Contents

Abraham, D. B., Martin-Löf, A.: The Transfer Matrix for a Pure Phase in the Two-dimensional Ising Model 245
Brascamp, H.J., Kunz,H. : Analyticity Properties of the Ising Model in the Anti- ferromagnetic Phase 93
Brill,D.R., Deser,St. : Instability of Closed Spaces in General Relativity 291
Cassandro, M., Gallavotti, G., Lebowitz,J.L., Monroe,J.L.: Existence and Uni- queness of Equilibrium States for Some Spin and Continuum Systems 153
Clarke, C.J.S.: Local Extensions in Singular Space-Times 205
Deser, St., s. Brill, D. R. 291
Dobrushin, R.L.: Analyticity of Correlation Functions in One-Dimensional Classical Systems with Slowly Decreasing Potentials 269
Dubin, D. A.: Bosons in Thermal Contact: A C^{*}-Algebraic Model 1
Ehlers, J., Schild, A.: Geometry in a Manifold with Projective Structure 119
Freasier, B.C., s. Runnels, L.K. 191
Gallavotti, G.: Ising Model and Bernoulli Schemes in One Dimension 183
Gallavotti, G., s. Cassandro, M., et al. 153
Georgii, H.-O.: Two Remarks on Extremal Equilibrium States 107
Ghez, P., Lima, R., Testard,D.: Une extension d'un théorème de A. Connes sur les facteurs constructibles 305
Hughston, L.P., Sommers, P.: Spacetimes with Killing Tensors 147
Kunz, H., s. Brascamp, H.J. 93
Lebowitz,J.L., s. Cassandro, M., et al. 153
Lerner, D.E.: The Space of Lorentz Metrics 19
Liang, E.P.T.: Normal-Dominated Singularities in Static Space-Times 51
Lima, R., s. Ghez, P., et al. 305
Manuceau,J., Sirugue, M., Testard, D., Verbeure, A.: The Smallest C^{*}-Algebra for Canonical Commutations Relations 231
Martin-Löf, A.: Mixing Properties, Differentiability of the Free Energy and the Central Limit Theorem for a Pure Phase in the Ising Model at Low Tempe- rature 75
Martin-Löf, A., s. Abraham, D.B. 245
McClary,W.K.: On the Semiboundedness of the $\left(\varnothing^{4}\right)_{2}$ Hamiltonian 71
McGuire, J. B. : The Spherical Hierarchical Model 215
Monroe,J.L., s. Cassandro, M., et al. 153
Morgan, F.H., s. Szekeres, P. 313
Nakanishi,N.: Quantum Field Theory and the Coloring Problem of Graphs 167
O'Connor, A.J.: Exponential Decay of Bound State Wave Functions 319
Osinovsky, M. E.: Highly Mobile Einstein Spaces in the Large 39
Runnels, L.K., Freasier, B.C.: Equilibrium States of a Dimer Model with Angu- lar Forces 191
Schild, A., s. Ehlers,J. 119
Sirugue, M., s. Manuceau, J., et al. 231
Sommers, P., s. Hughston, L.P. 147
Szekeres, P., Morgan, F.H.: Extensions of the Curzon Metric 313
Testard, D., s. Ghez, P., et al. 305
Testard, D., s. Manuceau, J., et al. 231
Verbeure, A., s. Manuceau, J., et al. 231
Indexed in Current Contents

INSTRUCTIONS TO AUTHORS

A. General

Papers submitted for publication may be written in English, French or German.
Manuscripts must be in their final form, typed on one side of each sheet only, with double spacing and wide margins. Formulae should be typewritten whenever possible. Mimeographed copies are not acceptable unless clearly legible.
Please include a "Note for the Printer" explaining markings used. See suggestion overleaf.
To speed up publication, authors will receive only one set of proofs: provisionally numbered page proofs. Authors are requested to correct typographical errors only; they will be charged for corrections involving changes, additions or deletions to the original manuscript.
Diagrams should be submitted on separate sheets, not included in the text. They should be drawn in Indian ink in clean uniform lines, the whole about twice the size of the finished illustration. Inscriptions should allow for the figure 1 , for example, to be about 2 mm high in the final version (i.e. 4 mm for reduction $\times \frac{1}{2}$). The author should mark in the margin of the manuscript where diagrams may be inserted.
Footnotes, other than those which refer to the title heading, should be numbered consecutively and placed at the foot of the page to which they refer (not at the end of the article).
Please give on the first page of the manuscript a running head (condensed title), which should not exceed 70 letters including spaces.
References to the literature should be listed at the end of the manuscript. The following information should be provided for journal articles: names and initials of all authors, name of the journal, volume, first and last page numbers and year of publication. References to books should include name(s) of author(s), full title, edition, place of publication, publisher and year of publication.

Examples

Bombieri, E., Giusti, E.: Inventiones math. 15, 24-46 (1971).
Tate, J.T.: p-Divisible Groups. In: Proceedings of a Conference on Local Fields, pp. 158-183. Berlin-Heidelberg-New York: Springer 1967.

Commun. math. Phys.

B. Marking

1. Text

The words "Theorem", "Lemma", "Corollary", "Proposition" etc. are normally printed in boldface, followed by the formulation in italics (to be underlined in the manuscript).
The words "Proof", "Remark", "Definition", "Note" etc. are printed in italics with the formulation in ordinary typeface.
Words or sentences to be set in italics should be marked by single underlining.

2. Formulae

Letters in formulae are normally printed in italics, figures in ordinary typeface.
It will help the printer if in doubtful cases the position of indices and exponents is marked thus:
$b \hat{A}, \quad a \forall i . \quad$ Spacing of indices and exponents must be specially indicated $\left(A_{m}{ }^{n}{ }_{n}^{m}\right)$ otherwise
they will be set $\left(A_{m n}^{n m}\right)$.
Underlining for special alphabets and typefaces should be done according to the following code:
single underlining: small letter
double underlining: capital letter
brown: boldface headings, boldface letters in formulae
yellow: upright
(abbreviations e.g. Re, Im, log, sin, ord, id, lim, sup, etc.)
red: Greek
blue: Gothic
green: Script
violet: \quad the numeral 1 , and zero (to distinguish them from the small letter l and the capital letter O)
The following are frequently confused:
$\cup, \mathbf{U}, \bigcup, U ; \quad \circ, o, O, 0 ; \quad \times, x, X, \kappa ; \quad \vee, v, v ; \quad \theta, \Theta, \phi, \varphi, \Phi, \emptyset ; \quad \psi, \Psi ; \quad \varepsilon, \epsilon ;$
$a^{\prime}, a^{1} ; \quad$ the symbol a and the indefinite article a;
also the handwritten Roman letters:

$$
\mathfrak{c}, C ; \quad e, l ; \quad I, J ; \quad k, K ; \quad o, O ; \quad p, P ; \quad s, S ; \quad u, U ; \quad v, V ; \quad w, W ; \quad x, X ; \quad z, Z ;
$$

Please take care to distinguish them in some way.

C. Examples

1. Special alphabets or typefaces

Script
$\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}, \mathscr{E}, \mathscr{F}, \mathscr{G}, \mathscr{H}, \mathscr{I}, \mathscr{J}, \mathscr{K}, \mathscr{L}, \mathscr{M}, \mathscr{N}, \mathcal{O}, \mathscr{P}, \mathscr{Q}, \mathscr{R}, \mathscr{S}, \mathscr{T}, \mathscr{U}, \mathscr{V}, \mathscr{W}, \mathscr{X}, \mathscr{Y}, \mathscr{Z}$ $a, \ell, c, d, e, f, g, h, i, j, k, \ell, m, n, o, \not, q, \imath, s, t, u, v, w, x, y, z$
Sanserif $\quad A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z$ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Gothic $\quad \mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{F}, \mathfrak{J}, \mathfrak{J}, \mathfrak{A}, \mathfrak{Y}, \mathfrak{M}, \mathfrak{N}, \mathfrak{D}, \mathfrak{P}, \mathfrak{Q}, \mathfrak{R}, \mathfrak{G}, \mathfrak{T}, \mathfrak{U}, \mathfrak{B}, \mathfrak{B}, \mathfrak{X}, \mathfrak{Y}, \mathfrak{3}$ $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}, \mathfrak{e}, \mathfrak{f}, \mathfrak{g}, \mathfrak{h}, \mathfrak{i}, \mathfrak{j}, \mathfrak{f}, \mathrm{l}, \mathrm{m}, \mathfrak{n}, \mathfrak{v}, \mathfrak{p}, \mathfrak{q}, \mathfrak{r}, \mathfrak{s}, \mathfrak{f}, \mathfrak{t}, \mathfrak{u}, \mathfrak{v}, \mathfrak{m}, \mathfrak{x}, \mathfrak{y}, \mathfrak{z}$
Boldface $\quad \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}, \mathbf{M}, \mathbf{N}, \mathbf{O}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathbf{T}, \mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{I}, \mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$
Special Roman $\quad \mathbf{A}, \mathbb{B}, \mathbb{C}, \mathbb{D}, \mathbb{E}, \mathbb{F}, \mathbb{G}, \mathbb{H}, \mathbb{I}, \mathbb{J}, \mathbb{K}, \mathbb{L}, \mathbb{M}, \mathbb{N}, \mathbb{O}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{U}, \mathbb{V}, \mathbb{W}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}, \mathbb{I}$ Greek $\Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega$
$\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \vartheta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \varphi, \phi, \chi, \psi, \omega$

2. Notations

preferred form	instead of	preferred form	instead of
$A^{*}, b^{\sim}, \gamma^{\prime}, \mathbf{v}, \mathbf{v}$	$\bar{A}, \hat{b}, \check{\gamma}, \vec{v}$	$f: A \rightarrow B$	$A \xrightarrow{f} B$
lim sup, liminf	\rceil], $\underline{\text { im }}$		1
inj lim, proj lim	$\underline{\mathrm{lim}, \lim }$	$\cos (1 / x)$	$\cos \frac{1}{x}$
$\exp \left(-\left(x^{2}+y^{2}\right) / a^{2}\right)$ f^{-1}		$\overline{(a+b / x)^{1 / 2}}$	$\sqrt{\text { a+(⿺辶 }}$ (

the most widely used scientific information system in the world

Try anyedition free for 4 weeks.

Nearly 200,000 professionals of all types use the Current Contents ${ }^{\circledR}$ system every week to locate and obtain new journal articles relevant to their work. And they've got good reasons.
Current Contents is the most comprehensive, least complicated way to make sure you learn of new developments in your field while they're still new. Just an hour a week spent scanning any edition of Current Contents lets you sort through everything that's published in a thousand or more journals. With CC $^{\circledR}$ it's easy to pick out just those articles you want to read. Without handling the journals. Without increasing your journal subscription expenses.
Find out why so many people like you use Current Contents. Get more information and a free 4 -week subscription by completing the coupon.

01973 IsI

Communications in

Mathematical Physics

Volume 32 - Number 4-1973

Contents

Dobrushin, R. L.: Analyticity of Correlation Functions.in One-Dimen- sional Classical Systems with Slowly Decreasing Potentials 269
Brill, D. R., Deser, St.: Instability of Closed Spaces in General Relativity 291
Ghez, P., Lima, R., Testard, D.: Une extension d'un théorème de
A. Connes sur les facteurs constructibles 305
Szekeres, P., Morgan, F. H.: Extensions of the Curzon Metric 313
O'Connor, A. J.: Exponential Decay of Bound State Wave Functions 319Indexed in Current Contents

