Commun. math. Phys. 33, 165—170 (1973) © by Springer-Verlag 1973

Nonlinear Realization of Chiral Symmetries and Localizability*

R. Flume*

Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France

Received April 3; in revised form June 7, 1973

Abstract. We prove that the nonlinear realization of $SU(n) \times SU(n)$ ($n \ge 3$) is uniquely determined by the requirement that the Lagrangian, with a minimal number of derivatives of those fields parametrizing the adjoint representation of the diagonal SU(n) subgroup, is localizable in the sense of Jaffe.

I. Introduction

In this paper we generalize a theorem due to Lehmann and Trute [1] which states that the nonlinear realization of the chiral $SU(2) \times SU(2)$ symmetry is uniquely determined by the requirement of localizability. We extend this theorem to $SU(n) \times SU(n)$ ($n \ge 2$).

Each realization on a manifold of fields of the chiral group $SU(n) \times SU(n)$, which becomes linear if restricted to the diagonal SU(n) subgroup, can be brought by a suitable change of coordinates on the manifold into a "standard form" (Coleman, Wess, and Zumino [2]):

$$g: \boldsymbol{\xi} \to \boldsymbol{\xi}', \ \boldsymbol{\Psi} \to \boldsymbol{\Psi}' = \mathscr{D}(e^{U'\boldsymbol{V}})\boldsymbol{\Psi}$$
$$g \in SU(n) \times SU(n)$$
(1)

 \mathcal{D} is a linear representation of SU(n).

$$g e^{\xi \cdot A} = e^{\xi \cdot A} e^{U' \cdot V},$$
$$A = (A_1 \dots A_{n^2 - 1}), \quad V = (V_1 \dots V_{n^2 - 1}).$$

With V_i we denote the vectorial and with A_i the axial generators of $SU(n) \times SU(n)$. We choose the V_i and A_i so that they are orthonormal with respect to the Killing form. Each element g_0 in a neighbourhood of the identity of $SU(n) \times SU(n)$ can be uniquely decomposed into a product of the form:

$$g_0 = e^{\xi_0 \cdot \mathbf{A}} e^{\mathbf{U}_0 \cdot \mathbf{V}} \,.$$

^{*} Permanent address: II. Institut für Theoretische Physik der Universität Hamburg, Federal Republic of Germany.

R. Flume

We shall only consider chiral invariant Lagrangians which are exclusively functions of the (massless, spin zero) fields ξ^{i} . Let f_{ijk} be the totally antisymmetric SU(n) structure constants. With the notations

$$(t_i)_{jk} = -f_{ijk}, \quad \mathbf{t} = (t_1, \dots, t_{n^2 - 1}),$$
$$D^{\mu}\boldsymbol{\xi} = (\sinh \boldsymbol{\xi} \cdot \mathbf{t}/\boldsymbol{\xi} \cdot \mathbf{t}) \partial_{\mu}\boldsymbol{\xi}$$

the simplest chiral invariant Lagrangian which emerges from the "standard realization" (1) can be written in the form

$$L = D^{\mu} \xi D_{\mu} \xi . \tag{2}$$

Other chiral invariant expressions of ξ contain more derivatives. We will disregard them in the following.

Any arbitrary nonlinear chiral realization is obtained from the "standard form" (1) by a redefinition of the fields

$$\boldsymbol{\xi} \to \boldsymbol{\xi}' = \boldsymbol{\xi} f_0(\boldsymbol{\xi}) + \sum_{\alpha=1}^{n=2} \boldsymbol{\Psi}_{\alpha}(\boldsymbol{\xi}) f_{\alpha}(\boldsymbol{\xi}), \quad f_0(0) = 1$$
(3)

where the Ψ_{α} are the different SU(n) vectors which can be formed from the fields ξ^i and the f_{α} are SU(n) scalar functions of ξ having a powerseries expansion around zero in the (n-1) functionally independent SU(n) invariants $y_i (i = 1 ..., n-1)$

$$f_{\alpha} = f_{\alpha}(y_1, \ldots y_{n-1}).$$

The special form of the substitution is enforced by two conditions; first, that the free Lagrangian has to be reproduced and second, that under SU(n) transformations ξ' should have the same behaviour as ξ .

By insertion of (3) into (2) we obtain the most general chiral invariant Lagrangian with a minimal number of derivatives (i.e., which is quadratic in $\partial_{\mu} \zeta$).

$$\begin{split} L_{f} &=: D_{f}^{\mu}(\Psi) \, D_{f,\,\mu}(\Psi) + 2(\partial_{\mu} \, \Psi \, f) \left(\Psi \, \frac{\partial f}{\partial \xi^{i}} \, \partial^{\mu} \, \xi^{i} \right) \\ &+ \left(\Psi \, \frac{\partial f}{\partial \xi^{i}} \, \partial^{\mu} \, \xi^{i} \right)^{2} : \\ \Psi &= (\xi, \, \Psi_{1} \, \dots \, \Psi_{n-2}), \qquad f = (f_{0}, \, \dots \, f_{n-2}) \\ D_{f}^{\mu}(\xi) &= \frac{\sinh(\Psi f) \cdot t}{(\Psi f \cdot t)} \left(\partial^{\mu}(\Psi) \, f \right). \end{split}$$

After normal ordering indicated by $:: L_f$ is defined as an operator in Fock space.

¹ For the case of physical interest $[SU(2) \times SU(2), SU(3) \times SU(3)]$ this means a restriction to meson selfinteractions.

II. Uniqueness of the Localizable Chiral Invariant Lagrangian

It is our aim to prove that the Wightman two-point function $\langle 0|L_f L_f |0\rangle$ is localizable² in the sense of Jaffe [3] if and only if $f \equiv (1, 0, ..., 0)$. The localizability of L_f with $f \equiv (1, 0, ..., 0)$ can be checked by a trivial majorization argument.

The arguments for the necessity of this condition are simplified by the following observation:

Let $\xi^{i'}$, $\{i'\} c\{1 \dots n^2 - 1\}$ be any subset of the $(n^2 - 1)$ fields ξ^{i} .

$$L' = L_f / \xi^{i'} \equiv 0 ,$$
$$L_f = L' + \Delta L .$$

Because of the identity $\langle 0|L'\Delta L|0\rangle = 0$ and the positivity of the spectralfunctions of $\langle 0|L'L'|0\rangle$ and $\langle 0|\Delta L\Delta L|0\rangle$ it is obvious that the localizability of L_f implies that of L'.

We choose a special basis of generators A_i (which are orthonormal with respect to the Killing form) in such a way that A_1, A_2 and A_3 form a SU(2) algebra and A_3 together with $A_4 \dots A_{n+1}$ define a basis of a Cartan subalgebra of $SU(n)^3$. We shall draw all our conclusions from the assumed localizability of the reduced Lagrangian

$$\tilde{L} = L_f / \xi^{n+2} = \cdots \xi^{n^2 - 1} \equiv 0.$$

The first three SU(n) components of Ψ become proportional to $(\xi^1, \xi^2, \xi^3) = : \eta$ as this is the only possible remaining SU(2) vector

$$(\Psi^{1}, \Psi^{2}, \Psi^{3}) = \eta (f_{0} + \Sigma f_{\alpha} P_{\alpha}(\xi^{4}, \dots \xi^{n+1})) = : \eta g.$$
(4)

 P_{α} denotes a polynomial in $\xi_4 \dots \xi_{n+1}$. The other components of Ψ lying in the direction of the Cartan subalgebra elements $A_4 \dots A_{n+1}$ the "covariant" derivative $D_f^{\mu}(\xi)$ takes a form characteristic for the case of $SU(2) \times SU(2)$

$$D_f^{\mu}(\xi)_{\xi^{n+2}=\cdots\,\xi^{n^{2-1}}\equiv 0} = ((\partial^{\mu} \Psi) f)_{\xi^{n+2}=\cdots\,\xi^{n^{2-1}}\equiv 0} + \frac{1}{3!} (\partial^{\mu} \eta \otimes \eta) \otimes \eta g^3 + \cdots.$$

² Glaser and Epstein [4] have shown that the localizability of the twopoint function is sufficient to render Green's functions localizable in all orders of perturbation theory. We call L_f localizable if the two-point function is localizable.

³ The fields ξ^i are transformed under the action of the diagonal SU(n) by the adjoint representation. Thus, in this context we can identify the basis elements A_i of the representation space with the generators of the diagonal subgroup (up to an isomorphism).

R. Flume

With \otimes we denote the normal 3-dimensional vector product. Evaluating the vector products and using Lehmann and Trute's technique [1]

$$\Box_{x} g(z)|_{x=y} = \frac{(\partial_{\mu} \eta \otimes \eta)^{2}}{z^{3}} g' + \frac{(\partial_{\mu} \eta \eta)^{2}}{z^{2}} g'' | g' = \frac{\partial g}{\partial z}, \ z^{2} = \eta^{2}$$
$$\eta = \eta(x), \ \xi^{4} = \xi^{4}(y) \dots \xi^{n+1} = \xi^{n+1}(y)$$

 \tilde{L} can be represented in the form $\tilde{L} = \tilde{L}_1 + \tilde{L}_2$

$$\tilde{L}_1 = (\partial_\mu \eta \otimes \eta)^2 / z^2 \left(\frac{\sin^2(gz)}{z^2} - 1 - \frac{h'}{z} \right).$$

Because of the invariance under the SU(2) subgroup ξ^1, ξ^2 and ξ^3 occur in g only in the form $\xi^{1^2} + \xi^{2^2} + \xi^{3^2} = z^2$.

$$\begin{split} h'' &= 2g g' z + g'^2 z^2 + g^2 + \sum_{i=1}^{n^2-1} \left(\frac{\partial}{\partial z} \Psi^i f \right)^2, \\ \tilde{L}_2 &= \partial^x_\mu \eta \; \partial^\mu_x \eta + \partial^x_\mu k^\mu + H + \Box_x h|_{x=y}. \end{split}$$

The explicit form of the terms k^{μ} and H is of no interest for our purpose. We only note that they do not contain derivatives $\partial_{\mu}\eta$. The antisymmetric structure of the vector product $\partial_{\mu}\eta \otimes \eta$ implies (cf. [1]): $\langle \tilde{L}_1 \tilde{L}_2 \rangle = 0$. On account of the positivity of the spectral functions of $\langle \tilde{L}_1, \tilde{L}_1 \rangle$ and $\langle \tilde{L}_2, \tilde{L}_2 \rangle \tilde{L}_1$ and \tilde{L}_2 must be separately localizable.

Writing \tilde{L}_2 in the form

$$\tilde{L}_2 = \frac{(\partial_\mu \eta \otimes \eta)^2}{z^3} h' + \tilde{\tilde{L}}_2$$
(5)

we deduce the following identities

$$\tilde{L}_{2|\xi^{1}=\xi^{2}\equiv0} = \tilde{\tilde{L}}_{2|\xi^{1}=\xi^{2}\equiv0} = :L_{a}, \qquad (6)$$

$$L_{a} + \partial_{\mu}\xi^{3} \partial^{\mu}\xi^{3} z^{2} g^{2} = L_{f}|_{\xi_{1} = \xi_{2} = \xi_{n+2} \cdots = \xi_{n2-1} \equiv 0} = :L_{G}.$$
 (7)

 L_a and L_G have been shown to be necessarily localizable. The same can now be proved for the term $\partial_{\mu}\xi^3 \partial^{\mu}\xi^3 g^2 z^2$: Suppose that $\partial_{\mu}\xi^3 \partial^{\mu}\xi^3 g^2$ is nonlocalizable. The term $\langle \partial_{\mu}\xi^3 \partial^{\mu}\xi^3 g^2 z^2, \partial_{\mu}\xi^3 \partial^{\mu}\xi^3 g^2 z^2 \rangle$ in $\langle L_a + \partial_{\mu}\xi^3 \partial^{\mu}\xi^3 g^2 z^2, L_a + \partial_{\mu}\xi^3 \partial^{\mu}\xi^3 g^2 z^2 \rangle$ gives the dominant contribution for high energies, since the remaining terms involve localizable operators. Consequently L_G would be nonlocalizable contrary to the assumptions.

Introducing in \tilde{L}_2 again the fields ξ^1 and ξ^2 we don't loose localizability, since the relevant terms are functions of z^2 . With the same argument as above one shows that $\left(\frac{(\partial_\mu \xi \otimes \xi)^2}{z^3}h'\right)$ and therewith

$$\frac{(\partial_{\mu}\xi \otimes \xi)^{2}}{z^{2}} \left(\frac{\sin^{2} zg}{z^{2}} - 1\right) \text{ have to be localizable.}$$

In $L_{I} = \frac{(\partial_{\mu}\xi \otimes \xi)^{2}}{z^{2}} \left(\frac{\sin^{2} zg}{z^{2}} - 1\right) \text{ we replace the fields } \xi_{4} \dots \xi_{n+1} \text{ by}$

arbitrary complex numbers $v_1 \dots v_{n-2}$. $L_I \rightarrow \tilde{L}_I(z; v_1 \dots v_{n-2})$. \tilde{L}_I is localizable together with L_I . This can be concluded by a simple estimate of the two point function, which uses the fact that in passing from L_I to \tilde{L}_I the combinatorial factors arising from contractions of the fields $\xi^4 \dots \xi^{n+1}$ drop out. Thus we arrive at a necessary condition for g: $\sin^2 z g(z, v_1 \dots v_{n-1})$ has to be an entire function in z of order <2 for arbitrary complex $v_1 \dots v_{n-1}^4$.

The same analytic property for $g^2(z, v_1 \dots v_{n-2})$ is deduced from the localizability of $\partial_{\mu}\xi^3 \partial^{\mu}\xi^3 g^2 z^2$. Moreover the increase bound for $\sin^2(gz)$ requires g to be at most a square root of a linear function in z. But as g should have a power series expansion around zero in $z^2 g$ can only be identical to one.

The polynomials P_i in (4) (now polynomials in $v_1 \dots v_{n-2}$) are functionally independent with respect to SU(n) scalar coefficients. Therefore, to fullfill the foregoing condition, f has to be of the form $(1, 0, \dots, 0)$.

Up to this point we have shown that $f_{\alpha}(y_1, \ldots, y_{n-1})$, $(y_i = y_i \cdot (z, v_1 \ldots v_{n-2}))$ as functions of z have to be constants for arbitrary complex $v_1 \ldots v_{n-2}$. Exploiting this arbitrariness and letting z vary we can cover a compact region of the space $(y_1 \ldots y_{n-1})$. f_{α} must constant in this region and consequently every where. This is what we wanted to prove.

Another proof of the above stated theorem was suggested by Ashmore [5]. This author overlooks the fact, that the adjoint representation of SU(n) has (n-1) functionally independent invariants. This is the essential complication in passing from $SU(2) \times SU(2)$ to $SU(n) \times SU(n)$ $(n \ge 3)$.

I would like to thank Professor H. Lehmann for suggesting these investigations and for his helpful discussions.

⁴ The requirement both sufficient and (apart from some subtleties unessential for our purpose) necessary for a Lagrangian L(z) to be localizable is, that L is an entire function of order <2 in z. This is also true if there is an additional factor $(\partial_{\mu}\eta \otimes \eta)^2$ in the Lagrangian.

R. Flume

References

- 1. Lehmann, H., Trute, H.: Nucl. Phys. B 52, 280-291 (1973)
- 2. Coleman, S., Wess, J., Zumino, B.: Phys. Rev. 177, 2239 (1969)
- 3. Jaffe, A.: Phys. Rev. 158, 1454 (1967)
- 4. Epstein, H., Glaser, V.: Preprint 1972
- 5. Ashmore, J. F.: Lett. N. C. 5, ser (2) num. 7 (1972)

R. Flume
Institut des Hautes Etudes Scientifiques
35, Route de Chartres
F-91440 Bures-sur-Yvette, France