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Abstract. The spherical version of Dyson's hierarchical model is analyzed. A particular
case which is designed to simulate the long-range Ising problem is dealt with in detail.
A phase transition is found with critical temperature

where nih neighbor spins interact with a strength of n~a. Critical exponents are calculated
for this particular case and are found to be identical with the critical exponents of the
long-range spherical Ising model.

I. Introduction

The hierarchical model suggested by Dyson [1] is defined as follows:
"There are 2P spins μ j=±l, labelled by the index j = l,2...2N. For
each pair of integers p = 0, l,2...N;r = ί,2...2N~p we consider the spin
sum

(1)

This is the sum of the rth block of 2P consecutive spins. The hierarchical
character of these sums is expressed by the relation

Sp,, = Sp-1.2r-l+S|,-l,2r, P = 1, 2 . . . JV . (2)

We assume the interaction energy in the model to be

HN = - X 2-2<VlVp,,)2 (3)
p = l r = l

where b^ . . . bN are non-negative coefficients. The statistical properties
of the model are completely defined given the above and a temperature

Dyson is able to show that much useful information about the Ising
model with long range interactions can be obtained by analyzing the
hierarchical model and connecting the hierarchical model to the Ising
model through the inequalities of Griffiths [2]. Dyson was not able,
nor are we able, to solve the hierarchical model directly. In this paper we
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shall be more modest in our goal and restrict our considerations to the
spherical version of the hierarchical model, that is the version of this
problem which bears the same relation to this problem that the spherical
model [3] bears to the Ising problem.

We shall find that there are many interesting features to this simplified
problem. Among these features are the existence of a phase transition
whose critical temperature we shall compare with the bounds established
by Dyson. We shall further compare our results with the detailed analysis
of the spherical Ising model with long range interactions carried out by
Joyce [3].

II. The Spherical Hierarchical Model

The hierarchical partition function may be thought of as the sum of
( — βHN) over the allowed values of HN. These allowed values of HN

are functions of the random variables μ7 — + 1. In μ7 space therefore, the
partition function is a discret sum over the verticies of a 2N dimensional
hyper-cube. The spherical hierarchical model replaces the sum over the
verticies of this cube by an integral over the sphere which circumscribes it.

Thus the partition function for the spherical hierarchical model is the
restricted integral

QN(β) = l...$dμi...dμ2irexp(-βHN)9 (4)

where the μ^ are constrained by

This integral may be calculated most easily by this introduction of an
undetermined multiplier, or, equivalently, by the use of the grand
canonical ensemble. We write

oo oo / 2N \

QN(μ, β) = \ ... f dμγ ...dμ2N exp — βHN — μ Y μf\ (5)
— oc -oo

and the undetermined multiplier μ, is determined through the auxiliary
equation Λ

2N = -~^lnQN(μβ). (6)

The usual arguments hold, viz. in the limit of large N Eq. (6) is essentially
equivalent to Eq. (4).

The hierarchical Hamiltonian is a negative definite quadratic form in
the μ7 because the Hamiltonian itself is quadratic in the Sptf and the
recurrence relation (2) is linear.

The simplifying feature of the spherical constraint arises from the
fact that since HN is a negative definite quadratic form in the random



Spherical Hierarchical Model 217

variables μ; it may be put in diagonal form by an orthogonal transforma-
tion. This orthogonal transformation will leave the spherical constraint
unaffected, and we may evaluate all of the integrals in (5) provided that
the appropriate orthogonal transformation can be found.

When the orthogonal transformation is found the partition function
will be

QN(μ,β) = J ... f dxι...dx2»explβ £ hkx
2

k -μ £ x2] (7)
— oo — oo

where the hk are the characteristic values, and the xk are the normal
coordinates of HN. Evaluation of the integrals in QN is elementary and
leads to a free energy, ψN, given by

(8)

where the relation between β and μ is

We shall find it convenient to modify Dyson's Hamiltonian slightly
and let

N 2N~P

(Sp,,)
2,

with

S0,r = Mr

We have added a "self energy" term of

to the Hamiltonian. We recover Dyson's hamiltonian if we set b0 = 0.
We now represent the Hamiltonian as

where 17 is a column vector with the μ^ as components, and AN is a
2N x 2N symmetric matrix with functions of the b's as elements.

The hierarchical nature of the interaction manifests itself in the AN .
We write down the first two /Γs:

AQ =bQ
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If we let CN be a 2N x 2N matrix with all elements equal to unity, then the
recurrence relation which duplicates the Hamiltonian [3] is

,l.1 + 2-2NbllCll.1 2~2NbNCN^

VN ^N -1 AN _ i + 2 ON CN _ i .

It is easy to show that AN and CN commute iϊ AN_i and CN_ί com-
mute, and thus all of the As commute with the Cs because A0 and C0

commute. Therefore, we may simultaneously diagonalize both A and C.
Note that any eigenvector of AN_γ and CN^l leads to two eigen-

vectors of AN and CN. Suppose that

From this we see that

and

The matrix AQ has one eigenvector, viz. 1. From this we may construct
the two eigenvectors for A^ . They are:

with eigenvalues

From this pair of eigenvectors and eigenvalues we may construct the
eigenvectors and eigenvalues of A2 etc.

By continuing this process we find that AN has 2N eigenvalues arranged
as follows:

hQ = b0 2N~1 fold degenerate

h± = b0 + 2~ * ί>! 2N ~ 2 fold degenerate

hk= ^ 2~pbp 2N~(k+ΐ] fold degenerate (11)

N

hN= ^ 2~pbp non-degenerate.
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We could also compute all of the normal coordinates in terms of the μj.
This will turn out not to be necessary, for we shall only require the normal
coordinate associated with the largest eigenvalue of AN. We shall call
this coordinate Xί, and in normalized form it is given by

The partition function integrals are performed as in (7). The result
is

(12)

= - 2 » | ~ Σ 2 - f c l n ί μ - / ? Σ 2 - ' '

.(13)

The second term on the right in each of these expressions comes from
the largest eigenvalue hN . This term will not have any appreciable effect
in the limit of large JV, so we suppress it. It is also convenient to define
the variable 5 such that

With these two revisions our equations read :

-i £ 2^b] (14)

- - (15)

where

Equation (15) is used to eliminate s in (14) to obtain the free energy as
a function of temperature.

The internal energy per spin is



. .

When the change of variable indicated above is made the operator
8 ds d

Γ becomes — - + — - -̂ — , since s depends explicitly upon β. Thus
p dp op cs

Γι Σ 2-*-Γ1(s + l) Σ
^ fc = 0 k = 0

which is, by (15)

— ^4 is the internal energy per spin in the ground state so we calculate the
internal energy from this value

ε=U + A = ̂ -β-1-sA. (16)

The magnetic properties of the spherical hierarchical model follow
from the Hamiltonian in an external magnetic field H, which is taken
to be

where μ0 is the magnetic moment of an individual spin.
We note that this may be written in terms of the normal coordinates

as

ί . (17)

Which is the same as before except for the linear X± dependence. The
integral in the partition function is also easily performed and yields

(18)

The free energy per spin is

-2-NβψN = ln£N(μ, β, H) = lnQN(μ, β) + ~ β2μ2

0H
2(μ - βhN)~l (19)

where μ is determined as a function of β for fixed H by

l = -^-ln5N05,μ,H). (20)dμ
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The Magnetization M is

-. ., /-, 1 V

The Magnetic Susceptibility is

1
(22)

III. Analysis of a Particular Example

Dyson's study of the hierarchical model centered upon an analysis
of a particular choice of the fe's. With the choice

one expects that the behavior of this model will correspond to an Ising
model with an interaction strength of rc~α for πth neighbor spins. We put
this choice into the Eqs. (14) and (15) and obtain:

and

2- N 0v>Λr = τ Σ 2~klnβA(s + 2(1-«}k), (23)
4 k ^ = o

βA = ~ f 2-fc(5 + 2 ( 1-α ) kΓ1. (24)
4 k = o

It would appear that there is no difficulty in taking the infinite limit.
One simply sets N = oo in the expressions (23) and (24). This procedure,
however, assumes that there is always an unambiguous connection
between s and β.

For any value of N the function

takes on all positive values and is monotone decreasing when its argument
ranges from s = -2(ί~*}N to s^oo. If gN(0) is finite the values of β
between gN(0)/A and infinity are all crowded into a small region
— 2(1 ~α)7V < s < 0. In the limit of infinite N this region shrinks to zero and
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thus, if #oo(0) is not infinite, we have the value 5 = 0 corresponding to a
range of values of β.

This is the mathematical manifestation of the phase transition
phenomenon. At the point s = 0, the inverse temperature β is not an
analytic function of s in the limit of infinite N. In the limit JV-> GO, s = 0
for all β < βc where

βc=LA-ι g 2" ( 2-β ) k=— (2α-2)(4-2T1. (25)
4 k=o 2

This defines the critical temperature.
It has been verified by direct computation that this critical temper-

ature lies between the bounds established by Dyson for the true hier-
archical model. We note, again consistent with Dyson and Joyce, that
the phase transition exists only for 1 < α < 2. For α < 1 the ground state
energy per spin diverges and for α > 1 the ground state energy per spin
diverges and for α > 2 the interaction falls so rapidly in, distance that the
transition temperature is infinite.

To establish the critical exponents, we wish to analyze the behavior
of the spherical hierarchical model in the neighborhood of the critical
point. Let us reckon β away from the critical βc. From (24) and (25) we
have

βc-β=~sA~1 £ 2-(2-β)l'(s + 2(1-α)T1 (26)
4 p =o

Expansion of this expression for small s gives

βc-β~— sA~l £ 2~(3-2α)ί7 = s(2α-2)(8-4T1

4 p = 0

which converges only if 1 < α < 3/2.
If 3/2<α<2 we must perform further analysis. To this end let

and therefore
u = - In 2s.

1 -α

Substituting this into (26) we obtain

βc-β=~A~ΐ £ 2~(2-β)l'(l + 2(1"β)(l>-I<)Γ1. (27)
4 p = o

Now let u = L + Δ where L is an integer. Substituting this into (27) and
changing variables in the sum leads to

1 Γ °°
- ~ ~ V

IP = - L
(28)
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which may be written

1 Γ °° „ Λβ Ω Λ ~ 1 C(2 — α)/(α — 1) ^Γ1 ^~ (2 —ai)(p- Δ) ( \ ι •")(! -α) (p-/m- 1
D^ — /) — A. o / Z 11 -Γ Z )

4 [p^ j

"L~1 , (29)T^ / Λ — (2 — α) (p-Δ) / - j i Λ(l — α) (p — Δ)\— 1 ^ ^

— oo

The second term on the right may be shown to be proportional to
s(2α-3)/(α-i) and thus ^ negiigible in the limit of small s for 3/2<α<2.

We therefore examine

00

G(A)= £ 2~ (2 α)(p <d)(l + 2(1 α)(p zl))~1 .
p= — oo

Note that G(A) has the following properties:

1)

2) G(Δ + 2πi/(α - 1) In 2) - β 2πi(2-α)/(«- i) G(Zl) .

According to property 1) we may expand G in a Fourier Series.

00

G(A) — ]Γ

where

We now consider the contour integral

(30)

integrated around the following closed contour in the complex A plane:
I. along the line ImΔ = 0 from ReΛ = - 1/2 to ReΛ = 1/2.

II. along the line Re/1 = 1/2 from ImΔ = 0 to Imzl = 2π/α - 1) In 2.
III. along the line ImzJ = 2π/(l — α)ln2 from Rezl = — 1/2 to

Re 4 = 1/2.
IV. along the line R e J = - l / 2 from ImΔ - 2π/(α- I)ln2 to

ImΔ -0.
This closed contour encircles only a single pole of the single term

p = 0 in the G(A) sum. This pole is located at A =πΐ/(α — I)ln2. By the
residue theorem we have

gn - [(2πi/(α - 1) In 2)] [expi(2 - α) π/(α - 1)] [exp2nπ2/(oc - 1) In 2] .

Property 1) of G(A] assures that the contributions to the integral (30)
along II and IV cancel. By property 2) we see that the integral along III
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is a multiple of the integral along I, and of course, the integral along I is
just an. Thus

απ(l - [exp(2π/(2 - α)/(α - 1)] [exp4ππ2/(α - 1) In 2]) - gn

and
an = (π/(α - 1) In 2) (sin((2 - α) π/(α - 1) - 2mπ2/(α - 1) In!))"1 .

We retain only the constant term and the first harmonic in the Fourier
series and rewrite in terms of s using

sm2nπA = sm2nπ(L + A) = si

G(s)

l - f4exp(-2π 2 /(α-l) ln2)s in(2-α)π/(/c- l)s in(2πln— /(α-l) + (2-α)π/(α - 1)1
[ __ V s / ___ /_

((α-l)ln2sin(2-α)π/(α-l))

Strictly speaking there is no limit as s->0. The coefficient of the trouble-
some term is so small, however, that from an experimental (i.e. a computer
simulation) point of view it is undetectable. We shall use only the first
term for the remainder of this analysis.

If α = 3/2, we find that the sum in (28) diverges at the lower limit,
and asymptotically therefore

Thus there are three regions of interest in the expansion of βc — β as
a function of s near s = ΰ:

4T1

? l < α < 3 / 2 ,

& - β ~ 1 /2 ( j/2 - 1) s In2 1/s , α = 3/2 ,

βc-β^ l/85(2"α)/(α-1)(2α - 2) α0 , 3/2 < α < 2 .

For βc — β small and positive we have the connection between s
and β provided by the inverse of these expressions

^G8c-£)(8-4a)/(2a-2), l < α < 3 / 2 ,

s ~ 2(βc - Ml/2 - 1) m2(/?c - βΓl , oc = 3/2 ,

s ~ Λ(α) (βc - j?)(«-1)/(2-α) j 3/2 < α < 2 .

Where

From the Eq. (16), we calculate ε, the internal energy per spin as
functions of the variables s and β.
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For all u,β>βc implies s = Q and the specific heat is a constant
independent of temperature. The specific heat is

For βc — β small and greater than zero (just above the critical temperature)
we have

Ctt = y (1 - (8 - 4«)/2(4 - 2«)2) , 1< α < 3/2 ,

Q = y (1 -((4-23'2)2 In^-jSΓ1)-1), α = 3/2,

C,, = A (1 - (βc - β)(2α- 3)/<2-«> Λ(α) (2" - 2)/(4 - 2α)) , (3/2 < α < 2) .

To complete the picture on the critical behavior we now examine
the spherical hierarchical model in a magnetic field.

We spezialize Eqs. (19) and (20) to the particular case, take the limit
of infinite N and obtain :

In JN(μ, β, H) = \τιQN(μ, β) + β2μ2

0H
2A^ s

or
1

T
(31)

The presence of a magnetic field destroys the phase transition because
there is a unique connection between S and β for any positive value of β.

The spontaneous magnetization is the value of M as H— >0+. One
sees from (31) that if s>0 as H->0 the value of β is unaffected by the
presence of the field. This limit will always lead to a value of β which is
less than βc. On the other hand, consider the limit s->0, //->0, H/s^λ.
In this limit from (31) we have

or,

λ = (2A/μ0)(l-β/βe)
1'2
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and

The spontaneous magnetization is thus the same as the classical Curie-
Weiss theory.

Above the critical temperature at zero magnetic field the magnetic
susceptibility is

= J_ 2A-ιs-ι

which by the previous analysis is

χ = μg(8 -4T1 (ft. - jB)"1, 1 <α< 3/2 ,

(<ή(βc-β)(i-*U(2-Λ), 3/2<α<2.

These critical exponents for the specific heat, magnetic susceptibility
(both above and below the critical temperature) and spontaneous
magnetization are identical with those obtained by Joyce for the long-
range spherical Ising model.

IV. Spin Correlations

We shall conclude our analysis of the properties of the spherical
hierarchical model with a calculation of the spin-spin correlation
matrix, which is defined to be

This correlation matrix will have strange properties because the hier-
archical model is not invariant to a cyclic relabeling of spin coordinates
and thus the correlation matrix will not be a function of i —j alone. We
shall calculate the full correlation matrix P, which is

From standard gaussian analysis of variance one sees that this matrix is
the inverse of the matrix μl — βAN. This matrix will have the same
hierarchical character as AN, that is it will satisfy the same recurrence
relation as AN, but with replacement

b0 replaced by μ-βbQ

bn, rcΦO replaced by —βbn.

Thus we concentrate on inverting AN .
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We may construct the inverse of AN by assuming that the inverse
has the same recursive form as AN. That is we assume that AU l is of the
form:

where eN is to be determined.
The AN"s and Q's have the following useful properties:

•jv-i

and
/N-l

Δ-i _ y 2~ph
-N-1ΛN-1 -\ L L °l

because every vector in C is an eigenvector of A.
With these properties we multiply AN, as given in (10), by the assumed

form for Aχl. The condition that this matrix invert AN is found to be

Γ / N \ - l /N-l

= 2-[(Σo2-^) -(Σ Q 2-

Thus we generate the inverse recurrence relation by replacing bN with

N \ - l /N-l \ - l

p = 0

- 1 /N - 1

- Σ
\p = 0

in the expression (10).
Let us now calculate the first row of the correlation matrix P. The

first row of the matrix AN is

N
A ί , 2 p - ι + ι=Aι,2p-ι + 2 = •- =Aiί2P= Σ 2~2kbk for all ρ>l

k = p

making the above replacement for the bN we find:

-VL,2P + 1 ~ •* 1,2^ + 2 = '" — *l,2P
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Replacing the b's by their counterparts given in (32) we obtain

* Ί , 2 P ~ l + 1 == *1,2P- ! +2 == " ' = -* l ,2ί>

ι Γ N / k \ - l N / P-1 \ - l

= - Σ 2-*L-/ί Σ 2-ϋ - Σ 2 - - Σ 2-

In the hierarchical chain a given spin has a fixed correlation with
every spin which is in a different half of the chain, a fixed correlation
with every spin which is in a different quarter of the chain, etc. The
correlation coefficient given above may be interpreted as the first row of
the correlation matrix or as the correlation coefficient of a pair of
spins which are in the same 2P fraction, but different 2p+ί fractions, of
the chain.

In the particular case, with the usual change of variable, the ex-
pression above reads:

We can draw a rough correspondence between this spin correlation
and one from a translation invariant Hamiltonian. The expression (33)
represents the correlation between a pair of spins which are in the same
block of 2P spins, but are not in the same block of 2P + 1 spins. If the chain
sites are equally spaced the distance from a given spin site to the end
of the block of 2P spins which it occupies will be roughly.

p ~ In22π .

If we compute the elements of the correlation matrix (32) at the
critical temperature (β = βc, s = 0) we find

p — ... — p — ___9-( 2 - α )PΓ9 2 α — 41rl , 2P ~ i + 1 — — rl , 2P — A Δ LZ ^J

Using the above rough correspondence between P and distance we find

Thus the spin-spin correlation goes roughly as a power law at the
transition temperature. The power is — (2 — α), which is again consistent
with Joyce.
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V. Summary

The spherical version of the hierarchical model has a phase transition
which satisfies the inequalities established by Dyson for the true hier-
archical model. Dyson was able to connect the hierarchical model to
the long range Ising model using the Griffiths inequalities. A particular
case of the spherical hierarchical model may be directly compared to
the spherical long range ίsing model since both are exactly soluble.
These models are strikingly similar. Both models depend on a single
parameter which governs the rate of decrease of the interaction between
spins. As a function of this parameter all critical exponents are calculated
to be the same, and the range of the parameter over which a phase
transition exists is the same. This perhaps indicates that the similarity
between the two models is deeper than Dyson expected.

The critical behaviors of the infinite spherical hierarchical model is
governed by the connection between β and s. In general this connection
is given by (15) and is

where

The ground state energy of the spherical hierarchical model is A (per
spin). This sum must converge, and it is this requirement in the special
case which requires that α>l . A phase transition occurs if the right
hand side is upper bounded for all positive values of s. The maximum
value of the right hand side is

\-ι

In order that there be a phase transition this sum must converge.
If we consider a hierarchy of 2L finite hierarchical systems each

containing 2N spins, the ground state energy is

N + L

The ground state energy per system of 2N spins is
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If we subtract this from the ground state self energy of an individual 2N

spin system we obtain (per spin)

N \ N + L

2N y 2~pb — E 2~L\ = 2N y 2~pb

In the limit L —> oo this is the sum which governs the existence of a phase
transition.

Thus, for the hierarchical model to make sense it must have a finite
ground state energy per spin. For it to have a phase transition the inter-
action energy (per system) of an infinite system of systems of finite
size must diverge as the number of spins becomes infinite.

A number of other special cases where

have been examined, but will not be reported in detail. We do, however,
wish to point out that all cases examined have exactly the same critical
behavior as the case analyzed here. No attempt has been made to define
the limits, but it seems safe to say that critical exponents are "universal"
over a very wide class of b's.

In all of the cases analyzed the critical exponents are very weak
functions of temperature, as in the special case. It is tempting to con-
jecture that this abnormal critical behavior is connected with the lack of
translation invariance in the hierarchical Hamiltonian.
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