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Abstract. A positive almost Markovian random field is a probability measure on a
lattice gas whose finite set conditional probabilities are continuous and positive. We show
that each such random field has a potential and in the translation invariant case an
absolutely convergent potential. We give a criterion for determining which random fields
correspond to pair potentials, or in general n-body potentials. We show that two translation
invariant positive almost Markovian random fields have the same finite set conditional
probabilities if and only if one minimizes the specific free energy of the other.

1. Introduction

There are two natural approaches to the statistical properties of a
lattice gas. The interaction can be described either in terms of conditional
probabilities or in terms of potentials. For nearest neighbor pair inter-
actions Averintsev [1] and Spitzer [11] showed these two approaches
to be equivalent. Then Averintsev [2], Sherman [10], and Sullivan [12]
extended this analysis to finite range interactions.

The type of interaction potential considered by Gallavotti et al. [5, 7]
suggests an extension of the finite range results. Such potentials give rise
to measures whose conditional probabilities are limits of conditional
probabilities on finite subsets of the lattice. In the compact totally
disconnected configuration space this amounts to the requirement of
continuity for certain conditional probabilities. Interestingly, the result-
ing class of probability measures is slightly larger than the class of
probability measures strictly associated with the interaction potentials
mentioned above.

Nevertheless, we can find potentials with weaker convergence pro-
perties and the method of finding these potentials provides a criterion
for determining whether a given probability measure corresponds to a
potential involving n or fewer particles at a time.

With the additional assumption of translation invariance we can
get better convergence for the potential and can prove the existence of
specific free energy. We give a proof based on conditional probability
of a specific free energy variational theorem.
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2. Conditional Probabilities

We consider the lattice gas based on the v-dimensional integer lattice
Zv, each point of which to be occupied by one of the w particles of the set
W={0, 1, ..., w — 1}. The fundamental space Ω=WZV is considered a
measurable space with respect to the σ-fϊeld of sets generated as the
product σ-field of the power set σ-fields of the factor spaces W. More
generally, for A C Zv we say a subset of Ω is A measurable provided that
it is contained in the σ-fϊeld generated as the product σ-field of the power
set σ-fields of the factor spaces W in WΛ and the indiscrete σ-fields
{0, W} of the factor spaces in WΛC.

The symbol 5£ denotes the set of finite subsets of Zv. For A e S£ we
denote the number of elements in A by N(Λ). A finite cylinder set is a
finite union of sets of the form

{ω<=Ω:ω = x on A} (2.1)

for x e Ω, A e <£. Otherwise stated, a finite cylinder set is a subset of Ω
which is A measurable for some A E <&. A probability measure on Ω is
determined by its values on the finite cylinder sets.

We assign the discrete topology to W and the Tychonoff topology
to Ω, so that Ω is a totally disconnected compact Hausdorίf space. The
set of continuous real valued functions on Ω, C(Ω) is a Banach space in
the sup norm, whose dual is the set of bounded signed measures on Ω.
A finite cylinder function is a function on Ω which is A measurable for
some Λε5£. Each finite cylinder function is continuous, and each con-
tinuous function is the uniform limit of a sequence of finite cylinder func-
tions. If /(x) is A measurable, then /(x) depends only on the values
of x on A. We employ without comment the natural correspondence
between functions on WΛ and A measurable functions on Ω.

Let μ be a probability measure on Ω. The simplest conditional pro-
babilities are those of the form

μ(ω = x on A \ ω = y on A') = μ(ω = x on A, y on A')/μ(ω = y on A) (2.2)

for x, y E Ω, A, A e 5£ , Ar\A' = 0, the expression being defined when the
denominator is positive. More generally, one has the finite set condi-
tional probability

μ(ω=x on A\ω = y on Ac) (2.3)

for x, y e Ω, ΛeSf. For fixed A and x this is a Ac measurable function
defined a.e. in y which satisfies the following:

Jμ(ω = x on A\ω = y on Ac) μ(dy) = μ(ω = x on A,ωeA). (2.4)
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Here x e Ω and A is any Ac measurable set. The Radon-Nikodym theorem
assures the existence of finite set conditional probabilities (see Loeve [8]).

Definition. An almost Markovian random field is a probability
measure on Ω all of whose finite set conditional probabilities of the form
(2.3) are continuous functions of y for x and Λ fixed. When these con-
ditional probabilities are all positive, the random field is called positive.

When μ is a positive almost Markovian random field, we deduce from
(2.4) and continuity that whenever A, A e £f, Ar\A = 0, x, y e Ω

min μ(ω = x on Λ\ω = z on A°)
zeΩ,z — y on Λ'

^μ(ω = x on Λ\ω = y on A) (2.5)

^ max μ(ω = x on A\ω = z on /ίc) .
z = ;y on y

When we choose A — 0, expression (2.5) gives bounds for the values of μ
on finite cylinder sets. In particular, μ is positive on nonempty finite
cylinder sets.

For ΨCZV we use the notation J&f-lim A-*Ψ to indicate the limit
taken on the net of increasing finite subsets of Ψ ordered by inclusion.
From (2.5) and continuity we have

Lemma 1. Let μ be α positive almost Markovian random field. Then
^-limA -» Acμ(ω = x on A ω = y on A) = μ(ω = x on A \ ω = y on Ac) for
all x,y<ΞΩ,Ae^.

It is convenient to introduce some special notation. For xe Ω,jeZv,
A E £? we use the left superscript

jx, Ax

to denote the elements of Ω which are identically zero on the superscript
set and equal to x otherwise, i.e. [ylx]fc = 0 if keA, =xk otherwise. We
omit brackets from single point sets.

We shall consider only positive almost Markovian random fields.
In this case it is more convenient to work with logarithms of ratios of
conditional probabilities than with conditional probabilities themselves.

Definition. The conditional energy field E$(A, x) of the positive almost
Markovian random field μ is defined with x, y e Ω, A e 5f

E£(Λ, x)= — log[μ(ω = x on A\ω = y on Ac)/
(2.6)

μ(ω = 0 on A ω = y on ACJ] .
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Proposition 1. Let Eμ be the conditional energy field of the positive
almost Markovian random field μ. Let A', A" e j£f , Ar^A" = 0 and set
A = Λ'vΛ". Then with x,yeΩ

Eμ

y(A,x) = E»(A,x) + Eμ

z(A",x) with z = xonA, yonAc, 0 on Λ" ,(2.1}

E$(A,Λ'x) = Eμ

z(A",x) with z = Λ'y, (2.8)

E$(Λ,x)= ΣE£ω(/,x) with [z(/)L = Λ for fce/T
76/1

-0 for kεA,k>j (2.9)

= Xfc for keA.k^j.
< is any linear order on A.

Proof. For (2.7) and (2.8) apply Lemma 1 to the corresponding rela-
tions for conditional probabilities of the form (2.2). Note that (2.9)
follows from (2.7) and (2.8).

We remark that (2.9) indicates that it is sufficient to know the one
point conditional probabilities to obtain the finite set conditional pro-
babilities.

3. Potentials

Definition. A potential is a real valued function U (A, x) on j£f x Ω
such that for each fixed Λ e J ί f , U(Λ, x) depends only on the values of x
on A. A potential U such that

Λ'eSf, Σ \U(Λ',x)-U(Λ',Λx)\ (3.1)

converges uniformly in x e Ω for each A e <£ is called an absolutely con-
vergent potential A potential U such that

g- limv X lU(A,x)-U(A,ΛxJ] (3.2)
~ V

converges uniformly in x E Ω for each A e if is called an ^-convergent
potential, and the limit is defined to be the conditional energy field
Eu(A,x)oϊU.

Clearly an absolutely convergent potential is ^-convergent. By
elementary manipulations we have the following

Proposition 2. A potential U is absolutely convergent (^-convergent)
if and only if

x)] (3.3)
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is absolutely convergent (^-convergent) uniformly in xeΩ for each
j e Z\ in which case with Ae^,Λ = AvA", A' n/t" - 0

Eϋ(Λ9 x) = EU(Λ'9
 Λ"x) + Eυ(Λ\ x) , (3.4)

Eu(Λ9

Λ'x) = Eu(Λ",Λ'x)9 (3.5)

= 0 for fee Λ k>j (3.6)

= xk for /ce/L, k^j .

< is any linear order on A.

Proposition 3. Let U be an ^-convergent potential. Then there exists
a positive almost Markovian random field μ such that for each AG^ and
xeΩ, EU(A, x) = Eμ

x(A, x).

Proof. For x, y e £2, ΛE££ we define a family of conditional pro-
babilities

z = x on Λ,y on Λc

ZΛy=
zeΩ,z—y on Λc

From S£ -convergence we deduce that qAy(x) depends continuously on y
for x and A fixed. Proposition 2 implies that the family of conditional
probabilities qΛy(x) is consistent in the sense of formula (1.6) of Do-
brushin [3]. The proposition follows from Dobrushin's Theorem 1.

We shall now do the converse and get a potential for a given positive
almost Markovian random field. There are many potentials which give
rise to the same conditional energy field. The procedure of the proof of
Theorem 1 below selects a certain one of these which has some rather
nice properties.

Theorem 1. Every positive almost Markovian random field μ has an
^-convergent potential U such that Eμ

x(A,x) = Eu(Λ,x) for allxεΩ, Λεg'.

Before the proof we introduce some more notation.

ΔJEy(Λ, x) = Ey(Λ, x) - E,(Λ, Jx), j e Z\

*-n*. <3 81

jeΛ

For the theorem only we define the operator P which can operate only on
terms of the form Ey(Λ, jx) with

rJEy(Λ, jx) = Ey(Λ, x) - Ey(Λ, jx) . (3.9)
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Proof of Theorem 1. Define U(Λ9x) = AΛE%(Λ,x). Now for any
we have

X \U(Λ'9 x) - U(Λ'9
 Λx)-] = E%(Ψ, x) - Eg(!P, ^x) . (3.10)

Λ'cΨ,Λ'nΛ*9

To see this consider

and
(3.12)

The terms in the left hand side of (3.11) which are not in the left hand side
of (3.12) are equal to corresponding terms in the left hand side of (3.10).
The right hand side of (3.10) equals E$(Λ,x) with y = ψcχ. Hence the
jSf -limit as Ψ^ZV is Eμ

x(Λ, x).
The potential produced by the proof of Theorem 1 has some very

interesting properties. If one considers "interactions" in the sense of
Lanford-Ruelle [7], the terms produced by the proof are exactly the
terms of the "interaction". One might conjecture that this expansion
of the potential should converge absolutely for all positive almost
Markovian random fields. This conjecture is false, even in the translation
invariant case. In Appendix 1 we give an example of a translation
invariant J&? -convergent potential which is not absolutely convergent.
We draw the following conclusions from the proof of Theorem 1.

Corollary 1. The conditional energy field E$(A, x) of the positive
almost Markovian random field μ can be expressed in terms of ^-con-
vergent potentials involving n or fewer bodies (points) if and only if

ΔΛE$(Λ,x) = Q (3.13)

for all A e ̂  with N(A) > n and all x.yeΩ.

Corollary 2. Let Le^ and let μ be a positive almost Markovian
random field such that E$(j, x) depends only on the values of x and y on
j + L. Then E$(Λ, x) can be expressed by a potential U such that U(Λ, x) = 0
whenever {j — k : j, fc e Λ} (J; L.

Proof. Let Λ e JSf , j,kε Λ, j — kφ L. It is straightforward to verify
AjkE$(Λ, x) = 0 so that AΛEμ

Q(Λ, x) = 0 for all x e Ω.
Corollary 2 gives an L-Markovian random field theorem similar to

that of Averintsev [2]. Very elementary geometry yields the Markov
random field theorem of Averintsev [1] and Spitzer [11].
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4. Translation Invariance and Absolute Convergence

Most of the considerations thus far have not employed the additive
structure of Zv and are applicable to a lattice gas over an arbitrary
countable set, for which the concept of ^-convergence is particularly
appropriate.

We show below that a translation invariant positive almost Mar-
kovian random field has an absolutely convergent potential. Theorem 1
gives an J&? -convergent potential, but this need not always converge
absolutely (see Appendix 1). We obtain approximating potentials by
projecting the conditional energy field from the lattice Zv to spaces of
the form (ZJV, with Zπ the cyclic group of order n.

The translation operator is denoted by 7} for j e Zv. The action of 7}
on k e Zv and x e Ω is

tTjχ-]k = xk_j. (4.1)

This action induces natural actions on measures, potentials, etc.

Definition. A homogeneous conditional energy field is the conditional
energy field of some translation invariant positive almost Markovian
random field.

Let Ey(A, x) be a homogeneous conditional energy field. It is con-
venient to consider the function Ex(Q,x) which we denote by D(x).
D(x) represents the energy required to change the configuration of the
origin from 0 to x0, given the configuration x on the remainder of the
lattice. From (2.9) and translation invariance

= 0 for keΛ, k>j (4.2)

= xk for k e A, k ^j.
< is any linear order on A.

The function D(x) is continuous on Ω. The norm on C(Ω) gives a norm
to the homogeneous conditional energy field E,

\\E\\ = aup\Ex(0,x)\. (4.3)
xeΩ

Functions of the form EX(Q, x) constitute a closed linear subspace of
C(Ω) which can be characterized by the following

Proposition 4. Let D e C(Ω) be such that D(Qx) = 0 for all xeΩ.
Then D can be expressed in the form D(x) = EJ(0, x) for some translation
invariant positive almost Markovian random field μ if and only if for
alljεZv

D(jx) + D(T_jX) = D(x) + D(T_j °x). (4.4)
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Proof. Property (4.4) for EX(Q, x) follows from (2.9) and translation
invariance, which proves necessity. To prove sufficiency select a linear
order for Zv and use (4.2) to define Ey(Λ, x). Property (4.4) implies that
this Ey(Λ, x) does not depend on the particular order chosen. We deduce
that (2.7) and (2.8) are satisfied by Ey(Λ, x), which is translation invariant.
The reasoning of Proposition 3 is then applicable, and Dobrushin's
theorem gives the required μ.

We now consider the process of projecting the homogeneous con-
ditional energy field Ey(Λ, x) onto a v-dimensional discrete "torus"
embedded in Zv. We define the n-cube Cn in Zv and its state space Ωn by

Cll = {0,l,...,n-l} v, Ωn=Wc». (4.5)

The action of translation is considered modulo n in each dimension on
Cn, and we write k modCn for k e Z v to denote the projection of Zv

onto Cn. Let D(x) = EX(Q, x) and define for u e Ωn

Xj = uk for k =7 modC,,, k φ O

= 0 for 0 =7 mod Cπ, j > 0 (4.6)

= u0 for 0 =7 mod Cn, j ^ 0

with < a fixed translation invariant linear order on Zv.

Lemma 2. Let Ey(A9 x) be a homogeneous conditional energy field
and let Dn be defined by (4.6) with D(x) = EX(Q, x). Then Dn(°u) = 0 for all
uεΩn and Dn satisfies for u e Ωn, k e Cn

Dn(
ku) + Dn(T_ku) = Dn(u) + Dn(T_k

Qu) . (4.7)

Proof. We consider the larger cube Cmn and define for i e Cn, u e Ωn

Dϊ(i, u) = ίE0(Cmn, x) - E0(Cmn, y)]/mv

Xj = uk for k=jmoάCn (4.8)

yj = [ίu]k for k=jmodCn.

By Proposition 1 for /, k e Cn

DZ(i, ku) + D-(k, u) = D?(i, u) + D?(fc, 'M) . (4.9)

Also by Proposition 1

je Cmn, i ~ j mod Cn

0 for k^C m n

«fe for ke Cmπ, iή=kmodCn or k^y

0 for k e Cmw, / = fc mod Cn and k >y
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with the linear order as in (4.6). When the integer m is large, the pre-
dominant fraction of the mv terms in the right hand side of (4.10) are
close to Dn(T_iU) and the remaining terms are each bounded. The con-
clusion follows from taking limit m-> oo.

Definition. The norm \\ U\\ of the translation invariant potential U
is the finite or infinite value

sup X \U(Λ,x)-U(Λ,°x)\. (4.11)
xeΩ Λe&,Λ3θ

From Proposition 2 we see that the absolutely convergent translation
invariant potentials are just the ones with finite norms.

Theorem 2. Let μ be a translation invariant positive almost Mar-
kovίan random field with conditional energy field Eμ(Λ, x). Then for any
ε>0 there is a translation invariant absolutely convergent potential U
such that for all xe Ω

\Eu(Q,x)-E*(Q,x)\<s (4.12)
and

\\U\\ ^\\Eμ\\. (4.13)

Proof. We give in fact a finite range potential with these properties.
Select an integer d such that Eμ(Q, x) — Eμ(Q, y)\ < ε/2 whenever x and y
agree at all points of Zv within Euclidean distance d of the origin. Select
an integer n so that \\Eμ\\ [1 -(n-2d)v/nv] <ε/4. On Ωn we have the
function Dn defined by (4.6) with D(x) = E£(0, x). By Lemma 2 and the
finite lattice version of Proposition 4 there is a positive translation
invariant probability measure ρ on Ωn such that for u e Ωn and the func-
tion / on Ωn defined by

f ( u ) = - log [ρ(ω = u)/ρ(ω = 0)] (4.14)
we have

Dn(u) = f(u)-f(Qu). (4.15)

Consider / as a Cn measurable function on Ω and define

U(Λ,x) = f(TjX)/n* when T}Λ = Cn (4.16)
= 0 otherwise.

From (4.6), (4.15) and (4.16) we have (4.13), since there are nv terms in
(4.11) for this U. At least (n - 2d)v of the terms of the sum for nvEu(Q, x)
contain all points within distance d of the origin and so are within ε/2
of E£(0, x). The remaining terms are each bounded by \\Eμ\\ which gives
(4.12).

By considering the difference energy field Eμ — Ev and applying the
usual 2~k argument we get the following.

Corollary. Every translation invariant positive almost Markovian
random field has an absolutely convergent potential.
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5. Specific Free Energy

In this section we derive some properties of specific energies and
specific free energies. Our definitions are based on probability theory.
At constant temperature they differ by a constant from their thermo-
dynamic counterparts. We shall take limits in the sense of increasing
cubes, though, with some extra effort, the limits could be taken in the
sense of Van Hove (see Ruelle [9]).

Lemma 3. Let μ be a translation invariant positive almost Markovian
random field. Then the following limit exists and is finite.

lim -logμ(ω = 0 on Cn)/N(Cn). (5.1)
H—' 00

The proof of this lemma for the case of finite range random fields is
given in Sullivan [12]. With obvious refinements that proof carries over
to this case.

Definition. The μ-specίfic energy of the zero state eμ(0) is the limit (5.1).

It is of interest that the function P(Φ) considered in Gallavotti and
Miracle-Sole [4] is exactly eμ(0) for the case they consider. This gives
another approach to the proof of Lemma 3.

For Lemma 4 we consider Zv to be ordered by a fixed translation
invariant linear order <, e.g. lexicographical order.

Lemma 4. Let ρ be a translation invariant probability measure on Ω
and let μ be a translation invariant positive almost Markovian random
field. Then for y e Ω

lim \E$(Cn9x)ρ(dx)/N(CJ (5.2)
n->oo *

exists and has the value independent of y

\E*(x}(Q9x)ρ(dx)9 [z(x)L = xk for /c^O
(5.3)

-0 for fc>0.

Proof. We remark that for fixed n the integral in (5.2) can be written
as a finite sum. Express E$(Cn, x) by (2.9). For large n the predominant
fraction of the terms for the ρ integral of E$(Cn, x) are close to (5.3) and
the remaining terms are bounded. The lemma follows by taking the
limit as n-^co.

Definition. The μ-specific energy eμ(ρ) of the translation invariant
probability measure ρ is defined so that eμ(ρ) — eμ(0) equals (5.3).
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By similar methods one can show that for all y, x e Ω

lim lE$(Cn,x)-logμ(ω = 0 on CJ + logμ(ω = x on CJ]/tf (Q = 0 (5.4)
—

so we have the following

Proposition 5. Let ρ and μ be as in Lemma 4. Then

eμ(ρ) = lim f - logμ(ω = x on Q ρ(dx)/N(CJ . (5.5)
«-*00 '

Definition. Let μ and ρ be translation invariant positive almost
Markovian random fields. The specific entropy s(ρ) of ρ is eρ(ρ). The
μ-specific free energy fμ(ρ) of ρ is eμ(ρ) — s(ρ). One can in fact define
specific entropy for any translation invariant probability measure on Ω
(see Ruelle [9]), and the definition agrees with the above in the almost
Markovian case.

We now introduce the concept of blocking. In the simplest case we
consider Zv partitioned into blocks isomorphic to Cn. We consider a
new state space W' = Ωn and principal space Ω=W'ZV. There is a
natural one to one correspondence between elements of Ω and Ω . A
translation invariant probability measure on Ω yields a translation
invariant probability measure on Ω'; a translation invariant probability
measure on Ω' corresponds to a periodic probability measure on Ω. Let
μ and ρ be translation invariant positive almost Markovian random
fields on Ω and let μf and ρ' be the corresponding measures on Ω. Then
we have

(5.6)

with /' denoting the specific free energy in Ω'. More generally blocking
could be carried out with rectangular rather than cubic sets. Many results
for translation invariant random fields can be extended to periodic
random fields by blocking.

Below we give a variational characterization of translation invariant
positive almost Markovian random fields. It is directed toward a larger
class of random fields than that of Lanford-Ruelle [7] or Holley [6],
but it is weaker than these theorems because it requires that both measures
be almost Markovian. The proof employs relatively elementary pro-
bability theory, whereas the authors mentioned above use more elaborate
considerations.

Theorem 3. Let μ and ρ be translation invariant positive almost Mar-
kovian random fields. Then fμ(ρ) ^ 0 and fμ(ρ) = 0 if and only if E$(Λ, x)
= EQ

y(Λ, x) for all x,yeΩ,Λe£>.
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Proof. From expression (5.5) we have that

/μ(ρ)= lim flog[ρ(ω = x on Cn)/μ(ω = x on CJ]ρ(dx)/N(CJ. (5.7)
-> '

For fixed n the integral is in fact a finite sum in the form of a free energy
expression for a finite probability space, so /μ(ρ) ̂  0. Next we number
points of Zv so that C1? C2, ... are filled in succession. Rather than write
7o,7ι,..., we simply write 0,1,... to indicate those points of Zv. Let
x 0,x 1 ? . . . be the values of xeΩ on this enumeration with x0, . . . , X j
filling Cn. We have

μ(x1 . . . Xj) = μ(χl) μ(x2 x j . . . μ(x, Xi . . . X;_ t) (5.8)
so

ρ(x1 . . . Xj) log [ρ(Xi . . . x^)//^ . . . x, )]

= ρ(xι . . . X;) log lρ(xl)/μ(xj] + + ρfo . . . X;) log [ρ(x; | x1 . . . x, _ J/ (5.9)

The Cw approximation of the free energy (5.7) is just the sum over Ωn

of the terms of (5.9) divided by N(Cn). These averages of the form

x e n (5.10)

are nonnegative and appear in the approximate free energy of each
larger cube. Since (5.7) is assumed to be zero, we must have for every
ε > 0 an integer m and values x ί , . . . , xm _ 1 so that

X ρ(xm|xi . . .xm_ ι)log[ρ(xm x{ . ..xm-1)/μ(xm Xi . . .xm_ i)] < ε . (5.11)
xmeίT

Since FF is finite and μ(xm |xι ...xm-^ is bounded away from zero, this
implies that

max |logρ(xm Xι.. .xm-ι)- logμ(xm x 1 . . .xm_ 1) | (5.12)
XmeW

can be made arbitrarily small by appropriate choice of m and x t , . . . , xm_ { .
However, these are the wrong "boundary points" to make a direct
conclusion about the conditional energy fields. Instead we conclude by
the above reasoning and appropriate blocking, for any ε > 0 and any
ΛE.& there exists a A' e 5f with Λ'πΛ = & and a y e Ω such that

max|logρ(ω = x on Λ\ω = y on Λ') — logμ(ω = x on Λ\ω = y on Λ')\ <ε.

(5.13)

From continuity it follows that ££(0, x) = £|(0, x) for all xeΩ, and the
theorem follows from (2.9) and translation invariance.
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Appendix 1

We give an example of a translation invariant 3! -convergent poten-
tial which is not absolutely convergent. Let W={Q,l} and Ω=WZ.
Define

U(Λ,x) = (-l)n/(nlog(n+l)) if x=l on A

and Λ is a nonempty set of n adjacent points.

U(Λ,x) = Q otherwise.

We have

ιι=l

since there are n intervals of length n containing 0. This series does not
converge absolutely, so U does not converge absolutely.

EU(Q, x) depends on the interval of ones of x about 0 and the position
of 0 in this interval. It is straightforward to show that the series for
Eu(Q,x) converges conditionally uniformly in xeΩ in the sense of
^-convergence.

We remark that this potential does not converge in the sense of the
norm of Lanford-Ruelle [7] nor in the weaker norm of Gallavotti and
Miracle-Sole [4].

Appendix 2

To illustrate the first corollary to Theorem 1 we give a simple example
of a potential with phase transition which is not an ^-convergent pair
potential. Let W= {0, 1}, Ω = Wz\ Let S be a unit square in Z2. Define

U(Λ9 x) = - β if A is a translate of S and x

is constant on Λ .

U(Λ9 x) = 0 otherwise.

Since ASEU(S, l) = —2β, and ^-convergent potential giving the same
conditional energy field as U must contain terms involving more than
three points at a time.

One can show by a modification of PeierΓs method of borders that
the above potential exhibits a phase transition for sufficiently large
positive β.

For the sake of comparison we note that the conditional energy field
norm (4.3) and the potential norm (4.11) of this example both equal 4|/?|.
The proof of Theorem 1 expresses the potential as an "interaction" in
the sense of Lanford-Ruelle [7] with terms involving 1, 2, 3 and 4 points,
whose norm in their sense is 36|/?|.
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