On the Semiboundedness of the $\left(\phi^{4}\right)_{2}$ Hamiltonian ${ }^{\star}$

W. K. McClary
Department of Mathematics, York University, Toronto, Canada

Received February 1, 1973

Abstract

An elementary alternate proof of the semiboundedness of the locally correct Hamiltonian $H_{0}+\int: \phi^{4}(x): g(x) d x$ of the $\left(\phi^{4}\right)_{2}$ quantum field theory model. The interaction operator is expressed as the sum of a positive operator and operators which are "tiny" relative to N^{ε} for any $\varepsilon>0$, where N is the number operator.

The semiboundedness of the space cut-off $\left(\phi^{4}\right)_{2}$ Hamiltonian was first proved by Nelson [1]. Alternative proofs and generalizations of this result have been given by various authors (see [2] and the references therein). In this note we give an elementary alternate proof in which the interaction operator $V=\int: \phi^{4}(x): g(x) d x\left(g \geqq 0, g \in L^{1} \cap L^{2}\right)$ is expressed as the sum of a positive operator and operators which are "tiny" relative to N^{ε} for any $\varepsilon>0$ (here N is the number operator). The proof is based on the formal identity $: \phi^{4}:=\left(: \phi^{2}:-2 c\right)^{2}-6 c^{2}$ where c is the infinite constant $\int w(k)^{-1} d k$.

In our notation

$$
\begin{gathered}
a(k) a^{+}(p)-a^{+}(p) a(k)=\delta(k-p) \\
N=\int a^{+}(k) a(k) d k \\
H_{0}=\int a^{+}(k) a(k) w(k) d k \\
\phi(x)=\int\left[a(k)+a^{+}(-k)\right] \exp (i k x) w(k)^{-1 / 2} d k
\end{gathered}
$$

where $w(k)=\left(k^{2}+m^{2}\right)^{1 / 2}$ and m is the mass of the free field ϕ.
Let $b>0$ and define

$$
f_{n}(k)= \begin{cases}w(k)^{-1 / 2} & |k| \leqq n^{b} \\ 0 & |k|>n^{b}\end{cases}
$$

Let $a_{n}=a_{n}(x)=\int a(k) \exp (i k x) f_{n}(k) d k$ and let a_{n}^{+}be the adjoint of a_{n} and let

$$
c_{n}=a_{n} a_{n}^{+}-a_{n}^{+} a_{n}=\left\|f_{n}\right\|^{2} \quad \text { for } \quad n=0,1, \ldots
$$

[^0]Let $Y=Y(x)$ and C be the symmetric operators defined on " n-particle states" ψ_{n} by

$$
\begin{aligned}
& Y \psi_{n}=\left[a_{n+2}^{+}{ }^{2}+2 a_{n}^{+} a_{n}+a_{n}^{2}\right] \psi_{n} \\
& C \psi_{n}=c_{n} \psi_{n} .
\end{aligned}
$$

We now apply the positive operator $\int d x g(x)(Y-2 C)^{2}$ to the n-particle state ψ_{n} and Wick-order the terms in the resulting expression, using the commutation relations $\left[a_{n}, a_{n}^{+}\right]=c_{n}$:

$$
\begin{aligned}
{\left[\int g(x)(\right.} & \left.Y-2 C)^{2} d x\right] \psi_{n} \\
= & {\left[\int g (x) \left\{a_{n+4}^{+} 2^{2} a_{n+2}^{+}+2 a_{n+2}^{+}{ }^{2} a_{n}^{+} a_{n}\right.\right.} \\
& +2 a_{n+2}^{+} 2^{3} a_{n+2}+a_{n+2}^{+} 2_{n+2}{ }^{2}+5 a_{n}^{+2} a_{n}^{2} \\
& +2 a_{n}^{+} a_{n}^{3}+2 a_{n-2}^{+} a_{n-2} a_{n}^{2}+a_{n-2}{ }^{2} a_{n}^{2} \\
& +2\left(c_{n+2}-c_{n}\right) a_{n+2}^{+2}+4\left(c_{n+2}-c_{n}\right) a_{n+2}^{+} a_{n+2} \\
& +2\left(c_{n}-c_{n-2}\right) a_{n}^{2}+2 c_{n+2}^{2}+4 c_{n}^{2} \\
& \left.\left.+4 c_{n}\left(a_{n+2}^{+} a_{n+2}-a_{n}^{+} a_{n}\right)\right\} d x\right] \psi_{n} .
\end{aligned}
$$

Let us designate by V^{\prime} the operator defined on n-particle states by the first eight terms of the above integral. If we examine the "four-creation" part of $V-V^{\prime}$ we find it is of the form

$$
\iiint \int W^{\prime \prime}(k, p, q, r) a^{+}(k) a^{+}(p) a^{+}(q) a^{+}(r) d k d p d q d r
$$

where the kernel $W^{\prime \prime}$ is equal to zero when $|k|,|p|<(n+2)^{b}$ and $|q|,|r|<(n+4)^{b}$ and equal to the kernel W of V otherwise. By a modification of a proof given by Simon and Höegh-Krohn [3, p. 155], $W^{\prime \prime}$ is square integrable and $\left\|W^{\prime \prime}\right\|_{2} \leqq$ const $\left[(n+2)^{b}\right]^{-\alpha}$ for a certain $\alpha, 0<\alpha<1$. The other terms in ($V-V^{\prime}$) may be treated similarly with the result that $\left\|\left(V-V^{\prime}\right) \psi_{n}\right\| \leqq$ const $n^{2} n^{-b \alpha}\left\|\psi_{n}\right\|$ for large n. If we now choose $b=2 / \alpha$ then $\left\|\left(V-V^{\prime}\right) \psi_{n}\right\| \leqq$ const $\left\|\psi_{n}\right\|$. We see that $\left(c_{n+2}-c_{n}\right) \leqq$ const n^{-1} and that c_{n} grows like const $\log n$ for large n. Since $\left\|\int a_{n+2}^{+}{ }^{2} g(x) d x \psi_{n}\right\|$ $\leqq(n+2)\left[\iint|\tilde{g}(k+p)|^{2} w(k)^{-1} w(p)^{-1} d k d p\right]^{1 / 2}\left\|\psi_{n}\right\| \leqq \operatorname{const}(n+2)\left\|\psi_{n}\right\|$ the term involving a_{n+2}^{+2} may be bounded by a constant for large n. The next two terms may be treated similarly. The terms $4 c_{n}^{2}$ and $2 c_{n+2}{ }^{2}$ are of order $(\log n)^{2}$. The last term may be written $4 c_{n} \iint\left[X_{n+2}(k, p)-X_{n}(k, p)\right]$ $\cdot a(k)^{+} a(p) d k d p \psi_{n}$ where $X_{n}(k, p)$ equals $\tilde{g}(k-p) w(k)^{-1 / 2} w(p)^{-1 / 2}$ for $|k|,|p| \leqq n^{2 / \alpha}$ and equals zero elsewhere. $\iint\left|X_{n+2}-X_{n}\right|^{2} d k d p$ may be bounded by a sum of four integrals of the type

$$
\sup _{p}|\tilde{g}(p)|^{2} n^{-2 / \alpha}\left[(n+2)^{2 / \alpha}-n^{2 / \alpha}\right] \int_{-(n+2)^{2 / \alpha}}^{(n+2)^{2 / \alpha}} w(k)^{-1} d k
$$

which are bounded by const $n^{-1} \log n$ for large n. Hence the last term is bounded by const $n^{1 / 2}(\log n)^{3 / 2}\left\|\psi_{n}\right\|$ for large n.

We conclude that V differs from the positive operator $\int(Y-2 C)^{2}$ $\cdot g(x) d x$ by an operator A, all of whose nonzero matrix elements $\left\langle\psi_{n+m} \mid A \psi_{n}\right\rangle, \quad m=0, \quad \pm 2, \quad \pm 4$ are bounded in magnitude by $n^{\varepsilon+1 / 2}\left\|\psi_{n+m}\right\|\left\|\psi_{n}\right\|$ for some $\varepsilon>0$ and large n. It follows that the operator $N^{\varepsilon+1 / 2}+V$ is bounded below for any $\varepsilon>0$, which of course implies that the locally correct Hamiltonian $H_{0}+V$ is bounded below.

We can improve our estimate on the last term discussed above without essentially changing our estimates on the other terms by using a less sharp momentum cut-off in the definition of a_{n}. To do this we redefine $f_{n}(k)$ as the continuous function

$$
f_{n}(k)= \begin{cases}w(k)^{-1 / 2} & 0 \leqq|k| \leqq n^{2 / \alpha} \\ w\left(n^{2 / \alpha}\right)^{-1 / 2}\left[1-\left(k-n^{2 / \alpha}\right) n^{\beta-2 / \alpha}\right] & n^{2 / \alpha}<|k|<n^{2 / \alpha}+n^{2 / \alpha-\beta} \\ 0 & |k| \geqq n^{2 / \alpha}+n^{2 / \alpha-\beta},\end{cases}
$$

where $0<\beta<1$.
With this choice of f_{n} one can show that the integral $\iint\left|X_{n+2}-X_{n}\right|^{2} d k d p$ may be bounded by const $n^{\beta-2} \log n$ for large n so that our last term is bounded by const $n^{\beta / 2}(\log n)^{3 / 2}$ for large n. By taking β sufficiently small we see that $N^{\varepsilon}+V$ is bounded below for any $\varepsilon>0$.

The author would like to thank Professor D. Masson for reading the manuscript.

References

1. Nelson, E.: In: Mathematical theory of elementary particles. Goodman, R., Segal, I. (Ed.). Cambridge, Mass.-London: M.I.T. Press 1965.
2. Glimm, J., Jaffe, A.: Commun. math. Phys. 22, 253 (1971).
3. Simon, B., Hoegh-Krohn, R.: J. Funct. Anal. 9, 121 (1972).

W. K. McClary
Department of Mathematics
York University
Downsview, Ontario
Toronto M3J 1P3, Canada

[^0]: * Supported by the National Research Council of Canada.

