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Abstract. It is shown that Schmidt's 6-boundary for a spacetime can be analyzed
using a submanifold of the tangent bundle, rather than the principal bundle or the bundle
of orthogonal frames.

1. Introduction

Schmidt [1] has shown that every spacetime can be assigned a
boundary, called the b-boundary. Roughly speaking, the boundary
points are ideal endpoints for those inextendible curves which do not
escape to infinity. Though useful in general arguments, such as those in
Hawking and Ellis [2], the 5-boundary is hard to construct in specific
examples. The purpose of this paper is to point out that the construction
can be carried out using only a submanifold of the tangent bundle. Sec-
tion 2 states the results, Section 3 supplies the proofs, and Section 4
gives 2 examples.

In discussing differential geometry, the notation and terminology of
Bishop and Goldberg [3] will usually be used. Hu [4] will be taken as
the standard topology reference. Throughout the paper (M,g, D) will
denote a spacetime: a real, 4-dimensional, connected, Hausdorff, oriented,
time-oriented, C00 Lorentzian manifold (M, g) together with the Levi-
Civita connection D of 0. TM denotes the tangent bundle, with projection
π: TM-+M. The main idea is the following. Suppose α:£->M is an
inextendible C°° curve, α may be lightlike and need not be geodesic so,
in general, neither arc length nor an affine parameter supplies an adequate
criterion for when α fails to escape to infinity. But suppose we had a
unit timelike vector field P\M-+TM available. Then we could use
arc length with respect to the positive definite metric g -f 2g(P, )®g(P, •)•
The game is to introduce P and then amputate it back out.

2. The Unit Future

The unit future UM of M is the following C°° submanifold of the
tangent bundle: UM = {(x, P) e TM | g ( P , P) = - 1, P is future-pointing}.
Thus (7, defined by U = π\UM, is a C°° onto map U: UM-^M. As in
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Bishop and Goldberg [3] we can regard the identity map of UM onto
itself as a C°° vector field P: UM-+TM over the map U. For example,
suppose x e M and y, ZE U~1 {x}. Then Py, PzεMUy = Mx and
g(Py, Pz) ̂  — 1, where equality holds iff y = z. As pointed out in Bishop
and Goldberg [3], 17* D is a C00 connection over ("on") the map U. For
example, suppose y G UM and Ye (UM)y. Then 7 is vertical iff ί/^ 7 = 0,
horizontal iff U*DYP = 0, and zero iff it is both horizontal and vertical.

Proposition 2.1. Tfere is α unique Rίemannian metric G on UM such
that for all (y, Y) e TUM, G(Y, Y) = g(U* 7, U* 7) + 2[_g(U* 7, Py)]2

+ g(U*DYP,U*DYP).

Proof. Since g is Lorentzian, 0(l/j;) + 2g(Py, .)®g(Py,.) is a positive
definite quadratic form on MUy. Thus if 7 is horizontal, G(7, 7) ̂  0,
with equality holding iff 7 = 0. Moreover, for any 7, g(U*DYP,Py)
= il/*JDy[(fif°t/)(P,P)] = iy[-l]=O.Thus U*DγPe(Py)λCMϋyfoτ
any 7. But g restricted to (Py)λ is positive definite. Thus if 7 is vertical
G(7, 7)^0, with equality holding iff 7 = 0. Thus G is positive definite.
The rest is straightforward. Π

Let d: L/M2->[0, oo) be the topological metric determined by G,
as in Helgason [5; Section 1.9]. Let (UM, d) be the complete metric space
in which (UM,d) is dense. Denote the positive integers by Z+. Define
a relation R C UM2 as follows. wRy iff there are Cauchy sequences
w': Z+ ->[7M and y' :Z+ ->UM such that: (A) w' converges to w and y'
converges to y; (B) the projections coincide, i.e. ί/° w'= ί/°/; and (C)
there is a uniform lower bound A e (— oo, — 1] such that, for all n e Z+,
g(Pw'tt, Pj/n)^ A We now show that R is an equivalence relation and
that the decomposition space UM/R is homeomorphic to the union of
M with the fc-boundary of M.

3. Proofs

To give the proofs and relate UM/R to the space defined by Schmidt
we first review a standard definition of the b-boundary. Let OM be the
bundle, above M, of those (Lorentzian-) orthonormal frames whose
orientation and time-orientation is that determined by (M, g). Let
θ : OM->M be the projection. Let Pf (i= 1,..., 4) be the four standard
vector fields over θ. Thus for each δe(1,2,3), (g°θ)(Pδ9Pδ)=l
= -(goθ] (P4, P4), with the other dot products zero. Let V: OM-+ UM
be the projection onto the unit future. Then θ = U ° V and P4 = P ° V.

3

Define a C°°, (0, 2) tensor field H on OM by H(Q, β)= £ {g(θ*DQPδ,
(5=1

θ*DQP^) + [^(θ*DQP(5,P4g)]2} for all (^β)eTOM. By an argument
similar to that of Section 2, G0 = F* G + H is a Riemannian metric on
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OM. Let d0 be the topological metric determined by G0, (OM, d0) be the
complete metric space in which (OM, d0) is dense.

One can extend θ to OM by using the structure group L of OM.
The elements of L are real 4 x 4 matrices and L is isomorphic to that
component of the Lorentz group which contains the identity; here and
throughout L is assigned its standard topology. The action of / e L on
OM will be denoted by Rt: OM-^OM. Thus if q, r e OM then θq = θr
iff there is an / e L such that Rlq = r. Each Rt has a uniformly continuous
extension R^.OM-^OM. For q,reOM, Rtq = r iff there are Cauchy
sequences g':Z+-»OM converging to q and r ' :Z + —>OM converging
to r with Rl ° qf converging to r. There is an equivalence relation ~ on
OM, defined as follows: q ~ r iff there is an / e L such that Rtq = r. The
decomposition space M = OM/~ is called the spacetίme with b-boundary
M. The b-boundary of (M,g,D) is the topological space M — 0(0 M)
= M — 0(0M) = M — M, where θ is the projection.

We can see the relation of these definitions to the discussion of Sec-
tion 2 by filling in the two missing maps, V and U, in the following
diagram.
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Proposition 3.1. For all q,reOM and ye UM:

(A) d0(q,r)^d(Vq9Vr);

(B) fΛere is an s e V~1 {y} such that d0(s, q) = d(y, Vq).

Proof. The tensor field H defined above is positive semi-definite.
Since G0 = H + F* G, assertion (A) follows. To prove (B) we shall con-
struct an "optimum lift" into OM of each curve into UM. The following
notation will be convenient. Let β be a C°° curve into OM. Abbreviate
(θ°β)*D(dfdt)(P4° β\ where t is the curve parameter, by P4, etc. Now let
α : [0, d\ -> UM be a C°° curve from Fg to y. Then there is a unique C°°
curve ]8: [0, ά\ ->OM such that: (i) V- β = α; (ii) βO - g; and (iii) β obeys
the Fermi-Walker transport law in the sense that for all δ e (1,2, 3)
Pδ = [ ( g ° θ ° β ) ( P 4 , P δ o β ) ~ ] ( P 4 o β ) . From the form of H, the length of
β is the same as the length of α. Moreover V~1 {y} is compact. (B) above
now follows by considering a sequence of curves α 1 ,α 2 , . . . into [/M
whose lengths approach d(y, Vq\ with each α/ going from Fg to y. Π

Theorem 3.2. There is a unique, uniformly continuous, uniformly open,
onto extension V: OM-+UM of V: OM-+UM.
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Proof. V is uniformly continuous by 3.1.A. Therefore, as shown in
Kelley [6; Chapter 6], V has a unique uniformly continuous extension
V: OM-+UM. If we can show that 3.1.B extends, the uniform openess
of V will follow; compare Kelley [6; Chapter 6]. Suppose that qeOM
and y E V(OM) C UM. Let r': Z+ -> OM be a Cauchy sequence such that
V°rf converges to y. For each neZ+ we can, by 3.1.B, choose
sf(ri)eV~l{Vr'n} such that d0(s'(ri),q) = d(Vr'n,Vq). This determines
a sequence s': Z+ ->OM; it also determines a sequence / ' : Z+ ->L by the
rule RVns'n = r'n for all such n. Now P4(s'n) = P(Vsfn) = P(Vrfn)
= P4(r'n). Thus the image of ΐ is contained in a compact subset of Z,
and there is at least one cluster point, say / e L. Then R f * r' is a Cauchy
sequence; let s e OM be its limit. Then seV~i{y} and d0(s, q) = d(Ks, Kg)
= ίf(y, Kg). Thus 3.1.B extends to this case. 3.1.B also extends to the
more general case ye V(OM\ geOM; the proof is so similar to that
just given it is omitted. Thus V is uniformly open. Kelley [6; Chapter 6]
shows that the range of a continuous, uniformly open map of a complete
metric space into a Hausdorff uniform space is complete. It follows that
V is onto. Π

Since V is open and continuous it is an identification. Moreover, note
that any Cauchy sequence /:Z+->ί/M can be lifted to a Cauchy
sequence r': Z+ -»OM, with V° r' = /. For let s': Z+ -+OM be a Cauchy
sequence such that V° sf converges to the limit ye UM of y'. For each
n E Z+, choose r'n such that d0(rf n, sf n) = d(y' n, Vsf ή) and r' ne V~1 {/ n}.
Then r' is Cauchy. Having extended V we can now extend U. Suppose
y e UM and q.reV1 {y}.

Proposition 3.3. Θq = Or.

Proof. Suppose / is a Cauchy sequence which converges to y. Lift y'
to a Cauchy sequence q' which converges to q, using the method just
discussed; also lift y' to a Cauchy sequence r' which converges to r.
Define a sequence / ' : Z+ ->L by RVnq'n = rfn. As in the theorem, there
is a cluster point le L. R^ = r soθq = θr. Π

Thus we can define U : (7M->M by Uy = Θ(V~l {y}) for all y e UM.
Since θ and K are identifications, U is an identification. The last step is to
describe U wholly in terms of structures defined on UM. Suppose
w, y e UM; let R be as in 2.

Proposition 3.4. Uw = Uy iff wRy.

Proof. Suppose Uw=Uy. Thus if q' is a Cauchy sequence which
converges to qe F- 1{w} and r' is a Cauchy sequence which converges
to reV~1{y} then there is an / e L such that Rl ° g' converges to r. Form
a Cauchy sequence which converges to w by alternating terms from F° q'
and V°RΪ~I °rf and a Cauchy sequence which converges to y by alternating
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terms from V^R^q' and V°r'. The projections of these two Cauchy
sequences into M coincide and the existence of a uniform lower bound
is implied by the fact that / is fixed. Thus wRy. Conversely, suppose wRy.
Suppose w' converges to w and y' converges to y, with the projections of
w' and y' identical. Lift w' to a Cauchy sequence q' into OM, y' to a
Cauchy sequence r' into OM. Define / :Z+->L by Rl,nq

fn = r'n. The
existence of a uniform lower bound on g(Pwfn, Pr'ri) implies that /'
has at least one cluster point / e L. Then Rt ° q' converges to the same
point as r' so 17 w = 17 y. Π

As corollaries we have that R is an equivalence relation and that
UM/R = M, as claimed in Section 2.

4. Examples and Comments

The first example shows that the condition of a uniform lower bound
in the definition of R, Section 2, cannot be dropped. Let α: (— oo, 0)->M
be a lightlike geodesic with the following property. There is an x e M
such that, for all rceZ+,α(- i/2n} = x and αj- l/2π) = 2χ(- l)εMx.
Thus the image of α is α[— 1, — i)CM and α winds around an infinite
number of times as the affine parameter, say ί, approaches zero from
below. Hawking and Ellis [2] show this rather peculiar behavoir can in
fact occur. Now let X0 e Mx be unit, timelike, and future-pointing. The
constant sequence y':Z+-»ί/M given by y'n = (x,X0) has y = (x,X0)
as limit and 17y = Uy = x. Next define a vector field over α, X : (— oo, 0)
-»TM, as follows: X is parallel, i.e. <**Dd/dt(X°α) = 0; and X(- 1) = X0-
Then the sequence w' defined by w f n = (x.>X(— 1/2")) is also Cauchy.
For the only contribution to the arc length of the curve β = (α, X ° α)
:(— oo,0)-»ί/M comes from the term 2[(#°α)(α;lί,X)]2, which is con-
stant; let w be the limit of w'. w' has the same projection into M as y',
but 17w Φ 17y, as discussed in Hawking and Ellis [2]. The catch is that
g(Pw'n,Py'n) = g(X(- i/2"),X0) is not bounded from below.

The second example shows that, at least in one artificially constructed
case, working with UM rather than OM gives a major simplification.
Let N be R3 with the origin (0,0,0) deleted. Let h be a C° Riemannian
metric on R3 which is C°° on N. Let M = N x (— oo, oo), with projections
S:M-+N and T: M->(- oo, oo). Define g on M by g = S*h-dT®dT.
Supply (M, g) with the natural orientation, natural time-orientation,
and the Levi-Civita connection D. Then (M,g,D) is a spacetime. The
claim is that M is homeomorphic to R4; roughly speaking, the fr-boundary
consists simply of the "missing points" (0,0,0) x (—oo, oo). Only an
outline of the rather tedious proof will be given.

Let α:[0,α]-»ί/M be a C°° curve. Then (G°α) (0^,0^)^(0° ί/°α)
(P,^), with P essentially as in 3.1. Define the vector field X:M-*TM



220 R. K. Sachs

by T^ X = d/ds, S^ X = 0. X is unit, timelike, future pointing, and parallel
("covariant constant"). Let /: [0, α]->[0, oo) be the function defined by
cosh/ = — (g o U ° α) (P ° α, X ° 17 ° α). Using the inequality mentioned
above and the fact that X is parallel one finds that the arc length of α
is at least I/O - fa\. Now let w': Z+ -> £7M be a Cauchy sequence with
limit w. The above estimate shows there is a uniform lower bound on
g(Pw'n, XUw'n). Next one can work with the "horizontal part"
g(U*Y, U*Y) + 2[g(U*Y,Py}]2 of G, rather than the "vertical part"
g(U*DYP, U*DYP) used above. One finds that the sequence /, defined
by y'n = (Uw'n, XUw'n)e UM is also Cauchy and that its limit y
obeys Uy = Uw. Thus one can confine attention to sequences y' with the
property P ° y' = X ° U ° /. The rest is straightforward and gives the
result already mentioned.

If one tries to work directly with OM in this second example a
terrible mess results. Unfortunately, in more realistic cases even using
UM still leads to quite difficult computations. Whether one can develop
effective techniques for computing the b-boundaries of the various
physically interesting spacetimes remains to be seen. If not, the physical
relevance of b-boundary techniques may remain rather obscure.

The author thanks C. Clarke, G. Ellis, R. Geroch, S. Hawking, and B. Schmidt
for discussions. Support from NSF GP-29257A1, SRC, and the Guggenheim Foundation
is gratefully acknowledged, as is the kind hospitality of Cambridge University.

References

1. Schmidt, B.G.: General Relativity and Gravitation 1, 337 (1971)
2. Hawking, S., Ellis, G.F.R.: The Large Scale Structure of Spacetime, Cambridge Press

1973
3. Bishop,R., Goldberg,S.: Tensor Analysis on Manifolds. New York: MacMillan 1968
4. Hu,S.: Elements of General Topology, San Francisco: Holden-Day 1964
5. Helgason,S.: Differential Geometry and Symmetric Spaces. New York: Academic

Press 1962
6. Kelley,!.: General Topology, Princeton: Van Nostrand 1955

R. K. Sachs
Departments of Physics and Mathematics
University of California
Berkeley, California 94720, USA




