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Abstract. There are strong restrictions on the solutions of the initial value constraints
of General Relativity when the spatial hypersurface is closed. In particular, closed flat
space is unstable: not all solutions of the linearized constraints correspond to nearby
solutions of the constraints themselves. For example, no nearby solutions whatever exist
which are time symmetric. Other restrictions, which limit perturbations of non-flat closed
initial solutions, are also exhibited.

I. Introduction

Although General Relativity may be characterized as a massless spin
two Lorentz covariant field theory, its non-linearities can lead to quali-
tative complications not encountered in other field theoretical models.
Most evident is the existence of solutions describing closed universes,
in which the usual asymptotic falloίf at infinity is absent. We shall
investigate here some implications of the initial value equations peculiar
to closed universes. The basic point is that flux integrals vanish identically
when there is no boundary. In electrodynamics, for example, the total
charge in a closed universe must be zero (because it can be expressed
as a surface integral). The analogous gravitational quantity in asymp-
totically flat spaces is the total energy, which also can be expressed as a
surface integral. The energy is due not only to sources but also to the
gravitational field itself, and it has positive definiteness properties in its
field dependence. Thus, if the mass is required to vanish, no excitations
whatever are allowed. Below we investigate the restrictions which the

* Supported in part by the National Science Foundation and by the Humboldt-
Foundation.

** Supported in part by Grant AFOSR 70-1864.



292 D. R. Brill and St. Deser

vanishing of energy-momentum surface integrals place on perturbations
of closed spaces.

These restrictions are conveniently derived and discussed in terms of
an orthogonal decomposition of perturbations into transverse and
longitudinal parts. Here a new feature arises in the case of closed spaces,
that additional variables beyond those familiar from asymptotically flat
space are needed for a description of the general perturbation. For
example, in a space of 3-torus topology, all "local" excitations may
vanish (locally flat space), but in order to describe the space uniquely,
some "global" variables (such as the total volume) still need to be
specified.

We shall show that for the case of flat space with toroidal or other
allowed [1] spatial topology, there are strong restrictions on allowed
perturbations, which lead to instability of the solution. Instability is
found in classes of solutions - e.g. time-symmetric flat universes -
which otherwise would appear to be a physically meaningful class of
systems. For asymptotically flat spaces, stability means [2] that not only
do the linearized equations permit geometries representing small
perturbations, as is implicit in all local measurements, but that there are
always rigorous solutions of the full equations "near" such varied spaces.
In the case of general perturbations of flat closed space we find that the
new variables of the orthogonal decomposition play an essential role.
If they are taken to vanish, the space is completely isolated: there are no
"neighbors" of flat space whose volume does not change in time at the
initial surface. Even if the volume is allowed to change, strong restrictions
are placed on the allowed perturbations ("instability"). For non-flat closed
initial topologies we also find some unexpected restrictions on allowed
perturbations *. We emphasize that our discussion of stability is entirely
concerned with the initial value problem and does not involve the
question of time-evolution, with eventual formation of singularities or
collapse.

II. Surface Integrals and Harmonic Functions

The concept of total mass only makes physical or mathematical
sense in asymptotically flat spaces, since mass is a constant of motion for
isolated systems, defined [3,4] by a surface integral over the system's
boundary. A fortiori, the difference in "mass" δm between two geometries
on the same manifold,

δm = J d3 r $ij δRtj = § dSk(QiJ δΓl - $ik δΓjj) (2.1)

1 After completing our work we received a preprint "Linearization stability of the
Einstein equations" by A. Fischer and J. Marsden which also discusses the stability of the
initial value problem on closed manifolds from a deeper mathematical point of view.
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is also a surface integral which must vanish for a closed space. On the
other hand, the mass and its variation are also expressible as a volume
integral of the geometry, e.g.

δm = J rf3rί-δtf{Rij + 2Tu - Tgtj) + π y δπij - \π δπ] (2.2)

so that its vanishing places restrictions on the allowed perturbations.
Similar arguments hold for the other three components P of the energy-
momentum vector.

The integral relationship implied by the initial value equations can
be obtained by using a systematic method, which we illustrate for the
case of electromagnetism. To discover what restrictions must be placed
on ρ in order that the covariant Gauss equation

E\i = Q (2.3)

have solutions we preceed as follows: (1) Find the appropriate decompo-
sition of F into transverse and longitudinal parts, in this case

E ^ E ' Γ + φl*. (2.4)

Here Eiτ satisfies £ i T | f = 0 and Φ is a scalar potential; (2) Substitute (2.4)
into (2.3) to obtain

V2Φ = ρ. (2.5)

Thus to find Φ we must invert the self-adjoint operator V2; (3) Use the
theorem that a self-adjoint operator can be inverted if the source has no
component along any of the harmonic functions H of the operator, which
satisfy (in this case)

V2H = 0. (2.6)

In open spaces with boundary conditions H = 0 at infinity, the only
harmonic function is H = 0, while in a closed space, H = const is also
allowed. Hence from (2.5) we find the condition

$HρdV = H$ρdV = 0 (2.7)

which implies the usual result of a vanishing total charge, obtained here
in a systematic way which can be generalized to the case of gravitation.

III. Orthogonal Decomposition in a Closed Space

To apply the above method to a perturbation δgip δπij of a closed
space, we first investigate the "harmonic" tensor functions of the operators
involved in a decomposition of tensors into transverse and longitudinal
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parts according to [5]

hij = h\j + (ht,,. + hji f) - Hij + h{i U). (3.1)

Here h\j is to satisfy the transversality condition hγy = O (| denotes
covariant differentiation in the background geometry). We take the
divergence of (3.1) to find

n ^'v ( 3 2 )
The right side of (3.2) represents a self-adjoint operator acting on the

vector h\ and the left side is the source analogous to the ρ of Eq. (2.3).

To find the "harmonic" vectors fcf of this operator,

km

{j = 0 (3.3)

we multiply Eq. (3.3) by k{ and integrate over the whole space,

J i \J J ι\J

- I f fc , k^j)dV

Due to the quadratic nature of the integrand in (3.4) we must have

k m = 0 (3.5)

for these vectors kι: the harmonic vectors of the operator of Eq. (3.2)
are Killing vectors. Thus the condition of integrability of (3.2) is that the
source be orthogonal to any Killing vectors of the space. But this is
guaranteed by the structure of the source and by Eq. (3.5):

\kih
i\jdV= -\ki{jh

iUV= -h\kmh»dV. (3.6)

Thus the decomposition (3.1) is always possible; if there are Killing
vectors, ht is determined only up to such Killing vectors, but the longi-
tudinal part h^j + hj^ is uniquely determined.

The transverse part h\j can be decomposed into a transverse traceless
part hfjT and a trace hfj. Usually the trace is written as the transverse
operator acting on the scalar trace hτ,

m (3-7)
Then hτ is determined by the trace of (3.7),

h\k=v2hτ (3.8)

which, as before, can be solved only if the source tf£ is orthogonal to all
harmonic scalars (i.e., constants). Since this is in general not the case, the
decomposition (3.7) must be supplemented by the component of h\k

along the constants,

V~ι\h\kdV^ch (3.9)
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(where V denotes the total volume of the 3-space). The complete de-
composition therefore takes the form

hij = hlτ + \ (gij V2 - Vt Vμτ + i gijCh + h m . (3.10)

The term in ch does not appear in the decomposition of a tensor (with
vanishing boundary conditions) in flat Euclidean space. Thus, besides
the usual irreducible tensor, vector and scalar fields, the decomposition
of a tensor in a closed manifold requires one additional number which
describes a "global" property of the tensor, appropriate to this topology.

IV. Solution of the Varied Constraints

The gravitational field may be characterized in terms of the initial
3-geometry (gtj) and extrinsic curvature (πιj) of some spacelike surface,
subject to the four initial value equations (constraints). We investigate
the conditions under which a perturbed geometry {gij + δgψ πίj + δπίj)
satisfies the varied constraints if (gijΛ π

ij) is a solution. In the absence of
sources, the constraint equations are

9 1 - 2 = 0 (4.1)

7 ^ = 0 (4.2)

X = g--(πijπ
iJ-±π\2) (4.3)

where 9ΐ is the three-dimensional curvature scalar density corresponding
to gij9 and a bar again denotes covariant differentiation with respect to
the spatial metric. For simplicity in treating the nonlinear constraints we
expand them to various orders in the varied metric. Each order must then
separately vanish.

In first order the varied geometry must obey four (linearized) con-
straints, so that not all the components δgijf δπij can be independent,
four of them being determined in terms of the rest. The orthogonal
decomposition (4.1) is appropriate to identify the independent and the
constraint variables, and to determine the latter in terms of the former
by the constraint equations. In the particular case of a flat closed space,
the simplest unperturbed geometry (one allowing an extremal surface
π = 0) is described by [4]

# 0 = 0, πij = 0. (4.4)

In that case the first order constraints reduce to

δR = gijδRij = 0, (δπ% = 0. (4.5)
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We can employ Cartesian coordinates gij = δij on the surface, so that
δRij has the simple form

2δRu = - V1 δgfjτ - \ [gi} V2 + V, Vj) V2 δgτ. (4.6)

Thus we obtain
δR= -V2V2δgτ (4.7)

(δπ% = δπM\ = 0. (4.8)

By the arguments of Section III we readily find from (4.7)

δg = const. (4.9)

Similarly, from (4.8) and the argument leading to Eq. (3.5) we have

δπm = 0. (4.10)

Thus without loss of generality we may set δgτ = 0 = δπ\ The general
solution of the first order constraint equations is then given by

+ τ9C

δR^-ΪVHgJ? (4.11)

δπij = δπijττ + i {gij V2 - V1 Vj) δπτ + £ gijcπ

where cg, cπ are constants.
Physically the allowed unconstrained variations correspond to two

pairs of dynamical excitations (δgττ,δπττ\ and two sets of coordinate
variations (δghδπτ), exactly as in open topologies, together with the
new pair of constants (cg, cπ). To first order, then, there are no new
restrictions in closed spaces (in open spaces there is the further integral
consequence [4] that δm vanishes as a result of (4.11)).

The new variables cg, cπ have a clear physical meaning for closed
spaces: cg measures the perturbation of the total volume (assuming that
the perturbed and unperturbed geometries are described by the same
atlas, or by coordinates with the same range),

Cg = 2δV/V. (4.12)

Similarly2, cπ describes the time rate of change of the (perturbed) total
volume V in normal geodesic coordinates (lapse JV=1, shift ^ = 0):

cπ = d(\nδV-2)/dt. (4.13)

2 Such properties as the total volume and its time rate of change are not the only
global variables peculiar to closed spaces; for example, a three-torus without curvature
excitation (flat space) is characterized by five global variables in addition to the total
volume (for example, a variation of the dimensions of the torus keeping the volume con-
stant). These additional global variables do not need new terms in the orthogonal decompo-
sition for their description, but correspond to harmonic transverse traceless perturbations.
Clearly, variation of these variables does not affect the constraints.
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The coordinate variations can be fixed by coordinate conditions: δg{

are determined if conditions are given on the coordinates within the
initial surface, and a determination of δπτ, as usual, amounts to fixing
the initial surface itself within the embedding 4-space. In open spaces
a suitable condition is the "extremal surface" condition,

δπτ = 0. (4.14)

This condition can also be used in closed space (even though extremal
surfaces are atypical in such spaces) because the additional terms in
(4.11) imply that in this case (4.14) describes surfaces of constant (rather
than vanishing) extrinsic curvature,

gijδπij = cn. (4.15)

Thus with coordinate condition (4.14), cπ plays the role of time in the
varied geometry.

V. Second Variation of Constraints Near Flat Space

We now turn to the second order terms in the timelike constraint,
δ2(($l — %) = 0, subject of course to the relations among the variations
implied by δ(9l — X) = 0. In a linear theory the second order equations
never restrict the first order variables, since they can always be solved by
setting the second order variations equal to zero. In a nonlinear theory,
the second order integrability conditions may involve the first order
variations quadratically; but if the first order integrability conditions
are all nontrivial, but can be satisfied by restricting some variables, then
the second order conditions can be satisfied by restricting the same
variables to second order (see Section VIII). Here we are interested in
the opposite case, where the first order condition is identically satisfied.
A nontrivial condition may then appear in second order, and signal
instability. This case corresponds to R^ = 0 = πij (cf. Eq. (8.5)). Even here
there is no problem in open spaces [4] in satisfying the timelike con-
straint. However, in the case of closed 3-space we shall see that the
second order timelike constraint can only be satisfied if the first order
variations satisfy, in addition to δ(9i — 3Γ) = 0, δ(πιj^) = 09 a strong
additional integrability condition, which leads to instability.

Using 9l = QljRij, the expression (4.3) for X, and Rij = 0 = πιj for
the unperturbed geometry we find

0 = δ2(W -X) = δ$ij δRtj + δtf δRtj) - δπu δπij + \ (δπ}f . (5.1)

Only the second term contains the δ2gij (through gίj δ2Rij)9 and all other
terms are to be regarded as its source. By the Palatini identity
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ij = δΓk

ij\k — δΓ1

 k\J) this second term is a divergence, and if the
decomposition (3.10) for δ2gij is substituted into it we find,

δ(Qv δRtj) = (divergence) - g* V2 V2 δ2 gτ (5.2)

where we have denoted all the terms not involving δ2 gtj by (divergence),
and all covariant operators are evaluated in the unperturbed geometry
in Cartesian coordinates.

Now we again use the condition for existence of a solution δ2gτ,
namely that the source must be orthogonal to the harmonic functions
of V2 (i.e., constants), so that we must have the integrability condition

\ [_δQiS δRij - δutj δπij + \ (δπlf-\ d3x = 0. (5.3)

This can be simplified by substituting the orthogonal decomposition
(4.11) and its expression for δRψ and integrating by parts to find

.f (gmn δgΐjτ

m δg

This condition can be taken as an equation determining cπ. This quantity
however has been shown to be a degree of freedom on a par with the
usual two degrees of freedom per space point, δgττ, δπττ: this was the
consequence of the orthogonal decomposition and analysis of first
variation. Thus Eq. (5.4) is a constraint on one of the dynamical variables
of the system.

The additional restriction (5.4) on the dynamical variables means that
the manifold of solutions is smaller than the "tangent space" defined by
the first order constraints, i.e. that the initial value problem is unstable:
there is no solution for a general set of allowed first order perturbations
of the initial data (δgττ, δπττ, cg and cπ) because this general set will not
satisfy (5.4). Even stronger instability follows if we require cπ = 0 (which
means that the same time choice parametrizes the unperturbed and
perturbed spacelike surface; cf. Eq. 4.15). It then follows from (5.4) that
flat space is the only solution [6]. This is so because the left side of (5.4)
is positive definite, so that it can only vanish if δgj? = const and δπj? = 0,
hence ( 5 ^ = 0, and (using (4.12) and cπ = 0) (5πo = O. Thus, the initial
value problem in a flat closed manifold is always maximally unstable if the
initial and varied 3-geometries are extremal surfaces. One might try to
argue that there is stability in the above situation, in the sense that cπ

replaces δmas "dependent variation" determined by the other constraints,
so that its value is such as to make (5.4) valid for arbitrary (δgττ, δπττ).
This is not the case: δm is indeed an auxiliary quantity, entirely
determined by the (δg,δπ) and not involved in the varied constraints
themselves (it is zero at flat space, for example). Likewise, δ2m is deter-
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mined to be equal to the left side of (5.4). On the other hand, cπ (along
with other components) is left free by the first variations, but it is one
of the excitation variables. The instability lies in its then being forced
to be a fixed functional of the other variations by the second variation
equations, namely to obey (5.4). Thus cπ is on an altogether different
footing from δm3

One can easily convince oneself that this situation repeats in higher
orders beyond the second, but that no further conditions on the first
order perturbations are implied by higher variations. One may also
easily generalize the above derivation to include dynamical, positive
matter sources Tμv. Effectively, 2 ° 0 of any physical matter source will
have near vacuum a positive bilinear form analogous to that of the
"source" δπtjδπιj and will be excluded by the second variation in a
similar way. This excludes e.g. addition of slight amounts of matter to
the extremal surface closed vacuum state.

VI. Integrability of the Spacelike Constraints

In closed spaces with Killing vectors, the three spacelike constraints
(4.2) are another source of instability, as first shown by Wald and
Geroch [8]. In this section we analyze these constraints by the methods of
Section II. For a general background geometry the first variation of the
constraints contains terms in δπij and δgi} (the latter due to the change
in the covariant derivative). When we substitute for the density δπij

a decomposition of type (3.10) we again find an equation of the Poisson
type,

δ^\j=-δΓ/kπ
jk. (6.1)

The operator on the left was discussed in Section III, and was shown to
have no "harmonic" functions (Killing vectors) in general closed space.
Thus in general the spacelike constraints impose no first order integrability
conditions on the perturbations. This is obvious when there are no Killing
vectors, and also at flat space where the right side vanishes. One must
therefore examine the constraints to second order.

Killing vectors kι do exist in all closed flat topologies [1] that are of
particular interest here. In this case the solution of the first order equations
is given by Eq. (4.11), but integrability conditions follow from the second
order equations,

δ2πm

{j= -iδΓ/.δπ^ΞEs1 (6.2)

3 Also in other respects, cπ plays quite a different role from δm\ for example, for given
δgjj7, δπfjT, and cg, two values of cπ, cn= ± \c%\ are possible. These new features peculiar
to closed spaces are still largely unexplored.
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whose source sι must be orthogonal to all Killing vectors,

(6.3)

This equation was found as a necessary condition by Wald and Geroch
[8]. To simplify it we substitute the first order solution (4.11), integrate
by parts, and note that, in a closed flat space, the Killing vectors describe
infinitesimal translations but not rotations; therefore they satisfy a
stronger equation than (3.5), namely k^j = O. The result is the relation

J k ι δ g m δπjk d3x=j(Sek δgfjT) δπijTTd3x = 0 (6.4)

which must be satisfied by the first order perturbations to make the
second order constraints integrable. The existence of (6.4) indicates
a further instability of the initial value solutions. (The timelike con-
straint left the "TT" variables entirely unconstrained to first order, and
the second order timelike integrability condition (5.4) in no way insures
that (6.4) is satisfied.)

The equation corresponding to (6.4) in open spaces would have
a right hand side proportional to the total momentum surface integral,
to second order; it can therefore always be satisfied for arbitrary δgττ,
δπττ by proper asymptotic dependence. The present instability can be
physically understood as a condition of vanishing total momentum in
closed spaces, analogous to the view of Eq. (5.4) as a condition of van-
ishing total energy. (In both cases of course the first variations vanish
about flat space.)

Eq. (6.4) may be rewritten in the form

μ(i;j)δπijττd3x = 0 (6.5)

where; denotes the covariant derivative in the perturbed metric gtj + δgiy

Thus δπίjTT must be orthogonal to the tensor k{Uj) in the perturbed
geometry. This suggests as the reason for the instability the existence of
"extra" TT tensors [7] ^£kδgτj which solve the linearized spacelike
constraints, but which are longitudinal (k^.j) in the perturbed geometry,
and therefore cannot be expected to be unconstrained. The relation of
these "extra" T T tensors to the total momentum integrability condition
(6.4) is similar to that of the new variable cπ to the energy integrability
condition (5.4): in each case the condition goes hand in hand with
existence of new variables which allow the condition to be satisfied.

VII. Particular Perturbations of a Closed Flat Space

We have seen that closed flat space is isolated if we demand cπ = 0,
and unstable if we allow cπ Φ 0. In order to show that the instability
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cannot be strengthened to isolation also for cπ + 0, we show how to
construct a continuous family of exact solutions which includes the flat
3-torus in one limit. Such a family is possible because, unlike in asymp-
totically flat space, one cannot assume that a coordinate condition on π
can always be implemented. In particular, none of the family of solutions
except the unperturbed 3-torus can have any spacelike surface on which
cπ = 0.

From any translation-homogeneous space of Euclidean topology
one can construct a 3-torus topology by forming the quotient space with
a discrete group of three independent translations. The family of Kasner
metrics [9]

ds2 =-dt2 + t2p dx2 + t2q dy2 + t2s dz2

(7.1)
p+q+s=l p2 + q2 + s2 = l

provides examples of solutions with the necessary homogeneity. The
corresponding toroidal solutions contain flat 4-space as a special case,
e.g. p = 1, q = s = 0. However, there is no choice of spacelike surface in
this geometry which describes the flat 4-space or its perturbations in
terms of a flat and plane initial surface. (This is the 4-dimensional analog
of the flat surface of an ordinary cone, on which there are likewise no
everywhere straight slices.) Instead, in order to construct a family which
contains the flat 3-torus as a limit we fix the values of p, q, and s, and
choose, for each T, translations of the type

x^>x + nT~p y-+y + mT~q z->z+lT~s (7.2)

with n, m, / integers. The spacelike surfaces t = T in the corresponding
family of quotient spaces become flat in the limit Γ-> oo, because the
curvature of these toroidal spacelike surfaces decreases as T~2, and
their size is independent of T due to the identification (7.2). At finite T
the spacelike surfaces are non-flat, and therefore show the existence of
quite nontrivial perturbations of the initial value problem in the closed
flat torus4. In accordance with the theorem of Section V, there can be no
spacelike surface in these solutions with dV/dt = 0. Instead, the total
volume continues to expand, and a recontraction phase is never possible.

For other topologies such as the Friedmann or the sourcefree Taub
universe [11] the restriction (5.4) is not directly relevant, since an inte-
grability condition arises already in first order. These conditions are
examined (for the sourcefree case) in the next section.

4 Inhomogeneous spaces of toroidal topology have been recently discussed by
Gowdy [10]. Other classes of non-flat solutions have recently been given by Y. Choquet-
Bruhat [13].
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VIΠ. Closed Non-Flat Spaces

At flat space, additional restrictions on the varied initial data were
imposed by the vanishing of the second variations of the surface integrals
(δ2m,δ2P\ their first variations vanishing identically. We now consider
arbitrary non-flat initial geometries. A first example is furnished by an
arbitrary 3-geometry (Ri} Φ 0) at a moment of time symmetry (πij = 0).
Variation of the time-like constraint yields

0 = δ5R = R.j δ§ij + Qij δRij = δQijRij + div . (8.1)

This equation may be rewritten as a Poisson equation for the trace part,
gιj δgtj, of the variation, whose source is proportional to the traceless
part [4]. But (8.1) does more than constrain this trace component, since
its integral immediately implies orthogonality of the full metric variations
and the curvature:

0=ϊd3rδQijRij. (8.2)

On the other hand, the Bianchi identity, Vj(Rij-%gijR) = 09 together
with the constraint, R = 0, imply that Rtj is transverse traceless. Since
every TT tensor is identically orthogonal to any non- TT one, we may
write (8.2) as

0=μ3rδQi^ττRij. (8.3)

This states that the otherwise unconstrained pure spin 2 variations δgττ

must be orthogonal to the existing excitations of the base geometry.
The apparent ςtlinear instabilities" implied by (8.3) or (8.5) below are

not really instabilities, however. Rather, these equations are simply part
of the conditions, imposed by the varied constraints themselves, defining
the tangent space of allowed perturbed geometries. They only appear to
be restrictions when formally compared with the flat case, or with the
asymptotically flat problem. But it is simply an integral part of the con-
straints in closed topologies that they both specify a constraint variable
and require the vanishing of the "monopole moment" of its source. The
same remarks apply to (8.6), that it is just part of the second variation,
(52(Ή - X) = 0 of the constraint.

For the general case, πij φ 0 φ Rtj, (8.1) becomes

0 = δ(5R - X) = δtfiRij + 2Tυ - Tgtj) - δπ^j- i ^ π) + div (8.4)

and can be shown to determine the same constraint variable as (8.1). The
corresponding integral requirement is

0 = J d3rl-δ^iRtj + 2TU - Tdij) + <5π"(πy- i ^ π)] , (8.5)
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and again involves the unconstrained components of the first variations
(δgij, δπij).

At second order, there will also be an integrability condition as a
generalization of (5.3). Again, for simplicity, consider the case πιj = 0,
where variation of (8.5) yields

ίd3r(<52

8'J)Ry= - μ'rlδ^δRij + δπVδπ'-ig^-ϊgφJg-^ . (8.6)

At flat space, the left side vanishes and this reduces to (5.3) as a condition
on the first variations. When Rtj Φ 0, however, it becomes a restriction,
analogous to (8.3), on the TT part of δ2gij (since JR^ is TT here) in
terms of the first variations. Its character is therefore quite different from
that of (5.4) which restricted first variations only; it does not affect
stability about the base space.

Finally, we examine the spacelike constraints. As discussed in VI,
no conditions are imposed by their variations in the absence of Killing
vectors. Consider, e.g., (6.1),

Vj(δπij) = -δΓurf1 = ρ ί . (8.7)

Since only integrals of scalar densities are meaningful, we only obtain an
interesting condition if there is a "constant" vector present, namely a
translational Killing vector (/c^—0). [In open topology, the Killing
vectors of the asymptotic Minkowski space are available.] In such
exceptional geometries, we obtain the condition

0 = J d'rk1 Γ((<5ft J π ' » = - J d 3 r* ' δglm V,πlm (8.8)

as a linear restriction on the allowed δglm about spaces admitting a fcf.
Similar remarks apply to the second variations, which also only yield
conditions when kt are present. Even then, however, it is clear from the
foregoing discussion that (8.8) is not a new condition but part of the
varied constraint (8.7). We conclude that instability is a phenomenon
peculiar to closed flat space.

IX. Open Geometries

For asymptotically flat open topologies, surface integrals no longer
vanish, and in particular m, δm, δ2m are now generally non-null flux
integrals. We emphasize that their vanishing for closed spaces is related
to the fact that the notion of energy is neither mathematically defined
nor physically meaningful: Energy is related to the generator of time
translation and is observed in terms of interaction among two (almost)
isolated bounded systems.
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Because the formerly vanishing integrals now represent the variation
of mass implied by a given perturbation, the restrictions we found in
the closed case disappear. Indeed, there are both many solutions near
open flat space and many allowed perturbed geometries as well and
they agree in content, so that the open case is stable [2]. However, one
may ask what restrictions are imposed on perturbations of the geometry
if one arbitrarily imposes specific conditions on the perturbed energy
(the cg, cπ are of course absent here). Thus, if the perturbation is a
"rearrangement," leaving the total mass unchanged, then δm = 0 = δ2m,
and we have results similar to the closed space case: If the unperturbed
state is flat space, then since δ2m is positive definite there [4], its vanishing
eliminates all nearby spaces, i.e. there are no zero mass states near flat
space. The restrictions implied by a rearrangement of a more general
base geometry are of the same type as those found in Section VIII.
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