Commun. math. Phys. 33, 215–220 (1973) © by Springer-Verlag 1973

Spacetime *b*-Boundaries

R. K. Sachs

Departments of Physics and Mathematics, University of California Berkeley

Received May 17, 1973

Abstract. It is shown that Schmidt's *b*-boundary for a spacetime can be analyzed using a submanifold of the tangent bundle, rather than the principal bundle or the bundle of orthogonal frames.

1. Introduction

Schmidt [1] has shown that every spacetime can be assigned a boundary, called the *b*-boundary. Roughly speaking, the boundary points are ideal endpoints for those inextendible curves which do not escape to infinity. Though useful in general arguments, such as those in Hawking and Ellis [2], the *b*-boundary is hard to construct in specific examples. The purpose of this paper is to point out that the construction can be carried out using only a submanifold of the tangent bundle. Section 2 states the results, Section 3 supplies the proofs, and Section 4 gives 2 examples.

In discussing differential geometry, the notation and terminology of Bishop and Goldberg [3] will usually be used. Hu [4] will be taken as the standard topology reference. Throughout the paper (M, g, D) will denote a *spacetime*: a real, 4-dimensional, connected, Hausdorff, oriented, time-oriented, C^{∞} Lorentzian manifold (M, g) together with the Levi-Civita connection D of g. TM denotes the tangent bundle, with projection $\pi: TM \to M$. The main idea is the following. Suppose $\alpha: E \to M$ is an inextendible C^{∞} curve. α may be lightlike and need not be geodesic so, in general, neither arc length nor an affine parameter supplies an adequate criterion for when α fails to escape to infinity. But suppose we had a unit timelike vector field $P: M \to TM$ available. Then we could use arc length with respect to the positive definite metric $g + 2g(P, \cdot) \otimes g(P, \cdot)$. The game is to introduce P and then amputate it back out.

2. The Unit Future

The unit future UM of M is the following C^{∞} submanifold of the tangent bundle: $UM = \{(x, P) \in TM | g(P, P) = -1, P \text{ is future-pointing}\}$. Thus U, defined by $U = \pi|_{UM}$, is a C^{∞} onto map $U: UM \to M$. As in Bishop and Goldberg [3] we can regard the identity map of UM onto itself as a C^{∞} vector field $P: UM \to TM$ over the map U. For example, suppose $x \in M$ and $y, z \in U^{-1} \{x\}$. Then $Py, Pz \in M_{Uy} = M_x$ and $g(Py, Pz) \leq -1$, where equality holds iff y = z. As pointed out in Bishop and Goldberg [3], U^*D is a C^{∞} connection over ("on") the map U. For example, suppose $y \in UM$ and $Y \in (UM)_y$. Then Y is vertical iff $U_*Y = 0$, horizontal iff $U^*D_YP = 0$, and zero iff it is both horizontal and vertical.

Proposition 2.1. There is a unique Riemannian metric G on UM such that for all $(y, Y) \in TUM$, $G(Y, Y) = g(U_*Y, U_*Y) + 2[g(U_*Y, Py)]^2 + g(U^*D_YP, U^*D_YP)$.

Proof. Since g is Lorentzian, $g(Uy) + 2g(Py, .) \otimes g(Py, .)$ is a positive definite quadratic form on M_{Uy} . Thus if Y is horizontal, $G(Y, Y) \ge 0$, with equality holding iff Y = 0. Moreover, for any Y, $g(U^*D_YP, Py) = \frac{1}{2}U^*D_Y[(g \circ U)(P, P)] = \frac{1}{2}Y[-1] = 0$. Thus $U^*D_YP \in (Py)^{\perp} \subset M_{Uy}$ for any Y. But g restricted to $(Py)^{\perp}$ is positive definite. Thus if Y is vertical $G(Y, Y) \ge 0$, with equality holding iff Y = 0. Thus G is positive definite. The rest is straightforward. \Box

Let $d: UM^2 \to [0, \infty)$ be the topological metric determined by G, as in Helgason [5; Section 1.9]. Let (UM, d) be the complete metric space in which (UM, d) is dense. Denote the positive integers by Z^+ . Define a relation $R \subset UM^2$ as follows. wRy iff there are Cauchy sequences $w': Z^+ \to UM$ and $y': Z^+ \to UM$ such that: (A) w' converges to w and y' converges to y; (B) the projections coincide, i.e. $U \circ w' = U \circ y'$; and (C) there is a uniform lower bound $A \in (-\infty, -1]$ such that, for all $n \in Z^+$, $g(Pw'n, Py'n) \ge A$. We now show that R is an equivalence relation and that the decomposition space UM/R is homeomorphic to the union of M with the b-boundary of M.

3. Proofs

To give the proofs and relate UM/R to the space defined by Schmidt we first review a standard definition of the *b*-boundary. Let OM be the bundle, above M, of those (Lorentzian-) orthonormal frames whose orientation and time-orientation is that determined by (M, g). Let $\theta: OM \to M$ be the projection. Let P_i (i = 1, ..., 4) be the four standard vector fields over θ . Thus for each $\delta \in (1, 2, 3)$, $(g \circ \theta) (P_{\delta}, P_{\delta}) = 1$ $= -(g \circ \theta) (P_4, P_4)$, with the other dot products zero. Let $V: OM \to UM$ be the projection onto the unit future. Then $\theta = U \circ V$ and $P_4 = P \circ V$. Define a C^{∞} , (0, 2) tensor field H on OM by $H(Q, Q) = \sum_{\delta=1}^{3} \{g(\theta^* D_Q P_{\delta}, P_{\delta}) + [g(\theta^* D_Q P_{\delta}, P_4 q)]^2\}$ for all $(q, Q) \in TOM$. By an argument similar to that of Section 2, $G_0 = V^*G + H$ is a Riemannian metric on *OM*. Let d_0 be the topological metric determined by G_0 , (*OM*, d_0) be the complete metric space in which (*OM*, d_0) is dense.

One can extend θ to OM by using the structure group L of OM. The elements of L are real 4×4 matrices and L is isomorphic to that component of the Lorentz group which contains the identity; here and throughout L is assigned its standard topology. The action of $l \in L$ on OM will be denoted by $R_l: OM \to OM$. Thus if $q, r \in OM$ then $\theta q = \theta r$ iff there is an $l \in L$ such that $R_lq = r$. Each R_l has a uniformly continuous extension $R_l: OM \to OM$. For $q, r \in OM$, $R_lq = r$ iff there are Cauchy sequences $q': Z^+ \to OM$ converging to q and $r': Z^+ \to OM$ converging to r with $R_l \circ q'$ converging to r. There is an equivalence relation \sim on OM, defined as follows: $q \sim r$ iff there is an $l \in L$ such that $R_lq = r$. The decomposition space $M = OM/\sim$ is called the *spacetime with b-boundary* M. The *b-boundary* of (M, g, D) is the topological space $M - \theta(OM) = M - \theta(OM) = M - M$, where θ is the projection.

We can see the relation of these definitions to the discussion of Section 2 by filling in the two missing maps, V and U, in the following diagram.

Proposition 3.1. For all $q, r \in OM$ and $y \in UM$:

(A)
$$d_0(q, r) \ge d(Vq, Vr);$$

(B) there is an $s \in V^{-1}{y}$ such that $d_0(s, q) = d(y, Vq)$.

Proof. The tensor field *H* defined above is positive semi-definite. Since $G_0 = H + V^*G$, assertion (A) follows. To prove (B) we shall construct an "optimum lift" into *OM* of each curve into *UM*. The following notation will be convenient. Let β be a C^{∞} curve into *OM*. Abbreviate $(\theta \circ \beta)^* D_{(d/dt)}(P_4 \circ \beta)$, where *t* is the curve parameter, by \dot{P}_4 , etc. Now let $\alpha : [0, a] \to UM$ be a C^{∞} curve from Vq to *y*. Then there is a unique C^{∞} curve $\beta : [0, a] \to OM$ such that: (i) $V \circ \beta = \alpha$; (ii) $\beta 0 = q$; and (iii) β obeys the Fermi-Walker transport law in the sense that for all $\delta \in (1, 2, 3)$ $\dot{P}_{\delta} = [(g \circ \theta \circ \beta) (\dot{P}_4, P_{\delta} \circ \beta)] (P_4 \circ \beta)$. From the form of *H*, the length of β is the same as the length of α . Moreover $V^{-1}\{y\}$ is compact. (B) above now follows by considering a sequence of curves $\alpha_1, \alpha_2, \ldots$ into *UM* whose lengths approach d(y, Vq), with each α_i going from Vq to *y*.

Theorem 3.2. There is a unique, uniformly continuous, uniformly open, onto extension $V: OM \rightarrow UM$ of $V: OM \rightarrow UM$.

Proof. V is uniformly continuous by 3.1.A. Therefore, as shown in Kelley [6; Chapter 6], V has a unique uniformly continuous extension $V: OM \rightarrow UM$. If we can show that 3.1.B extends, the uniform openess of V will follow; compare Kelley [6; Chapter 6]. Suppose that $q \in OM$ and $y \in V(OM) \subset UM$. Let $r' : Z^+ \to OM$ be a Cauchy sequence such that $V \circ r'$ converges to y. For each $n \in Z^+$ we can, by 3.1.B, choose $s'(n) \in V^{-1}\{Vr'n\}$ such that $d_0(s'(n), q) = d(Vr'n, Vq)$. This determines a sequence $s': Z^+ \to OM$; it also determines a sequence $l': Z^+ \to L$ by the rule $R_{l'n}s'n = r'n$ for all such *n*. Now $P_4(s'n) = P(Vs'n) = P(Vr'n)$ $= P_4(r'n)$. Thus the image of l' is contained in a compact subset of L and there is at least one cluster point, say $l \in L$. Then $R_l^{-1}r'$ is a Cauchy sequence; let $s \in OM$ be its limit. Then $s \in V^{-1}{y}$ and $d_0(s, q) = d(Vs, Vq)$ = d(v, Vq). Thus 3.1.B extends to this case. 3.1.B also extends to the more general case $y \in V(OM)$, $q \in OM$; the proof is so similar to that just given it is omitted. Thus V is uniformly open. Kelley [6; Chapter 6] shows that the range of a continuous, uniformly open map of a complete metric space into a Hausdorff uniform space is complete. It follows that V is onto. Π

Since V is open and continuous it is an identification. Moreover, note that any Cauchy sequence $y': Z^+ \to UM$ can be lifted to a Cauchy sequence $r': Z^+ \to OM$, with $V \circ r' = y'$. For let $s': Z^+ \to OM$ be a Cauchy sequence such that $V \circ s'$ converges to the limit $y \in UM$ of y'. For each $n \in Z^+$, choose r'n such that $d_0(r'n, s'n) = d(y'n, Vs'n)$ and $r'n \in V^{-1}\{y'n\}$. Then r' is Cauchy. Having extended V we can now extend U. Suppose $y \in UM$ and $q, r \in V^{-1}\{y\}$.

Proposition 3.3. $\theta q = \theta r$.

Proof. Suppose y' is a Cauchy sequence which converges to y. Lift y' to a Cauchy sequence q' which converges to q, using the method just discussed; also lift y' to a Cauchy sequence r' which converges to r. Define a sequence $l': Z^+ \rightarrow L$ by $R_{l'n}q'n = r'n$. As in the theorem, there is a cluster point $l \in L$. $R_l q = r$ so $\theta q = \theta r$. \Box

Thus we can define $U: UM \to M$ by $Uy = \theta(V^{-1}{y})$ for all $y \in UM$. Since θ and V are identifications, U is an identification. The last step is to describe U wholly in terms of structures defined on UM. Suppose $w, y \in UM$; let R be as in 2.

Proposition 3.4. Uw = Uy iff wRy.

Proof. Suppose Uw = Uy. Thus if q' is a Cauchy sequence which converges to $q \in V^{-1}\{w\}$ and r' is a Cauchy sequence which converges to $r \in V^{-1}\{y\}$ then there is an $l \in L$ such that $R_l \circ q'$ converges to r. Form a Cauchy sequence which converges to w by alternating terms from $V \circ q'$ and $V \circ R_l^{-1} \circ r'$ and a Cauchy sequence which converges to y by alternating

terms from $V \circ R_l \circ q'$ and $V \circ r'$. The projections of these two Cauchy sequences into M coincide and the existence of a uniform lower bound is implied by the fact that l is fixed. Thus wRy. Conversely, suppose wRy. Suppose w' converges to w and y' converges to y, with the projections of w' and y' identical. Lift w' to a Cauchy sequence q' into OM, y' to a Cauchy sequence r' into OM. Define $l': Z^+ \to L$ by $R_{l'n}q'n = r'n$. The existence of a uniform lower bound on g(Pw'n, Pr'n) implies that l'has at least one cluster point $l \in L$. Then $R_l \circ q'$ converges to the same point as r' so Uw = Uy. \Box

As corollaries we have that R is an equivalence relation and that UM/R = M, as claimed in Section 2.

4. Examples and Comments

The first example shows that the condition of a uniform lower bound in the definition of R, Section 2, cannot be dropped. Let $\alpha: (-\infty, 0) \rightarrow M$ be a lightlike geodesic with the following property. There is an $x \in M$ such that, for all $n \in \mathbb{Z}^+$, $\alpha(-1/2^n) = x$ and $\alpha_*(-1/2^n) = 2^n \alpha_*(-1) \in M_x$. Thus the image of α is $\alpha \left[-1, -\frac{1}{2} \right] \subset M$ and α winds around an infinite number of times as the affine parameter, say t, approaches zero from below. Hawking and Ellis [2] show this rather peculiar behavoir can in fact occur. Now let $X_0 \in M_x$ be unit, timelike, and future-pointing. The constant sequence $y': Z^+ \rightarrow UM$ given by $y'n = (x, X_0)$ has $y = (x, X_0)$ as limit and Uy = Uy = x. Next define a vector field over α , $X: (-\infty, 0)$ $\rightarrow TM$, as follows: X is parallel, i.e. $\alpha^* D_{d/dt}(X \circ \alpha) = 0$; and $X(-1) = X_0$. Then the sequence w' defined by $w'n = (x, X(-1/2^n))$ is also Cauchy. For the only contribution to the arc length of the curve $\beta = (\alpha, X \circ \alpha)$ $(-\infty, 0) \rightarrow UM$ comes from the term $2[(g \circ \alpha)(\alpha_*, X)]^2$, which is constant; let w be the limit of w'. w' has the same projection into M as y', but $Uw \neq Uy$, as discussed in Hawking and Ellis [2]. The catch is that $g(Pw'n, Py'n) = g(X(-1/2^n), X_0)$ is not bounded from below.

The second example shows that, at least in one artificially constructed case, working with UM rather than OM gives a major simplification. Let N be R^3 with the origin (0, 0, 0) deleted. Let h be a C^0 Riemannian metric on R^3 which is C^{∞} on N. Let $M = N \times (-\infty, \infty)$, with projections $S: M \to N$ and $T: M \to (-\infty, \infty)$. Define g on M by $g = S^*h - dT \otimes dT$. Supply (M, g) with the natural orientation, natural time-orientation, and the Levi-Civita connection D. Then (M, g, D) is a spacetime. The claim is that M is homeomorphic to R^4 ; roughly speaking, the b-boundary consists simply of the "missing points" $(0, 0, 0) \times (-\infty, \infty)$. Only an outline of the rather tedious proof will be given.

Let $\alpha : [0, a] \to UM$ be a C^{∞} curve. Then $(G \circ \alpha)(\alpha_*, \alpha_*) \ge (g \circ U \circ \alpha)$ (\dot{P}, \dot{P}) , with \dot{P} essentially as in 3.1. Define the vector field $X : M \to TM$ by $T_*X = d/ds$, $S_*X = 0$. X is unit, timelike, future pointing, and parallel ("covariant constant"). Let $f:[0, a] \rightarrow [0, \infty)$ be the function defined by $\cosh f = -(g \circ U \circ \alpha) (P \circ \alpha, X \circ U \circ \alpha)$. Using the inequality mentioned above and the fact that X is parallel one finds that the arc length of α is at least |f 0 - fa|. Now let $w': Z^+ \rightarrow UM$ be a Cauchy sequence with limit w. The above estimate shows there is a uniform lower bound on g(Pw'n, XUw'n). Next one can work with the "horizontal part" $g(U_*Y, U_*Y) + 2[g(U_*Y, Py)]^2$ of G, rather than the "vertical part" $g(U^*D_YP, U^*D_YP)$ used above. One finds that the sequence y', defined by $y'n = (Uw'n, XUw'n) \in UM$ is also Cauchy and that its limit y obeys Uy = Uw. Thus one can confine attention to sequences y' with the property $P \circ y' = X \circ U \circ y'$. The rest is straightforward and gives the result already mentioned.

If one tries to work directly with OM in this second example a terrible mess results. Unfortunately, in more realistic cases even using UM still leads to quite difficult computations. Whether one can develop effective techniques for computing the *b*-boundaries of the various physically interesting spacetimes remains to be seen. If not, the physical relevance of *b*-boundary techniques may remain rather obscure.

The author thanks C. Clarke, G. Ellis, R. Geroch, S. Hawking, and B. Schmidt for discussions. Support from NSF GP-29257Al, SRC, and the Guggenheim Foundation is gratefully acknowledged, as is the kind hospitality of Cambridge University.

References

- 1. Schmidt, B.G.: General Relativity and Gravitation 1, 337 (1971)
- 2. Hawking, S., Ellis, G. F. R.: The Large Scale Structure of Spacetime, Cambridge Press 1973
- 3. Bishop, R., Goldberg, S.: Tensor Analysis on Manifolds. New York: MacMillan 1968
- 4. Hu, S.: Elements of General Topology, San Francisco: Holden-Day 1964
- 5. Helgason, S.: Differential Geometry and Symmetric Spaces. New York: Academic Press 1962
- 6. Kelley, J.: General Topology, Princeton: Van Nostrand 1955

R. K. Sachs Departments of Physics and Mathematics University of California Berkeley, California 94720, USA