Spacetime b-Boundaries

R. K. Sachs
Departments of Physics and Mathematics, University of California Berkeley

Received May 17, 1973

Abstract

It is shown that Schmidt's b-boundary for a spacetime can be analyzed using a submanifold of the tangent bundle, rather than the principal bundle or the bundle of orthogonal frames.

1. Introduction

Schmidt [1] has shown that every spacetime can be assigned a boundary, called the b-boundary. Roughly speaking, the boundary points are ideal endpoints for those inextendible curves which do not escape to infinity. Though useful in general arguments, such as those in Hawking and Ellis [2], the b-boundary is hard to construct in specific examples. The purpose of this paper is to point out that the construction can be carried out using only a submanifold of the tangent bundle. Section 2 states the results, Section 3 supplies the proofs, and Section 4 gives 2 examples.

In discussing differential geometry, the notation and terminology of Bishop and Goldberg [3] will usually be used. Hu [4] will be taken as the standard topology reference. Throughout the paper (M, g, D) will denote a spacetime: a real, 4-dimensional, connected, Hausdorff, oriented, time-oriented, C^{∞} Lorentzian manifold (M, g) together with the LeviCivita connection D of g. TM denotes the tangent bundle, with projection $\pi: T M \rightarrow M$. The main idea is the following. Suppose $\alpha: E \rightarrow M$ is an inextendible C^{∞} curve. α may be lightlike and need not be geodesic so, in general, neither arc length nor an affine parameter supplies an adequate criterion for when α fails to escape to infinity. But suppose we had a unit timelike vector field $P: M \rightarrow T M$ available. Then we could use arc length with respect to the positive definite metric $g+2 g(P, \cdot) \otimes g(P, \cdot)$. The game is to introduce P and then amputate it back out.

2. The Unit Future

The unit future $U M$ of M is the following C^{∞} submanifold of the tangent bundle: $U M=\{(x, P) \in T M \mid g(P, P)=-1, P$ is future-pointing $\}$. Thus U, defined by $U=\left.\pi\right|_{U M}$, is a C^{∞} onto map $U: U M \rightarrow M$. As in

Bishop and Goldberg [3] we can regard the identity map of $U M$ onto itself as a C^{∞} vector field $P: U M \rightarrow T M$ over the map U. For example, suppose $x \in M$ and $y, z \in U^{-1}\{x\}$. Then $P y, P z \in M_{U y}=M_{x}$ and $g(P y, P z) \leqq-1$, where equality holds iff $y=z$. As pointed out in Bishop and Goldberg [3], $U^{*} D$ is a C^{∞} connection over ("on") the map U. For example, suppose $y \in U M$ and $Y \in(U M)_{y}$. Then Y is vertical iff $U_{*} Y=0$, horizontal iff $U^{*} D_{Y} P=0$, and zero iff it is both horizontal and vertical.

Proposition 2.1. There is a unique Riemannian metric G on $U M$ such that for all $(y, Y) \in T U M, G(Y, Y)=g\left(U_{*} Y, U_{*} Y\right)+2\left[g\left(U_{*} Y, P y\right)\right]^{2}$ $+g\left(U^{*} D_{Y} P, U^{*} D_{Y} P\right)$.

Proof. Since g is Lorentzian, $g(U y)+2 g(P y,.) \otimes g(P y,$.$) is a positive$ definite quadratic form on $M_{U y}$. Thus if Y is horizontal, $G(Y, Y) \geqq 0$, with equality holding iff $Y=0$. Moreover, for any $Y, g\left(U^{*} D_{Y} P, P y\right)$ $=\frac{1}{2} U^{*} D_{Y}[(g \circ U)(P, P)]=\frac{1}{2} Y[-1]=0$. Thus $U^{*} D_{Y} P \in(P y)^{\perp} \subset M_{U y}$ for any Y. But g restricted to $(P y)^{\perp}$ is positive definite. Thus if Y is vertical $G(Y, Y) \geqq 0$, with equality holding iff $Y=0$. Thus G is positive definite. The rest is straightforward.

Let $d: U M^{2} \rightarrow[0, \infty)$ be the topological metric determined by G, as in Helgason [5; Section 1.9]. Let ($\boldsymbol{U} \boldsymbol{M}, \boldsymbol{d})$ be the complete metric space in which $(U M, d)$ is dense. Denote the positive integers by Z^{+}. Define a relation $R \subset \boldsymbol{U} \boldsymbol{M}^{2}$ as follows. $w R y$ iff there are Cauchy sequences $w^{\prime}: Z^{+} \rightarrow U M$ and $y^{\prime}: Z^{+} \rightarrow U M$ such that: (A) w^{\prime} converges to w and y^{\prime} converges to y; (B) the projections coincide, i.e. $U \circ w^{\prime}=U \circ y^{\prime}$; and (C) there is a uniform lower bound $A \in(-\infty,-1]$ such that, for all $n \in Z^{+}$, $g\left(P w^{\prime} n, P y^{\prime} n\right) \geqq A$. We now show that R is an equivalence relation and that the decomposition space $\boldsymbol{U} \boldsymbol{M} / R$ is homeomorphic to the union of M with the b-boundary of M.

3. Proofs

To give the proofs and relate $\boldsymbol{U} \boldsymbol{M} / R$ to the space defined by Schmidt we first review a standard definition of the b-boundary. Let $O M$ be the bundle, above M, of those (Lorentzian-) orthonormal frames whose orientation and time-orientation is that determined by (M, g). Let $\theta: O M \rightarrow M$ be the projection. Let $P_{i}(i=1, \ldots, 4)$ be the four standard vector fields over θ. Thus for each $\delta \in(1,2,3),(g \circ \theta)\left(P_{\delta}, P_{\delta}\right)=1$ $=-(g \circ \theta)\left(P_{4}, P_{4}\right)$, with the other dot products zero. Let $V: O M \rightarrow U M$ be the projection onto the unit future. Then $\theta=U \circ V$ and $P_{4}=P \circ V$. Define a $C^{\infty},(0,2)$ tensor field H on $O M$ by $H(Q, Q)=\sum_{\delta=1}^{3}\left\{g\left(\theta^{*} D_{Q} P_{\delta}\right.\right.$, $\left.\left.\theta^{*} D_{Q} P_{\delta}\right)+\left[g\left(\theta^{*} D_{Q} P_{\delta}, P_{4} q\right)\right]^{2}\right\}$ for all $(q, Q) \in T O M$. By an argument similar to that of Section 2, $G_{0}=V^{*} G+H$ is a Riemannian metric on
$O M$. Let d_{0} be the topological metric determined by $G_{0},\left(\boldsymbol{O M}, \boldsymbol{d}_{0}\right)$ be the complete metric space in which $\left(O M, d_{0}\right)$ is dense.

One can extend θ to $\boldsymbol{O M}$ by using the structure group L of $O M$. The elements of L are real 4×4 matrices and L is isomorphic to that component of the Lorentz group which contains the identity; here and throughout L is assigned its standard topology. The action of $l \in L$ on $O M$ will be denoted by $R_{l}: O M \rightarrow O M$. Thus if $q, r \in O M$ then $\theta q=\theta r$ iff there is an $l \in L$ such that $R_{l} q=r$. Each R_{l} has a uniformly continuous extension $\boldsymbol{R}_{l}: \boldsymbol{O M} \rightarrow \boldsymbol{O M}$. For $q, r \in \boldsymbol{O} \boldsymbol{M}, \boldsymbol{R}_{l} q=r$ iff there are Cauchy sequences $q^{\prime}: Z^{+} \rightarrow O M$ converging to q and $r^{\prime}: Z^{+} \rightarrow O M$ converging to r with $R_{l} \circ q^{\prime}$ converging to r. There is an equivalence relation \sim on $\boldsymbol{O} \boldsymbol{M}$, defined as follows: $q \sim r$ iff there is an $l \in L$ such that $\boldsymbol{R}_{l} q=r$. The decomposition space $\boldsymbol{M}=\boldsymbol{O} \boldsymbol{M} / \sim$ is called the spacetime with b-boundary \boldsymbol{M}. The b-boundary of (M, g, D) is the topological space $\boldsymbol{M}-\boldsymbol{\theta}(O M)$ $=\boldsymbol{M}-\theta(O M)=\boldsymbol{M}-M$, where $\boldsymbol{\theta}$ is the projection.

We can see the relation of these definitions to the discussion of Section 2 by filling in the two missing maps, \boldsymbol{V} and \boldsymbol{U}, in the following diagram.

Proposition 3.1. For all $q, r \in O M$ and $y \in U M$:
(A) $d_{0}(q, r) \geqq d(V q, V r)$;
(B) there is an $s \in V^{-1}\{y\}$ such that $d_{0}(s, q)=d(y, V q)$.

Proof. The tensor field H defined above is positive semi-definite. Since $G_{0}=H+V^{*} G$, assertion (A) follows. To prove (B) we shall construct an "optimum lift" into $O M$ of each curve into $U M$. The following notation will be convenient. Let β be a C^{∞} curve into $O M$. Abbreviate $(\theta \circ \beta)^{*} D_{(d / d t)}\left(P_{4} \circ \beta\right)$, where t is the curve parameter, by \dot{P}_{4}, etc. Now let $\alpha:[0, a] \rightarrow U M$ be a C^{∞} curve from $V q$ to y. Then there is a unique C^{∞} curve $\beta:[0, a] \rightarrow O M$ such that: (i) $V \circ \beta=\alpha$; (ii) $\beta 0=q$; and (iii) β obeys the Fermi-Walker transport law in the sense that for all $\delta \in(1,2,3)$ $\dot{P}_{\delta}=\left[(g \circ \theta \circ \beta)\left(\dot{P}_{4}, P_{\delta} \circ \beta\right)\right]\left(P_{4} \circ \beta\right)$. From the form of H, the length of β is the same as the length of α. Moreover $V^{-1}\{y\}$ is compact. (B) above now follows by considering a sequence of curves $\alpha_{1}, \alpha_{2}, \ldots$ into $U M$ whose lengths approach $d(y, V q)$, with each α_{i} going from $V q$ to y.

Theorem 3.2. There is a unique, uniformly continuous, uniformly open, onto extension $\boldsymbol{V}: \boldsymbol{O M} \rightarrow \boldsymbol{U} \boldsymbol{M}$ of $V: O M \rightarrow U M$.

Proof. V is uniformly continuous by 3.1.A. Therefore, as shown in Kelley [6; Chapter 6], V has a unique uniformly continuous extension $\boldsymbol{V}: \boldsymbol{O M} \rightarrow \boldsymbol{U} \boldsymbol{M}$. If we can show that 3.1.B extends, the uniform openess of \boldsymbol{V} will follow; compare Kelley [6; Chapter 6]. Suppose that $q \in O M$ and $y \in \boldsymbol{V}(\boldsymbol{O M}) \subset \boldsymbol{U} \boldsymbol{M}$. Let $r^{\prime}: Z^{+} \rightarrow O M$ be a Cauchy sequence such that $V \circ r^{\prime}$ converges to y. For each $n \in Z^{+}$we can, by 3.1.B, choose $s^{\prime}(n) \in V^{-1}\left\{V r^{\prime} n\right\}$ such that $d_{0}\left(s^{\prime}(n), q\right)=d\left(V r^{\prime} n, V q\right)$. This determines a sequence $s^{\prime}: Z^{+} \rightarrow O M$; it also determines a sequence $l^{\prime}: Z^{+} \rightarrow L$ by the rule $R_{l^{\prime} n} s^{\prime} n=r^{\prime} n$ for all such n. Now $P_{4}\left(s^{\prime} n\right)=P\left(V s^{\prime} n\right)=P\left(V r^{\prime} n\right)$ $=P_{4}\left(r^{\prime} n\right)$. Thus the image of l^{\prime} is contained in a compact subset of L and there is at least one cluster point, say $l \in L$. Then $R_{l}^{-1} r^{\prime}$ is a Cauchy sequence; let $s \in \boldsymbol{O M}$ be its limit. Then $s \in \boldsymbol{V}^{-1}\{y\}$ and $\boldsymbol{d}_{0}(s, q)=\boldsymbol{d}(\boldsymbol{V} s, \boldsymbol{V} q)$ $=\boldsymbol{d}(y, \boldsymbol{V} q)$. Thus 3.1.B extends to this case. 3.1.B also extends to the more general case $y \in \boldsymbol{V}(\boldsymbol{O M}), q \in \boldsymbol{O} \boldsymbol{M}$; the proof is so similar to that just given it is omitted. Thus \boldsymbol{V} is uniformly open. Kelley [6; Chapter 6] shows that the range of a continuous, uniformly open map of a complete metric space into a Hausdorff uniform space is complete. It follows that \boldsymbol{V} is onto.

Since V is open and continuous it is an identification. Moreover, note that any Cauchy sequence $y^{\prime}: Z^{+} \rightarrow U M$ can be lifted to a Cauchy sequence $r^{\prime}: Z^{+} \rightarrow O M$, with $V \circ r^{\prime}=y^{\prime}$. For let $s^{\prime}: Z^{+} \rightarrow O M$ be a Cauchy sequence such that $V \circ s^{\prime}$ converges to the limit $y \in U M$ of y^{\prime}. For each $n \in Z^{+}$, choose $r^{\prime} n$ such that $d_{0}\left(r^{\prime} n, s^{\prime} n\right)=d\left(y^{\prime} n, V s^{\prime} n\right)$ and $r^{\prime} n \in V^{-1}\left\{y^{\prime} n\right\}$. Then r^{\prime} is Cauchy. Having extended V we can now extend U. Suppose $y \in \boldsymbol{U} \boldsymbol{M}$ and $q, r \in \boldsymbol{V}^{-1}\{y\}$.

Proposition 3.3. $\theta q=\theta r$.
Proof. Suppose y^{\prime} is a Cauchy sequence which converges to y. Lift y^{\prime} to a Cauchy sequence q^{\prime} which converges to q, using the method just discussed; also lift y^{\prime} to a Cauchy sequence r^{\prime} which converges to r. Define a sequence $l^{\prime}: Z^{+} \rightarrow L$ by $R_{l^{\prime} n} q^{\prime} n=r^{\prime} n$. As in the theorem, there is a cluster point $l \in L . \boldsymbol{R}_{l} q=r$ so $\boldsymbol{\theta} q=\boldsymbol{\theta} r$.

Thus we can define $\boldsymbol{U}: \boldsymbol{U} \boldsymbol{M} \rightarrow \boldsymbol{M}$ by $\boldsymbol{U} y=\boldsymbol{\theta}\left(\boldsymbol{V}^{-1}\{y\}\right)$ for all $y \in \boldsymbol{U} \boldsymbol{M}$. Since $\boldsymbol{\theta}$ and \boldsymbol{V} are identifications, \boldsymbol{U} is an identification. The last step is to describe \boldsymbol{U} wholly in terms of structures defined on $U M$. Suppose $w, y \in \boldsymbol{U} \boldsymbol{M}$; let R be as in 2 .

Proposition 3.4. $\boldsymbol{U} w=\boldsymbol{U} y$ iff $w R y$.
Proof. Suppose $\boldsymbol{U} w=\boldsymbol{U} y$. Thus if q^{\prime} is a Cauchy sequence which converges to $q \in V^{-1}\{w\}$ and r^{\prime} is a Cauchy sequence which converges to $r \in V^{-1}\{y\}$ then there is an $l \in L$ such that $R_{l} \circ q^{\prime}$ converges to r. Form a Cauchy sequence which converges to w by alternating terms from $V \circ q^{\prime}$ and $V \circ R_{l}^{-1} \circ r^{\prime}$ and a Cauchy sequence which converges to y by alternating
terms from $V \circ R_{l} \circ q^{\prime}$ and $V \circ r^{\prime}$. The projections of these two Cauchy sequences into M coincide and the existence of a uniform lower bound is implied by the fact that l is fixed. Thus $w R y$. Conversely, suppose $w R y$. Suppose w^{\prime} converges to w and y^{\prime} converges to y, with the projections of w^{\prime} and y^{\prime} identical. Lift w^{\prime} to a Cauchy sequence q^{\prime} into $O M, y^{\prime}$ to a Cauchy sequence r^{\prime} into $O M$. Define $l^{\prime}: Z^{+} \rightarrow L$ by $R_{l^{\prime} n} q^{\prime} n=r^{\prime} n$. The existence of a uniform lower bound on $g\left(P w^{\prime} n, P^{\prime} n\right)$ implies that l^{\prime} has at least one cluster point $l \in L$. Then $R_{l} \circ q^{\prime}$ converges to the same point as r^{\prime} so $\boldsymbol{U} w=\boldsymbol{U} y$.

As corollaries we have that R is an equivalence relation and that $\boldsymbol{U} \boldsymbol{M} / R=\boldsymbol{M}$, as claimed in Section 2.

4. Examples and Comments

The first example shows that the condition of a uniform lower bound in the definition of R, Section 2 , cannot be dropped. Let $\alpha:(-\infty, 0) \rightarrow M$ be a lightlike geodesic with the following property. There is an $x \in M$ such that, for all $n \in Z^{+}, \alpha\left(-1 / 2^{n}\right)=x$ and $\alpha_{*}\left(-1 / 2^{n}\right)=2^{n} \alpha_{*}(-1) \in M_{x}$. Thus the image of α is $\alpha\left[-1,-\frac{1}{2}\right) \subset M$ and α winds around an infinite number of times as the affine parameter, say t, approaches zero from below. Hawking and Ellis [2] show this rather peculiar behavoir can in fact occur. Now let $X_{0} \in M_{x}$ be unit, timelike, and future-pointing. The constant sequence $y^{\prime}: Z^{+} \rightarrow U M$ given by $y^{\prime} n=\left(x, X_{0}\right)$ has $y=\left(x, X_{0}\right)$ as limit and $\boldsymbol{U} y=U y=x$. Next define a vector field over $\alpha, X:(-\infty, 0)$ $\rightarrow T M$, as follows: X is parallel, i.e. $\alpha^{*} D_{d / d t}(X \circ \alpha)=0$; and $X(-1)=X_{0}$. Then the sequence w^{\prime} defined by $w^{\prime} n=\left(x, X\left(-1 / 2^{n}\right)\right)$ is also Cauchy. For the only contribution to the arc length of the curve $\beta=(\alpha, X \circ \alpha)$ $:(-\infty, 0) \rightarrow U M$ comes from the term $2\left[(g \circ \alpha)\left(\alpha_{*}, X\right)\right]^{2}$, which is constant; let w be the limit of $w^{\prime} . w^{\prime}$ has the same projection into M as y^{\prime}, but $\boldsymbol{U} w \neq U y$, as discussed in Hawking and Ellis [2]. The catch is that $g\left(P w^{\prime} n, P y^{\prime} n\right)=g\left(X\left(-1 / 2^{n}\right), X_{0}\right)$ is not bounded from below.

The second example shows that, at least in one artificially constructed case, working with $U M$ rather than $O M$ gives a major simplification. Let N be R^{3} with the origin $(0,0,0)$ deleted. Let h be a C^{0} Riemannian metric on R^{3} which is C^{∞} on N. Let $M=N \times(-\infty, \infty)$, with projections $S: M \rightarrow N$ and $T: M \rightarrow(-\infty, \infty)$. Define g on M by $g=S^{*} h-d T \otimes d T$. Supply (M, g) with the natural orientation, natural time-orientation, and the Levi-Civita connection D. Then (M, g, D) is a spacetime. The claim is that \boldsymbol{M} is homeomorphic to R^{4}; roughly speaking, the b-boundary consists simply of the "missing points" $(0,0,0) \times(-\infty, \infty)$. Only an outline of the rather tedious proof will be given.

Let $\alpha:[0, a] \rightarrow U M$ be a C^{∞} curve. Then $(G \circ \alpha)\left(\alpha_{*}, \alpha_{*}\right) \geqq(g \circ U \circ \alpha)$ (\dot{P}, \dot{P}), with \dot{P} essentially as in 3.1. Define the vector field $X: M \rightarrow T M$
by $T_{*} X=d / d s, S_{*} X=0 . X$ is unit, timelike, future pointing, and parallel ("covariant constant"). Let $f:[0, a] \rightarrow[0, \infty)$ be the function defined by $\cosh f=-(g \circ U \circ \alpha)(P \circ \alpha, X \circ U \circ \alpha)$. Using the inequality mentioned above and the fact that X is parallel one finds that the arc length of α is at least $|f 0-f a|$. Now let $w^{\prime}: Z^{+} \rightarrow U M$ be a Cauchy sequence with limit w. The above estimate shows there is a uniform lower bound on $g\left(P w^{\prime} n, X U w^{\prime} n\right)$. Next one can work with the "horizontal part" $g\left(U_{*} Y, U_{*} Y\right)+2\left[g\left(U_{*} Y, P y\right)\right]^{2}$ of G, rather than the "vertical part" $g\left(U^{*} D_{Y} P, U^{*} D_{Y} P\right)$ used above. One finds that the sequence y^{\prime}, defined by $y^{\prime} n=\left(U w^{\prime} n, X U w^{\prime} n\right) \in U M$ is also Cauchy and that its limit y obeys $\boldsymbol{U} y=\boldsymbol{U} w$. Thus one can confine attention to sequences y^{\prime} with the property $P \circ y^{\prime}=X \circ U \circ y^{\prime}$. The rest is straightforward and gives the result already mentioned.

If one tries to work directly with $O M$ in this second example a terrible mess results. Unfortunately, in more realistic cases even using $U M$ still leads to quite difficult computations. Whether one can develop effective techniques for computing the b-boundaries of the various physically interesting spacetimes remains to be seen. If not, the physical relevance of b-boundary techniques may remain rather obscure.

The author thanks C. Clarke, G. Ellis, R. Geroch, S. Hawking, and B. Schmidt for discussions. Support from NSF GP-29257Al, SRC, and the Guggenheim Foundation is gratefully acknowledged, as is the kind hospitality of Cambridge University.

References

1. Schmidt, B. G.: General Relativity and Gravitation 1, 337 (1971)
2. Hawking, S., Ellis, G.F. R.: The Large Scale Structure of Spacetime, Cambridge Press 1973
3. Bishop, R., Goldberg, S.: Tensor Analysis on Manifolds. New York: MacMillan 1968
4. Hu, S.: Elements of General Topology, San Francisco: Holden-Day 1964
5. Helgason, S.: Differential Geometry and Symmetric Spaces. New York: Academic Press 1962
6. Kelley, J.: General Topology, Princeton: Van Nostrand 1955
[^0]
[^0]: R. K. Sachs

 Departments of Physics and Mathematics
 University of California
 Berkeley, California 94720, USA

