, T], \Psi_{0, n} \equiv e^{t H} \Psi$ and

$$
\begin{align*}
\Psi_{k, n} \equiv & \sum_{0<J_{1}<\cdots<j_{k} \leqq n} e^{J_{1} t H / n} h e^{\left(j_{2}-j_{1}\right) t H / n} h \ldots \tag{3.8}\\
& \ldots e^{\left(j_{k}-J_{k}-1\right) t H / n} h e^{\left(n-j_{k}\right) t H / n} \Psi
\end{align*}
$$

for $1 \leqq k \leqq n$. By (3.5), we have

$$
\left\|\Psi_{m, n}\right\| \leqq\binom{ n}{m} \alpha \bar{K}^{m}, \bar{K}=\max (\|h\|, K)
$$

where $\binom{n}{m}$ is the number of terms in the summation. Since

$$
\Psi_{n} \equiv\left\{e^{t H / n}\left(1+n^{-1} t h\right)\right\}^{n} \Psi=\sum_{m=0}^{n}(t / n)^{m} \Psi_{m, n},
$$

we have

$$
\begin{gathered}
\left\|\Psi_{n}-\sum_{k=0}^{N}(t / n)^{k} \Psi_{k, n}\right\| \leqq \alpha \sum_{k=N+1}^{n}\binom{n}{k}(\bar{K} t / n)^{k} \\
=\alpha\left\{\left(1+n^{-1} \bar{K} t\right)^{n}-\sum_{m=0}^{N} m!^{-1}(\bar{K} t)^{m}\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)\right\},
\end{gathered}
$$

for $N \leqq n$ where the right hand side tends to $\alpha\left(e^{\bar{K} t}-\sum_{m=0}^{N}(\bar{K} t)^{m} / m!\right)$ as $n \rightarrow \infty$. Hence we have $\lim _{n \rightarrow \infty} \Psi_{n}=e^{t(H+h)} \Psi$ by Lemma 4 if we prove

$$
\begin{gather*}
\lim _{n \rightarrow \infty} n^{-k} \Psi_{k, n}=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{x_{1}} \mathrm{~d} x_{2} \ldots \int_{0}^{x_{k}-1} \mathrm{~d} x_{k} F\left(x_{1}, \ldots, x_{k}\right) \tag{3.9}\\
F\left(x_{1}, \ldots, x_{k}\right)=A_{k+1}\left(t x_{k}, t\left(x_{k-1}-x_{k}\right), \ldots, t\left(x_{1}-x_{2}\right), t\left(1-x_{1}\right)\right) \Psi .
\end{gather*}
$$

Since $F\left(x_{1}, \ldots, x_{k}\right)$ is continuous in $x=\left(x_{1}, \ldots, x_{k}\right)$, strongly for $\operatorname{Re} t \in[0, T)$ and weakly for $\operatorname{Re} t=T$, we obtain (3.8) (as a strong or weak limit according to cases) from the uniform bound $\left\|F\left(x_{1}, \ldots, x_{k}\right)\right\|$ $\leqq \alpha\{\max (\|h\|, K)\}^{k}$ and the following observation:

$$
\Psi_{k, n}=\sum_{0<j_{1}<\cdots<J_{k} \leqq n} F\left(j_{k} / n, j_{k-1} / n, \ldots, j_{1} / n\right) .
$$

The second equality of (3.7) is proved in exactly the same manner where the only difference is that the summation in (3.8) is now for $0 \leqq j_{1}<\cdots<j_{k}<n$.
Q.E.D.

Remark 1. If $H=\log \Delta_{\Psi}$ and $h \in \mathfrak{M}$, then the bound (3.1) holds with $\alpha=\|\Psi\|, K=\|h\|$ and $T=1 / 2$. Furthermore, $F\left(x_{1}, \ldots, x_{k}\right)$ is strongly continuous for $\operatorname{Re} t \in[0,1 / 2]$ by Theorem 3.1 in [3]. Therefore (3.7) holds in strong topology for $\operatorname{Re} t \in[0,1 / 2]$.

Remark 2. Under the assumption of Lemma 4, it is also possible to prove the usual form of the Trotter product formula:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(e^{t H / n} e^{t h / n}\right)^{n} \Psi=\lim _{n \rightarrow \infty}\left(e^{t h / n} e^{t H / n}\right)^{n} \Psi=e^{t(H+h)} \Psi \tag{3.10}
\end{equation*}
$$

For this, we first note the absolute convergence of

$$
\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{n}=0}^{\infty} e^{t H / n}\left\{(t h / n)^{k_{1}} / k_{1}!\right\} \ldots e^{t H / n}\left\{(t h / n)^{k_{n}} / k_{n}!\right\} \Psi
$$

which is equal to $\left(e^{t H / n} e^{t h / n}\right)^{n} \Psi$. It is then easy to find out that the difference

$$
\left(e^{t H / n} e^{t h / n}\right)^{n} \Psi-\left(e^{t H / n}\left(1+n^{-1} t h\right)\right)^{n} \Psi
$$

is of the order $(1 / n)$ in norm and we obtain (3.10) from (3.7).

§ 4. Some Formulas for Modular Operators

The weak closure of $\Delta^{1 / 4} \mathfrak{M}^{+} \Psi$ is denoted by V_{Ψ} as in [1]. We denote $j(x)=J_{\Psi} x J_{\Psi}$. The following Lemma is a slightly modified version of Lemma 7 in [1].

Lemma 6. If $A \in \mathfrak{M}, A^{-1} \in \mathfrak{M}$ and $A \Psi \in V_{\Psi}$, then

$$
\begin{equation*}
\Delta_{A \Psi}^{1 / 2}=A \Delta_{\Psi}^{1 / 2} j\left(A^{-1}\right) . \tag{4.1}
\end{equation*}
$$

Proof. By (5.2) of [1], we have $J_{\Psi} A \Psi=A \Psi$. Hence

$$
j\left(A^{-1}\right) A \Psi=J_{\Psi} A^{-1} J_{\Psi} A \Psi=J_{\Psi} \Psi=\Psi .
$$

For $Q \in \mathfrak{M}$, we have

$$
\begin{aligned}
A \Delta_{\Psi}^{1 / 2} j\left(A^{-1}\right) Q A \Psi & =A \Delta_{\Psi}^{1 / 2} Q \Psi=A J_{\Psi} Q^{*} \Psi=j\left(Q^{*}\right) A \Psi \\
& =J_{\Psi} Q^{*} A \Psi=\Delta_{A}^{1 / 2} Q A \Psi
\end{aligned}
$$

where we have used $J_{\Psi}=J_{A \Psi}$ (Theorem 4(5) of [1]) for the last equality. Since A has a bounded inverse, $A \Delta_{\Psi}^{1 / 2} j\left(A^{-1}\right)$ is closed. Since $\mathfrak{M} A \Psi$ is a core of $\Delta_{A}^{1 / 2}$, we have

$$
\Delta_{A \Psi}^{1 / 2} \subset A \Delta_{\Psi}^{1 / 2} j\left(A^{-1}\right)
$$

Since $V_{\Psi}=V_{A \Psi}$ (Theorem 4(4) of [1]), we may interchange the role of Ψ and $A \Psi$, replacing A by A^{-1} at the same time. We then obtain

$$
\Delta_{\Psi}^{1 / 2} \subset A^{-1} \Delta_{A \Psi}^{1 / 2} j(A)
$$

Therefore we have (4.1).
Lemma 7. If A, A^{-1}, B, B^{-1} are all in \mathfrak{M} and satisfy

$$
\begin{gather*}
B \Delta_{\Psi}^{\alpha / 2}=\Delta_{\Psi}^{\alpha / 2} B^{*} \tag{4.2}\\
\Delta_{\Psi}^{-\alpha / 4} B \Delta_{\Psi}^{\alpha / 4} \geqq 0 \tag{4.3}\\
A \Delta_{\Psi}^{\alpha}=\left(B \Delta_{\Psi}^{\alpha / 2}\right)^{2} \tag{4.4}\\
\Delta_{\Phi}^{\alpha}=A \Delta_{\Psi}^{\alpha} J\left(A^{-1}\right), \tag{4.5}
\end{gather*}
$$

where $\Phi \in V_{\Psi}$ and $\alpha \in[0,1 / 2]$, then

$$
\begin{equation*}
\Delta_{\Phi}^{\alpha / 2}=B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right) . \tag{4.6}
\end{equation*}
$$

Proof. Since B has a bounded inverse and Δ_{Ψ}^{α} is self-adjoint, we have $\left(B \Delta_{\Psi}^{\alpha / 2}\right)^{*}=\Delta_{\Psi}^{\alpha / 2} B^{*}$. Hence (4.2) implies that $B \Delta_{\Psi}^{\alpha / 2}$ is self-adjoint. (4.4) then implies that $A \Delta_{\psi}^{\alpha}$ is positive self-adjoint.

By Lemma 6 of [1], (4.2) implies that $\sigma_{t}^{x}(B)$ has an analytic continuation $\sigma_{z}^{\psi}(B) \in \mathfrak{M}$ for $\operatorname{Im} z \in[0, \alpha / 2]$ satisfying $\sigma_{z}^{\psi}(B)^{*}=\sigma_{i \alpha / 2+\bar{z}}^{\psi}(B)$ and (4.3) implies that $\sigma_{i \alpha / 4}^{\psi}(B)=\left(\Delta_{\varphi}^{-\alpha / 4} B \Delta_{\psi}^{\alpha / 4}\right)^{-}$is positive, where $\sigma_{t}^{\psi}(B)$ for real t denotes the modular automorphism $\Delta_{\Psi}^{i t} B \Delta_{\Psi}^{-i t}$ and (...) denotes the closure of (...).

By (4.2), we also have $B^{-1} \Delta_{\Psi}^{\alpha / 2}=\Delta_{\Psi}^{\alpha / 2}\left(B^{-1}\right)^{*}$. Hence by the same reason as above, $\sigma_{t}^{\psi}\left(B^{-1}\right)$ has an analytic continuation $\sigma_{z}^{\psi}\left(B^{-1}\right) \in \mathfrak{M}$ for $\operatorname{Im} z \in[0, \alpha / 2]$. Since $\sigma_{z}^{\psi}(B) \sigma_{z}^{\psi}\left(B^{-1}\right)=\sigma_{z}^{\psi}\left(B^{-1}\right) \sigma_{z}^{\psi}(B)=1$ holds for real t, it holds for $\operatorname{Im} z \in[0, \alpha / 2]$ and hence $\sigma_{z}^{\psi}\left(B^{-1}\right)=\sigma_{z}^{\psi}(B)^{-1}$. Namely $\sigma_{z}^{\varphi}(B)^{-1} \in \mathfrak{M}$.

From (4.5) and (4.4), we have

$$
\begin{aligned}
\Delta_{\Phi}^{\alpha} & =\left(B \Delta_{\Psi}^{\alpha / 2}\right)^{2} j\left(A^{-1}\right) \\
& =\left\{B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right)\right\}\left\{j(B) B \Delta_{\Psi}^{\alpha / 2} j\left(A^{-1}\right)\right\} .
\end{aligned}
$$

By (4.4), we have

$$
\Delta_{\Psi}^{\alpha} j\left(A^{-1}\right)=j\left(\Delta_{\Psi}^{-\alpha} A^{-1}\right)=j\left(B \Delta_{\Psi}^{\alpha / 2}\right)^{-2}=\left(\Delta_{\Psi}^{\alpha / 2} j(B)^{-1}\right)^{2} .
$$

Hence

$$
j(B) B \Delta_{\Psi}^{\alpha / 2} j\left(A^{-1}\right)=B j(B) \Delta_{\Psi}^{-\alpha / 2} \Delta_{\Psi}^{\alpha} j\left(A^{-1}\right)=B \Delta_{\Psi}^{\alpha / 2} j(B)^{-1} .
$$

When restricted to the domain of $\Delta_{\Psi}^{\alpha} j\left(A^{-1}\right)$. By (4.5), the domain of Δ_{Φ}^{α} is the same as the domain of $\Delta_{\Psi}^{\alpha} j\left(A^{-1}\right)$. Therefore

$$
\Delta_{\Phi}^{\alpha} \subset\left\{B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right)\right\}^{2}
$$

Since B and $j\left(B^{-1}\right)$ have bounded inverses, we have

$$
\left(B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right)\right)^{*}=j\left(B^{*}\right)^{-1} \Delta_{\Psi}^{\alpha / 2} B^{*}=B j\left(B^{*}\right)^{-1} \Delta_{\Psi}^{\alpha / 2},
$$

where we have used (4.2). By (4.2) again, we have

$$
j\left(B^{*}\right)^{-1} \Delta_{\Psi}^{\alpha / 2}=j\left(\Delta_{\Psi}^{\alpha / 2} B^{*}\right)^{-1}=j\left(B \Delta_{\Psi}^{\alpha / 2}\right)^{-1}=\Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right) .
$$

Hence $B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right)$ is self-adjoint and

$$
\Delta_{\Phi}^{\alpha}=\left\{B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right)\right\}^{2} .
$$

Since $B \Delta_{\Psi}^{\alpha / 4}=\Delta_{\Psi}^{\alpha / 4} \sigma_{i \alpha / 4}^{\psi}(B)$ and $\Delta_{\Psi}^{\alpha / 4} j\left(B^{-1}\right)=j\left(\sigma_{i \alpha / 4}^{\psi}(B)^{-1}\right) \Delta_{\Psi}^{\alpha / 4}$ we have

$$
B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right)=\Delta_{\psi}^{\alpha / 4} \sigma_{i \alpha / 4}^{\psi}(B) j\left(\sigma_{i \alpha / 4}^{\psi}(B)^{-1}\right) \Delta_{\Psi}^{\alpha / 4} .
$$

Hence for any f in $\mathrm{D}\left(B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right)\right) \subset \mathrm{D}\left(\Delta_{\Psi}^{\alpha / 4}\right)$, we have

$$
\left(f, B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right) f\right)=\left(\Delta_{\Psi}^{\alpha / 4} f, \sigma_{i \alpha / 4}^{\psi}(B) j\left(\sigma_{i \alpha / 4}^{\psi}(B)^{-1}\right) \Delta_{\Psi}^{\alpha / 4} f\right)
$$

Since $\sigma_{i \alpha / 4}^{\psi}(B) \in \mathfrak{M}$ and $j\left(\sigma_{i \alpha / 4}^{\psi}(B)^{-1}\right) \in \mathfrak{M}^{\prime}$ are both positive and commute, we have

$$
B \Delta_{\Psi}^{\alpha / 2} j\left(B^{-1}\right) \geqq 0
$$

Hence we have (4.6).
Q.E.D.

Lemma 8. Assume that $a \in \mathfrak{M}^{+}, \sigma_{t}^{\psi}(a)$ has an analytic continuation $\sigma_{z}^{\psi}(a) \in \mathfrak{M}$ for $\operatorname{Im} z \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\sigma_{z}^{\psi}(a)^{-1} \in \mathfrak{M}$ for all such z. Let

$$
\begin{equation*}
\Phi=\left(\Delta_{\Psi}^{2-(m+1)} a \Delta_{\Psi}^{2-(m+1)}\right)^{2(m-1)} \Psi \tag{4.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta_{\Phi}^{2-m}=b \Delta_{\Psi}^{2-m} j\left(b^{-1}\right), \quad b=\sigma_{-i \delta}^{\psi}(a), \delta=2^{-(m+1)} . \tag{4.8}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
Q(l)=\sigma_{-i n(1)}^{\psi}(a) \ldots \sigma_{-i n(l)}^{\psi}(a), \quad n(j)=\left(j-\frac{1}{2}\right) 2^{-m} \tag{4.9}
\end{equation*}
$$

Then

$$
\Phi=Q\left(2^{m-1}\right) \Psi
$$

Since $\sigma_{t}^{\psi}(a)^{*}=\sigma_{t}^{\psi}(a)$ for real t, we have $\sigma_{z}^{\psi}(a)^{*}=\sigma_{z}^{\psi}(a)$ and hence

$$
\begin{equation*}
Q(l)^{*}=\sigma_{i(n(l)+n(1))}^{\psi} Q(l), \quad n(l)+n(1)=l 2^{-m} \tag{4.10}
\end{equation*}
$$

We also have

$$
\begin{align*}
Q(2 l) & =Q(l) \sigma_{-i(n(l+1)-n(1))}^{\psi}(Q(l)) \tag{4.11}\\
& =Q(l) \sigma_{-2 i(n(l)+n(1))}^{\psi}\left(Q(l)^{*}\right)
\end{align*}
$$

Hence

$$
\begin{equation*}
\sigma_{i(n(l)+n(1))}^{\psi}(Q(2 l)) \geqq 0 \tag{4.12}
\end{equation*}
$$

Due to $a \geqq 0,(4.12)$ holds also for $l=\frac{1}{2}(n(l)=0)$.
For $l=2^{m-2}$, we have $n(l)+n(1)=\frac{1}{4}$ and hence $\sigma_{i / 4}^{\psi} Q\left(2^{m-1}\right) \geqq 0$. By Theorem 3 (7) of [1], this implies $\Phi \in V_{\Psi}$. By Lemma 6 with $A=Q\left(2^{m-1}\right)$, we have

$$
\begin{equation*}
\Delta_{\Phi}^{1 / 2}=Q\left(2^{m-1}\right) \Delta_{\Psi}^{1 / 2} j\left(Q\left(2^{m-1}\right)^{-1}\right) \tag{4.13}
\end{equation*}
$$

If we set $\alpha=2^{-k}, A=Q\left(2^{m-k}\right)$ and $B=Q\left(2^{m-k-1}\right)$ in Lemma 7, then (i) (4.10) with $l=2^{m-k-1}$ implies (4.2), (ii) (4.12) with $l=2^{m-k-2}$ implies (4.3) and (iii) (4.11) with $l=2^{m-k-1}$ implies (4.4), where $1 \leqq k \leqq m-1$. Since (4.5) is satisfied for $k=1$, Lemma 7 implies recursively (4.6) for $k=1, \ldots, m-1$. The case $k=m-1$ yields (4.8) due to $Q\left(2^{m-k-1}\right)$ $=Q(1)=b$ for $k=m-1$.
Q.E.D.

§ 5. Proof of Theorem 2

Lemma 9. If $h \in \mathfrak{M}^{+}$and $n=0,1,2, \ldots$, then

$$
\begin{equation*}
\left\|\left(\Delta_{\Psi}^{2-(n+2)} h \Delta_{\Psi}^{2-(n+2)}\right)^{2^{n}} \Psi\right\| \leqq\left\|\left(\Delta_{\Psi}^{2-(n+1)} h^{2} \Delta_{\Psi}^{2-(n+1)}\right)^{2^{n-1}} \Psi\right\| \tag{5.1}
\end{equation*}
$$

Proof. We give proof for the following 3 cases in that order: (i) $h^{-1} \in \mathfrak{M}$ and $\sigma_{t}^{\psi}(h)$ as well as $\sigma_{t}^{\psi}\left(h^{-1}\right)$ have analytic continuations to M-valued entire functions, (ii) $h^{-1} \in \mathfrak{M}$, (iii) general h.

Case (i). By Hölder inequality,

$$
\left\|\Delta^{\beta} \Phi\right\| \leqq\left\|\Delta^{\alpha} \Phi\right\|^{\lambda}\|\Phi\|^{1-\lambda} \leqq \max \left\{\left\|\Delta^{\alpha} \Phi\right\|,\|\Phi\|\right\}, \quad \Phi \in \mathrm{D}\left(\Delta^{\alpha}\right)
$$

where $\beta \leqq \alpha, \lambda=\beta / \alpha$. Hence it is enough to prove the following 2 inequalities:

$$
\begin{align*}
& \left\|\left(h \Delta_{\Psi}^{2-(n+1)}\right)^{2 n} \Psi\right\| \leqq\left\|\left(\Delta_{\Psi}^{2-(n+1)} h^{2} \Delta_{\Psi}^{2-(n+1)}\right)^{2^{(n-1)}} \Psi\right\| \tag{5.2}\\
& \left\|\left(\Delta_{\Psi}^{2-(n+1)} h\right)^{2 n} \Psi\right\| \leqq\left\|\left(\Delta_{\Psi}^{2-(n+1)} h^{2} \Delta_{\Psi}^{2-(n+1)}\right)^{2^{(n-1)}} \Psi\right\| \tag{5.3}
\end{align*}
$$

Let $h \Delta_{\Psi}^{\delta}=u\left|h \Delta_{\Psi}^{\delta}\right|$ be a polar decomposition, where $\delta=2^{-(n+1)}$. By Lemma 4 of [4], $u \in \mathfrak{M}$. Since h^{-1} is bounded, $h \Delta_{\Psi}^{\delta}$ is closed. Since h and Δ_{Ψ} are strictly positive, $h \Delta_{\psi}^{\delta}$ has 0 kernel and dense range. Hence u must be unitary. Let $q=u^{*} h \in \mathfrak{M}$. Then $q^{-1}=h^{-1} u \in \mathfrak{M}$. We have $\left|h \Delta_{\Psi}^{\delta}\right|=q \Delta_{\Psi}^{\delta}$.

Let

$$
\begin{equation*}
\Phi=\left|h \Delta_{\Psi}^{\delta}\right|^{2^{n}} \Psi=\left(\Delta_{\Psi}^{\delta} h^{2} \Delta_{\Psi}^{\delta}\right)^{2(n-1)} \Psi \tag{5.4}
\end{equation*}
$$

where Ψ is in the domain of $\left(\Delta_{\Psi}^{\delta} h^{2} \Delta_{\Psi}^{\delta}\right)^{2(n-1)}$ due to Theorem 3.1 of [3].
By assumption, both $\sigma_{t}^{\psi}\left(h^{2}\right)=\sigma_{t}^{\psi}(h)^{2}$ and $\sigma_{t}^{\psi}\left(h^{-2}\right)=\sigma_{t}^{\psi}\left(h^{-1}\right)^{2}$ have analytic continuations to M-valued entire functions $\sigma_{z}^{\psi}\left(h^{2}\right)$ and $\sigma_{z}^{\psi}\left(h^{-2}\right)$. Since $\sigma_{z}^{\psi}\left(h^{2}\right) \sigma_{z}^{\psi}\left(h^{-2}\right)=\sigma_{z}^{\psi}\left(h^{-2}\right) \sigma_{z}^{\psi}\left(h^{2}\right)=1$ for real z, the same equality holds for all z. Hence $\sigma_{z}^{\psi}\left(h^{2}\right)^{-1} \in \mathfrak{M}$ for all z. By Lemma 8, we have

$$
\begin{equation*}
\Delta_{\Phi}^{2 \delta}=b \Delta_{\Psi}^{2 \delta} j\left(b^{-1}\right), \quad b=\sigma_{-i \delta}^{\psi}\left(h^{2}\right) \tag{5.5}
\end{equation*}
$$

Since q^{-1} is bounded, $\left(q \Delta_{\psi}^{\delta}\right)^{*}=\Delta_{\psi}^{\delta} q^{*}$. Since $q \Delta_{\psi}^{\delta}=\left|h \Delta_{\psi}^{\delta}\right|$ is selfadjoint, (4.2) is satisfied for $B=q$ and $\alpha=2 \delta=2^{-n}$. It then implies, by Lemma 6 of [1], that $\sigma_{t}^{\psi}(q)$ has an analytic continuation $\sigma_{z}^{\psi}(q) \in \mathfrak{M}$ for $\operatorname{Im} z \in[0, \alpha / 2]$. If x is in the domain of $\Delta_{\psi}^{-\alpha / 4}$ as well as in the domain of $\Delta_{\Psi}^{\alpha / 4}$, then

$$
\left(x, \sigma_{i \alpha / 4}^{\psi}(q) x\right)=\left(\Delta_{\Psi}^{-\alpha / 4} x,\left(q \Delta_{\Psi}^{\alpha / 2}\right) \Delta_{\Psi}^{-\alpha / 4} x\right) \geqq 0
$$

due to $q \Delta_{\Psi}^{\delta}=\left|h \Delta_{\Psi}^{\delta}\right| \geqq 0$. Hence (4.3) is satisfied. Since

$$
\begin{equation*}
\left(q \Delta_{\Psi}^{\alpha / 2}\right)^{2}=\left|h \Delta_{\Psi}^{\delta}\right|^{2}=\Delta_{\Psi}^{\delta} h^{2} \Delta_{\Psi}^{\delta}=b \Delta_{\Psi}^{2 \delta}=b \Delta_{\Psi}^{\alpha}, \tag{5.6}
\end{equation*}
$$

(4.4) is satisfied for $A=b$. (5.5) is then the same as (4.5). By Lemma 9 of [4], $\Phi \in V \Psi$. Therefore Lemma 7 is applicable and

$$
\begin{equation*}
\Delta_{\Phi}^{\delta}=q \Delta_{\Psi}^{\delta} j\left(q^{-1}\right) \tag{5.7}
\end{equation*}
$$

We now have

$$
\left(h \Delta_{\Psi}^{\delta}\right)^{2^{n}} \Psi=\left(u\left|h \Delta_{\Psi}^{\delta}\right|\right)^{2^{n}} \Psi=\left(u \Delta_{\Phi}^{\delta} j(q)\right)^{2^{n}}\left(\Delta_{\Phi}^{\delta} j(q)\right)^{-2^{n}} \Phi .
$$

As we shall see immediately below, $\sigma_{t}^{\phi}(u)$ for $\phi=\omega_{\Phi}$ has an análytic continuation to an M-valued entire function $\sigma_{z}^{\phi}(u)$. Hence

$$
\left(\Delta_{\Phi}^{\delta} j(q)\right)^{k} u=\sigma_{-i k \delta}^{\phi}(u)\left(\Delta_{\Phi}^{\delta} j(q)\right)^{k}
$$

Therefore

$$
\begin{align*}
\left(h \Delta_{\Psi}^{\delta}\right)^{2^{n}} \Psi & =u \sigma_{-i \delta}^{\phi}(u) \sigma_{-2 i \delta}^{\phi}(u) \ldots \sigma_{-(i / 2)+i \delta}^{\phi}(u) \Phi \tag{5.8}\\
& =\left(u \Delta_{\Phi}^{\delta}\right)^{2 n} \Phi .
\end{align*}
$$

Similarly, we have $\Delta_{\Psi}^{\delta} h=\left|h \Delta_{\Psi}^{\delta}\right| u^{*}$ and hence

$$
\begin{equation*}
\left(\Delta_{\Psi}^{\delta} h\right)^{2^{n}} \Psi=\left(\Delta_{\Phi}^{\delta} u^{*}\right)^{2 n} \Phi \tag{5.9}
\end{equation*}
$$

By Theorem 3.1 of [3]. we have

$$
\begin{aligned}
\left\|\left(u \Delta_{\Phi}^{\delta}\right)^{2^{n}} \Phi\right\| & \leqq\|u\|^{2^{n}}\|\Phi\|=\|\Phi\| \\
\left\|\left(\Delta_{\Phi}^{\delta} u^{*}\right)^{2^{n}} \Phi\right\| & \leqq u^{*}\left\|^{2^{n}}\right\| \Phi\|=\| \Phi \| .
\end{aligned}
$$

This proves (5.2) and (5.3), hence (5.1) for this case.
To prove that $\sigma_{t}^{\psi}(u)$ (and hence $\left.\sigma_{t}^{\phi}\left(u^{*}\right)=\sigma_{t}^{\phi}(u)^{*}\right)$ has an analytic continuation to an entire function, we first remember that $\sigma_{t}^{\psi}(q)$ has an analytic continuation $\sigma_{z}^{\psi}(q)$ for $\operatorname{Im} z \in[0, \delta]$. By (5.6), we have $\sigma_{t \delta}(q) q$ $=\sigma_{i \partial}^{\psi}(b)=h^{2}$. We then have

$$
\Delta_{\varphi}^{-\delta} q=\sigma_{i \delta}^{\psi}(q) \Delta_{\varphi}^{-\delta}=h^{2} q^{-1} \Delta_{\Psi}^{-\delta}
$$

and hence

$$
q h^{-2} \Delta_{\Psi}^{-\delta}=\Delta_{\Psi^{-}}^{-\delta} q^{-1} .
$$

Again by Lemma 6 of [1], we obtain an analytic continuation $\sigma_{z}^{\psi}\left(q^{-1}\right)$ for $\operatorname{Im} z \in[0, \delta]$ and $\sigma_{\iota \delta}^{\psi}\left(q^{-1}\right)=q h^{-2}$. By repeated use of relations

$$
\begin{equation*}
\sigma_{l \delta}^{\psi}(q)=h^{2} q^{-1} . \quad \sigma_{l \delta}^{\psi}\left(q^{-1}\right)=q h^{-2} \tag{5.10}
\end{equation*}
$$

we obtain analytic continuations for $\operatorname{Im} z \in[k \delta, k \delta+\delta]$:

$$
\sigma_{z}^{\psi}(q)=\left\{\begin{array}{c}
\sigma_{z-i k \delta}^{\psi}\left[\sigma_{i k \delta-i \delta}^{\psi}\left(h^{2}\right) \sigma_{i k \delta-3 i \delta}^{\psi}\left(h^{2}\right) \ldots h^{2} q^{-1} \sigma_{i \delta}^{\psi}\left(h^{-2}\right)\right. \\
\left.\ldots \sigma_{i k \delta-2 i \delta}^{\psi}\left(h^{-2}\right)\right] \quad \text { if } k \text { is odd } \\
\sigma_{z-i k \delta}^{\psi}\left[\sigma_{i k \delta-i \delta}^{\psi}\left(h^{2}\right) \ldots \sigma_{i \delta}^{\psi}\left(h^{2}\right) q h^{-2}\right. \\
\left.\ldots \sigma_{i k \delta-2 i \delta}^{\psi}\left(h^{-2}\right)\right] \quad \text { if } k \text { is even }
\end{array}\right.
$$

and a similar equation for $\sigma_{z}^{\psi}\left(q^{-1}\right)$. Reading (5.10) backwards as

$$
q=\sigma_{i \delta}^{\psi}\left(q^{-1}\right) h^{2}, \quad q^{-1}=h^{-2} \sigma_{i \delta}^{\psi}(q),
$$

we also obtain $\sigma_{z}^{\psi}(q)$ and $\sigma_{z}^{\psi}\left(q^{-1}\right)$ for $\operatorname{Im} z<0$. Thus $\sigma_{t}^{\psi}(q)$ and $\sigma_{t}^{\psi}\left(q^{-1}\right)$ have analytic continuations to Q-valued entire functions.

Since $u=h q^{-1}$ and $u^{*}=u^{-1}=q h^{-1}, \sigma_{t}^{\psi}(u)$ and $\sigma_{t}^{\psi}\left(u^{*}\right)$ also have analytic continuations to all z :

$$
\sigma_{z}^{\psi}(u)=\sigma_{z}^{\psi}(h) \sigma_{z}^{\psi}\left(q^{-1}\right) . \quad \sigma_{z}^{\psi}\left(u^{*}\right)=\sigma_{z}^{\psi}(q) \sigma_{z}^{\psi}\left(h^{-1}\right)
$$

By (5.7), we have
where

$$
\Delta_{\Phi}^{k \delta} u=u^{(k)} \Delta_{\Phi}^{k \delta}
$$

$$
\begin{array}{ll}
u^{(k)}=q \sigma_{-i \delta}^{\psi}\left(u^{(k-1)}\right) q^{-1} & (k>0) \\
u^{(k)}=\sigma_{i \delta}^{\psi}\left(q^{-1} u^{(k+1)} q\right) & (k<0) \\
u^{(0)}=u .
\end{array}
$$

By Lemma 6 of [1], $\sigma_{t}^{\phi}(u)$ has an analytic continuation $\sigma_{z}^{\phi}(u)$ for all z. Similar conclusion holds for u^{*}.

Case (ii). If $h^{-1} \in \mathfrak{M}$, we can write $h=e^{Q}$ where $Q=Q^{*} \in \mathfrak{M}$. $\left(Q=\log h\right.$.) Let $\tilde{f} \in \mathrm{D}(R), f^{*}=f$ and consider $h_{f}=e^{Q(f)}$. Then $h_{f}^{-1} \in M$ and $\sigma_{t}^{\psi}\left(h_{f}\right)=\exp Q\left(f_{t}\right)$ as well as $\sigma_{t}^{\psi}\left(h_{f}^{-1}\right)=\exp -Q\left(f_{t}\right)$ have analytic continuations. Hence, by case (i). we have (5.1) for h_{f}. Let f_{j} be a sequence such that $Q\left(f_{j}\right)$ is uniformly bounded and converges to Q strongly. We can complete the proof of this case if we show that both sides of (5.1) with h replaced by h_{f}, converges to the same expressions with h. This follows from the following general results:

Let $h_{j}^{*}=h_{j}>0, h_{j} \in \mathfrak{M} .\left\|h_{j}\right\|$ uniformly bounded and $h=\lim h_{j}$ (in strong topology). Then

$$
\left\|\Delta_{\Psi}^{\alpha_{1}} h_{j} \Delta_{\Psi}^{\alpha_{2}} h_{j} \ldots \Delta_{\Psi}^{\alpha_{n}} h, \Psi-\Delta_{\Psi}^{\alpha_{1}} h \Delta_{\Psi}^{\alpha_{2}} h \ldots \Delta_{\Psi}^{\alpha_{n}} h \Psi\right\|
$$

converges to 0 for fixed $\alpha_{1} \geqq 0 \ldots \alpha_{n} \geqq 0$ satisfying $\alpha_{1}+\cdots+\alpha_{n}<1 / 2$. [In the present application, the strict inequality $\alpha_{1}+\cdots+\alpha_{n}<1 / 2$ can be obtained just by absorbing last Δ_{Ψ} factor into Ψ on both sides of (5.1).] The proof of this general result is achieved by considering $h_{j}\left(f_{\beta}^{G}\right)$ and is given in the proof of Proposition 4.1 of [3].

Case (iii). For any given $h \in \mathfrak{M}^{+}$, we can find a sequence $h_{\jmath} \in \mathfrak{M}^{+}$ such that $h_{j}^{-1} \in \mathfrak{M}^{+}, h_{j}$ is uniformly bounded (by $\|h\|$) and h_{j} tends to h strongly. For h_{j}, we have (5.1) by case (ii). By the same reason as Case (ii), we obtain (5.1) for the given h from (5.1) for h_{n} by taking the limit $n \rightarrow \infty$.
Q.E.D.

Corollary. For $h \in \mathfrak{M}^{+}, n=0,1, \ldots$ and $\alpha \in\left[0,2^{-(n+1)}\right]$,

$$
\begin{gather*}
\left\|\Delta_{\Psi}^{\alpha}\left(h \Delta_{\Psi}^{2-(n+1)}\right)^{2^{n}} \Psi\right\| \leqq\left\|\left(\Delta_{\Psi}^{2-(n+1)} h^{2} \Delta_{\Psi}^{2-(n+1)}\right)^{2^{(n-1)}} \Psi\right\|, \tag{5.11}\\
\left\|\Delta_{\Psi}^{\alpha}\left(h \Delta_{\Psi}^{2-(n+1)}\right)^{n} \Psi\right\| \leqq\left\|h^{2^{n}} \Psi\right\| . \tag{5.12}
\end{gather*}
$$

Proof. For the case (i) above, this follows from (5.2) and (5.3) by the Hölder inequality. If $0 \leqq \alpha<2^{-(n+1)}$, then the continuity argument in the proof of Lemma 9 for cases (ii) and (iii) works and (5.11) is proved for general h. The case $\alpha=2^{-(n+1)}$ is obtained from the case $\alpha<2^{-(n+1)}$ by the continuity in α.

By repeated use of (5.1), we obtain

$$
\left\|\left(\Delta_{\Psi}^{2-(n+2)} h \Delta_{\Psi}^{2-(n+2)}\right)^{2^{n}} \Psi\right\| \leqq\left\|\Delta_{\Psi}^{1 / 4} h^{n} \Psi\right\| \leqq\left\|h^{2^{n}} \Psi\right\|
$$

where the last inequality is due to Hölder inequality with $\beta=1 / 4, \alpha=1 / 2$ and due to $\left\|\Delta_{\Psi}^{1 / 2} h^{2^{n}} \Psi\right\|=\left\|J_{\Psi} h^{2^{n}} \Psi\right\|=\left\|h^{2^{n}} \Psi\right\|$. By using this inequality on the right hand side of (5.11), we obtain (5.12).
Q.E.D.

Proof of Theorem 2. For any real constant c, we have

$$
\Psi(h+c)=[\Psi(h)](c)=e^{c / 2} \Psi(h)
$$

where the first equality is due to Proposition 4.5 of [3]. Hence

$$
\|\Psi(h+c)\|^{2}=e^{c}\|\Psi(h)\|^{2}, \quad \psi\left(e^{h+c}\right)=e^{c} \psi\left(e^{h}\right)
$$

Therefore, by taking $c=\|h\|$, we may restrict our attention to the case $h \geqq 0$. By (5.12) with $\alpha=0$, we obtain

$$
\begin{equation*}
\left\|\left\{\left(1+2^{-(n+1)} h\right) \Delta_{\Psi}^{2-(n+1)}\right\}^{2 n} \Psi\right\| \leqq\left\|\left(1+2^{-(n+1)} h\right)^{2 n} \psi\right\| \tag{5.13}
\end{equation*}
$$

By taking the limit $n \rightarrow \infty$ and using (3.7), we obtain

$$
\left\|e^{(H+h) / 2} \Psi\right\| \leqq\left\|e^{h / 2} \Psi\right\|
$$

By Corollary to Lemma 4, this is the same as (1.3). Q.E.D.

References

1. Araki, H.: Some properties of modular conjugation operator of von Neumanṇ algebras and a non-commutative Radon-Nikodym theorem with a chain rule. Preprint RIMS-120. Submitted to Pacific J. Math. for publication
2. Araki, H.: Expansional in Banach algebras. Ann. Sci. École Norm. Super. 6, 67-84 (1973)
3. Araki, H.: Relative Hamiltonian for faithful states of von Neumann algebras. Publ. RIMS 9. 165-209 (1973)
4. Araki, H.: One-parameter family of Radon-Nikodym theorems for a von Neumann algebra. RIMS preprint.
5. Ruska1, M. B.: Commun. math. Phys. 26, 280-289 (1972)

H. Araki
Research Institute
for Mathematical Sciences
Kyoto University
Kyoto, Japan

