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Abstract. An existence and uniqueness theorem of the solution of the Cauchy problem
for the coupled Einstein-Maxwell-Boltzman system is proven, in an appropriate Sobolev
space for the potentials, and weighted Sobolev space for the distribution function. The
proof relies on a priori estimates for the collision operator previously established by D.B.,
and for the solution of the Einstein-Maxwell-Liouville system by Y.C.B. It is also proved
here that the solution depends continuously on the data.

Introduction

We will, in this paper, give an existence, uniqueness, and local
stability theorem for the Einstein-Maxwell-Boltzman system, which
rules the dynamics of a relativistic gas, moving under the action of its
own gravitationnal and electromagnetic field, the particles of the gas
being submitted to binary collisions. Particular cases of such a situation
are plasmas in special relativity (the gravitationnal coupling constant
has then to be taken zero) or cosmological models of clusters of stars, or
clusters of galaxies, which are then the particles of the gas. In the first
case the proper masses of the particles take on a finite number of distinct
values, in the second case they vary between two positive, finite, numbers.
The models considered here are plagued with the usual criticisms about
Boltzman equations as representing realistic models. However the
Einstein-Maxwell-Liouville system has a very good theoretical basis,
for a collisionless relativistic gas, and the Einstein-Maxwell-Boltzman
system seems the best correction available to it to take binary encounters
into account.

One of us (Y.C.B.) has given previously a proof of existence and
uniqueness for the Einstein-Maxwell-Liouville system (cf [1]), the other
(D.B.) has proved (cf [2]) an existence and uniqueness theorem for the
Boltzman equation in general relativity, using Sobolev spaces which are
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also appropriate for the solution of the Einstein-Maxwell equations;
such an existence theorem, for the Boltzman equation in a given hyper-
bolic metric, had been proved previously by Bitcheler [3] by a very
elegant method, but the function space in which the solution was found
was not adapted to the coupling with other fields, and the general
problem of existence for even the Einstein-Boltzman system had not been
proved, as was pointed out by Ehlers [4], though a few particular
solutions had been constructed [5].

I. Fundamentals on a Relativistic Kinetic Theory

We will, in all what follows, restrict ourselves to particles having
all the same proper mass m > 0, the results may be extended to the more
general cases quoted in the introduction, with complications in writing.

Phase Space. We denote by M the space time, C00 manifold endowed
with a hyperbolic metric g, time oriented. The momenta p of the parti-
cles located at a point x of M lie on the mass hyperboloϊd:

PX(P) 9X(P, P) = 9aβP*Pβ = ™2 , P future point ing.

The phase space P(M) is the fiber bundle with base M and fiber Px.
The volume element in P(M) is the exterior 7 form θ = η A ω where η
is the volume element in M

η = \g\1/2dx°Λ-'.Λdx3

and ω the invariant volume element in Px(p)

d

Po

We will always, in taking coordinates, take xι (i = 1, 2, 3) spatial, and x°
time like, compatible with the time orientation (i.e. p° > 0).

The trajectory of a particule in P(M) is an orbit of a vector field of the

t y p e
 X = (P*,QΊ-

If the only forces acting on the particles are gravitationnal (through
the metric g) and electromagnetic (through an electromagnetic field F)
then (e charge of the particle)

In that case, and in all cases where (Qα + Γ*λμp
λpμ) pa = 0, the trajectories

lie on P(M), it is well known (Liouville Theorem), and easy to prove,
that, under the same hypothesies on βα, θ is invariant under X:

£?

xθ = 0. (1)
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Distribution Function. We remark that (ix inner product with X)

θ = τMxθ

where τ is a 1-form giving the measure of proper time (if m is normalized
to unity) on the trajectories of X. The distribution function /(x, p) is a
function on P{M\ the physical interpretation of which is (cf. also Bel [6])
that fθ is the measure element for the mean (in the sense of Gibbs
ensemble) presence number of particles in P(M); the presence number in a
region being the sum of propertimes in which each trajectory of particle
remains in the region. Then ix(fθ) is, as usual, the measure element for
the mean number of trajectories crossing a 6-submanifold.

Boltzman Equation. In a collisionless model the physical law of
conservation of particles imposes to fθ to be invariant by the vector
field X which, due to (1), gives the Liouville equation

If collisions are present the zero in the second member, expressing
conservation, has to be replaced by a functionnal«/(/), which expresses
change in / due to collisions. If these are only binary and elastic it has
been shown by Lichnerowricz and Marrot in special relativity [7] and
Chernikov in general relativity that

(J(f))(x,p) = J J {f(x,p')f(x,q')-f{x,p)f(x,q)}
Px(q) Σp,q

Ά{x,p,q,pf

9q')ξ'Λwq

where Σvq is the surface in Px{q') x Px(p') with equation p' + q' = p + q,
ξ is the volume element on Σp>q, such that ξ'/\(dpfa + dqfa) = ωp, Λ ωq.

a

for almost all (p, q), in fact for all (p, q) such that p φ q (or, equivalently,
p α ^ φ f n 2 ) ; Σpq is a smooth 2-manifold and ξ a smooth 2-form on Σpq

(cf. Ref. [4, 7, 8], for instance and appendix). Λ(x, p, q, p\ q') is the
cross section for the collisions (p, q are the momenta of the two particles,
at x, before collision and p', q' their momenta after the collision).

Einstein-Maxwell-Boltzman (E.M.B.) System

This system, intrinsic on P(M) is constitued with the Boltzman
equation

^ ^ (2)
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and the Einstein and Maxwell equations with sources generated by
the distribution function /

(τα/? is the Maxwell tensor)

VaF«β = Jβ, Jβ = e $ f(x,p)pβω, (4.a)

J rγFΛβ = o . (4.b)

In harmonic coordinates, for a vector potential φa [Faβ = Vaφβ — Vβφa,
local general solution of (4.b)] normalized by the Lorentz condition,
the first members of (3) and (4-a) are

V.F"=

standard methods lead from local existence and uniqueness in such gauge
conditions to intrinsic and global results (cf. [9]), due to the fact that
if / satisfies (2), the corresponding Tccβ and Jβ are conservative

β

Equation (2) is in fact in 7 variables. We will take coordinates in M
3 3

such that g00 > 0, g00 > 0, a £ (J*Q2 ^ gijXiXj ύ b X (X,)2 (with a and fo
i = l ί= 1

positive numbers) and take, as coordinates on P x the p*'s: in these
coordinates the image of Px is 1R3, p° and p 0 are C00 functions of the
pps (if mφO) depending on x through g. It could be predicted and easily
verified, that if we still denote by / the distribution function expressed in
the variables (xα, p% we have:

II. Local Theorems (Existence, Uniqueness, and Local Stability)

Definitions. We denote by ω 0 a regular1 domain of lR3(x° = 0 in 1R4)
and set ώ0 = ω 0 x R3. The space Hμ(ω0) is the Sobolev space of functions
having generalized derivatives, up to order μ, square integrable on ω0.
The norm in Hμ(ω0) is

Nli(ωo)= Σ

1 I.e. bounded with lipschitzian boundary, or the whole space.
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We denote by HμN(ώ0) the Hubert space of functions on ώ0, (x\pι)
-+h(x\p% such that the products ρN / 2 + | j |D j/z are square integrable,
for [/| rgμ; |/| is the number of derivatives in Dj which are taken with
respect to the p*'s

Q2= tin2-

The norm in HμN(ώ0) is

IIΛ|liμ.w(ώ0)= Σ l l ^ / 2 + l i l ^ l l L 2 ( ώ 0 )
\j\ύμ

Analogously if Ω is a domain of IR4, Hμ(Ω) is the usual Spbolev space of
functions on Ω, with norm

Nli(i»= Σ \\^ju\\UΩ),
\j\ύμ

and we denote by HμN(Ω\ Ώ = ΩxIR3, the Hubert space of functions
on Ω, (xa, p£)->/(xα, pό, with norm

l l / l k . * α » = Σ llβw/2+lΛ^/llL2 (Λ,. (2.1)

In all these definitions we will accept the value N= +oo, being under-
stood that, here

e. if f̂α^ is an uniformly hyperbolie metric on Ω, with x° = Cte

regularly spatial (i.e. g00 ^ a > 0, gijXtXj negative definite), there exists
two positive constants A and B such that, on Ω, for all strictly time
like vector field v (and in particular for vλ = <5°)

the norm (2 — 1) is thus equivalent to

We will say that a cross section A is μ — N regular in Ω if —-Q-
P

is a bounded quadratic form in the space HμN(Ω), or, more precisely,
if there exists a positive number I such that, for each ώt = ΩCΛ{X° = t}
the following inequality is satisfied

_1

P°
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We will study, in the appendix, the condition under which a cross
section is regular.

Cauchy Datas. We give, on ω 0 , 28 functions

f*,ψ*eHμ+1(ω0); y'*',ψ'*eHμ(ω0) (2.2)
such that

\ηaβ-yaβ\^ε-δ,δ>0, oc, β = 0,1,2,3 (2.3)

where ε is such that, for all δ _ 0 the inequality (2.2) insures the uniform
hyperbolicity of y and spatiality of ω 0 with respect to γ: due to the
local character of our present study the hypothesis (2.3) is not a restriction
on the geometric Cauchy data. We also give, on ώ 0 , a function

heHμ,N(ώ0). (2.4)

We suppose that, in a neighborhood ώ o x [ — T , T] of ώ 0 , the cross
section A is regular.

We will then prove the following:

Theorem. There exist, if μ ^ 5, N = 6, a domain Ω in 1R4 (which may
be chosen globally hyperbolie for the constructed metric g*β, and admitting
ω0 as a Cauchy surface), a metric gaβ and a vector φa on Ω, and a function
f on Ω = ΩxlR3 such that

1) φ\g«βeHμ+ί(ΩlfeHμ,N(Ω)
2) gaβ, φa,f satisfy the E.M.B. system
3) gaβ, φa and f take on ω 0 , and ώ 0 , the Cauchy data (2.2), (2.4):

dog«β/ω0 = y'*β , φα/ω0 = ψ« , 3 0 φ α = ψ'« ,

f/ώ0 = h.

This solution is unique in Ω and depends continuously on the data.

Note. The existence domain Ω depends only on the norms of the
Cauchy data, and, in particular, is just translated by a translation of ω0

in IR3, this result insures the "globality in space" of the solution, without
shrinking to zero at infinity, without any need of minkovskian asymptotic
behaviour.

Proof. It relies on the energy inequalities and contracting mapping
principle.

Let us denote by U a domain of IR4, globally hyperbolic and admitting
ω 0 as a Cauchy surface for all C° metrics such that, on U

β-η«β\Sε. (2.5)

We will denote by Ωτ the strip
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and set, for a metric g onΩτ:

With the help of Sobolev inclusion theorem it can be proved (cf. [1])
that there exists a positive constant M, independant of T, such that,
if μ^ 3, (g is then C1) and if g takes on ω0 values satisfying (2.3), the

(2.6a)
implies (2.5).

Let us then denote by g a metric on Ωτ satisfying (2.6a) taking on Ωo

the given values and by φ a vector potential on Ωτ such that

μ + l T α μ + l T

where K is an arbitrary given constant.
1

We denote by / the distribution function solution of the Cauchy
problem I

f\ωo = h

for the Boltzman equation relative to g:

We know that for a μ — N regular cross section and if μ ^ 5, (cf. [2])
there exists numbers T 1 , 0 < T 1 ^ T and Kί>0, depending only on
M,K,\\h\\Hμ>N(ώ0), such that

We then consider the hyperbolic linear system, with unknowns g, φ

9λμ—r~~;Γ + Haβ(gλμ, dyg
λμ) = \ fp<xpβωj, + τaβ, (2.8a)

2 ox dxμ 3̂
32 2/}

1;

ox oxμ

the coefficients of the first members are in Hμ(ΩTί) (recall that if μ ^ 3,
Hμ(ΩTl) is an algebra) and the same is true for the second members
if N^ 6, due to 2.7 (cf. [1]); we have:

IR3

\2
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the second integral on 1R3 is bounded by a number C, depending only
on ε (i.e. on M), if N > 5. Therefore

a straight foward calculation (see analogous in [1]) shows also that,
there exist C, depending only on M, such that:

II >τ>aβn2 < Γ Ί I f I I 2

II ι \\Hμ(ΩTι) = ^ 11/ \\Hμ>N(ΩTι)
1

(in fact a stronger inequality where derivatives of / with respect to p
do not appear is also valid).

We can therefore apply the Leray-theorem about hyperbolic linear

equations with coefficients in Hμ(ΩTί) to (2.8): the Cauchy problem (2.2)

relative to this system, has one and only one solution g, φ in

(xHμ + 1(ΩTl))14, and there exists a number T2, 0 < T 2 ^ Γ 1 such that

If we restrict g and φ to ΩTl, the solution of the Cauchy problem for (2.8)

defines therefore a mapping 3F \ (g, φ)^(g, φ) from the ball B in
(x// μ + 1 ( ί2 Γ 2 )) 1 4 :

into itself.
To show that the mapping $F is continous we set if (g, φ) and (g\ φ')

are two points of B:

1 1 1 : 1 1

G = g'-g Φ = φ'-φ
and also

1 2

By substracting the partial differential equations satisfied by g and g
we find:

1 1

_ ψaβ Ύ°f<xβ , lα/? hocβ

2

and analogous equations for Φ by substracting the corresponding

equations for φ and φ'.
The Leray theory for hyperbolic linear equations (energy inequalities

after μ—1 derivations) gives, as in [1] that (G,Φ) tends to zero in
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(x H^ΩjJ)14 when it is so for (G, Φ). The mapping 3F is thus a continous
mapping from the ball J3, convex compact set, of (x Hμ(ΩT2))14, into it
self, it has, by Schauder theorem, a fixed point - which is the required
solution of the considered Cauchy problem.

The uniqueness of the solution can be proved directly: it is a simple
consequence of the energy inequalities.

Appendix

Parameters on Σpq. When pφq (or, equivalent pαgαφra 2), Σpq is
a smooth 2 - surface in Px(p') x Px(q').

Let us set
p + q = 2λe0

where λ is a positive number, and e0 a vector of length 1 in the metric
g at x.

Σpq being defined by

we have, since p, q, p', q' have length m:

and pfccqf

a = paqa = m2 only if p = q and then also p' = qf (and λ = m).

In an orthonormal frame with time axis e0 we have

p + q , p + q
therefore

p"q'a=P'0(2λ-p'0)+ Σ (pi2 = 2λ2

i = 1

hence

pf0 = λ, t (Pfi)2=λ2-m2.

In this frame Σp q is a 2 - sphere of the plane p / 0 = A. Let us take as
axis for polar coordinates θ, φ on Σpq a vector parallele to p — q (which
is orthogonal to p + g), θ is the angle oϊp — q with // — g' and set, on Σpq

β'1 = α c o s # , p'2 = αsin#cosφ , p / 3 = αsinθsinφ
with

α = (A2 - mψ2 = [ i ( p ^ - m 2 ) ] 1 ' 2 = [ - | ( p α - ^ ) (pβ - qJΫ'2 =±\p - q\
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In these coordinates θ, φ the volume element ξ on Σpq is

If we set

ξf = —-sinθdθAdφ.
JLA,

the Boltzman equation reads

ί f )*{f(x,P')f(x,qΊ-f(x,P)f(x,<l)}
Px(q)O 0

• S(x, p, q, θ, φ) sinθdθ A dφ A ωq.

Energy Estimates

The energy estimates are obtained by multiplying the D'-derivative
of both members of (1) by Dιf- \ιx with hι(p) = (vλp

λ)N m

We have if, / = 0, h = h0

which gives, by integration on a tube Ωτ in phase space with lateral
boundaries generated by particle paths (cf. [1], Ωτ = Ωτ x 1R3, Ωτ

domain of 1R4)

I I hfHxθ-\ jf2J?xhθ= J f.h S(f)θ.
dΩτ Ωτ Ωτ

In the case N = + oo one uses Bitchelef s lemma [3] (existence of a
time like vector field v such that ^x(vxp^) ^ 0) extended to all regular
metrics on Ωτ, to obtain the estimate (ωt = Ωτnx° = ί, ώ ί = ω ίxlR3),

μpp'lg^d'xAω^ J hf2p0\g\^2d^x A ωp

Ωt Ωt

In the case N finite the identity

enables us to obtain an analogous estimate with some constant C
in front of the second integral of the second member, without use of
Bitcheler's lemma (cf. [1]).

In all cases one uses the fact that, in phase-space, ίxθ vanishes on the
lateral boundary of Ωτ, and that the part ω'o of this boundary corre-
sponding to x° = 0 is included in ώ 0 = ω0 x IR3.
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μ — N Regular Cross-Section

The mathematical asumption on the operator J> is the existence
of a constant I such that

We write

with

Hμ,N(ώt)
5£/||/Hiμ.W(«fc>

π 2π

Px(q)O 0

• sinθdθ Adφ A ωq

π 2π

>= J Π / t
Pχ(q)O 0

For μ = 0, N ^ + oo we have

|Λ(/)l2^l/(*,p)l2 2π
• jΛ"1(g)S2(^jf0)"1

if we suppose, C being a positive number
π 2π

f f f h 1 ^ ) (Qo)1 S ' 2 s i n θ dθ ι
Px(q)Ό 0

we have using Sobolev inequalities (cf. [2])

ΛdφΛωq

if ^ ^

where / is a constant depending on Ω and μ. We have the estimate (2)

for Dι derivative of —0- Jγ (/)

if we suppose, in the case N finite,

in ί/zβ case N = + oo

Σ ί M-β) to0)"' S C(p°)°)2

On the other hand we have, for μ = 0,

, P')|2 Λ(P') (PΌ) I/(X,

• J S 2
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which will give (using the fact on Σpq we have

ξ Λ ωq Λ ωp = ξ Λ ωq, Λ ωp)

P
if their exist a constant C such that:

f \) S2sinθdθΛdφΛωq^C(p0)2

Pχ(q) 0 0

(in the case iV=+oo, we use the fact that on the surface ΣpΛ,
vλ(p/λ + q'λ - Pλ) = vλq\ and in the case N finite the inegality p° ̂  Cp'°q>h).

The estimates for Dι derivatives of —0- J^2(/) a r e niore difficult to obtain.

Our unknown, from the analyst point of view, is the function f(xa, pι)
[denote by abuse of language f(x, pj] expression of the distribution
function in a given family of frames (xα, ea) on the manifold M: to compute
explicitly </2(/) w e n a v e t o express the components in such a frame of p'
and q' in terms of p, q,θ,φ. For this purpose we introduce the relative
velocity of incident particules in the given frame

(e0 p) {e0 - q)

e0 is the time axis, future directed of the given frame of the tangent
space Tx, p denotes the spatial component of the vector p.

Let us set

with
o =(p q ) v — a λ , p = p eo + p, σ = p A q .

We have

p ! = v + q „, p + q

if we set

therefore

p + q Λ p — q . ^ . ^ •/, p ° q ° ί Λ σ\
p = — hcost/— hαsm^smφ h sm θ cos φ ———- [v A — .

2 2 σ 2λ \ σ J
Let us denote by g{v) any linear combination of products (ΠDιgλμ)
with Σ\l\^υ, with coefficients in the algebra of bounded function on
Ω x 1R3 x IR3 generated by

P 7 P ° , P 7 P ° , qa/q0,....
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From the formulas

dp0 _ pY(dgλμ/dx«) dp0 _

2 p 0 ' δpt p0

one deduce

δp> Ly J p° ' df

thus the estimates, / = Γ+ ί,

95

ί ( - ^ - ) = 0 if

= r if /_
1A ί —

Let us denote

From

r| + |s

n(\l\)

2 | |s| '

-D z » + sin0cosfl>zW—| +cosφ Dι(p°q° ίv Λ —
2 \ σ / \ σ

results the estimate

For example DΊoc— is a linear combination with constant coef-
\ \ σ I

ficients of terms DraDs [ — ), r + 5 = /, which admit the estimate

ψ(gψ g{0)(gψ
y2H-i σ2\r\σ\*\

Using these estimates, the usual laws of derivation and Schwarz
inequality, one gets

1 ,
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if for N finite,

Σ $\D™fPfqS\2ψfmlsinθdθ AdφΛωq:

or if for N = + GO,

Σ ί \Dχ,P,q
S\2 ' Ψ\m\' e~q° ήnθdθ AdφAωq^ C{p0)2 .
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