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Abstract. We consider an Einstein space V of the Petrov type II or III admitting a
group of motions G of high order. First we calculate the composition law and topological
structure of G. Then F(or its submanifolds of transitivity) is represented as the homogeneous
space G/H of G, H being a subgroup of G, and the action G on V and the topology of V
are determined. The topologies of the spaces V are as follows: IR4 (space T2*), 1R4 of IR3!1

(space T2), IR4 (space T3*), IR3 (submanifolds of transitivity in space T3).
In two cases (spaces T2 and T3) we have obtained metrics free of singularities.

§ 1. Introduction

The aim of this work is to investigate the global structure of some
Einstein spaces Tt (satisfying the field equations Rχβ = 0) and Tf (satis-
fying the field equations RΛβ = κgaβ, κφO) possessing high mobility.
Here i — 1,2,3 is the Petrov type.

The local part of this problem has been solved by Petrov ([1],
Chapter 5) who has determined Lie algebras of Killing vectors and
metrics of these spaces. To obtain a global information about the spaces
under consideration we shall use the new topological methods based
on the idea of homogeneous spaces of Lie groups (see, e.g., [2]).

At present a global investigation of gravitational fields is a matter of
current interest. It is particularly interesting to examine the topology
of the highly mobile Einstein spaces T2(T2*) and T3(T3*) since:

(i) these spaces are often interpreted as gravitational waves;
(ii) these spaces cannot be asymptotically flat and so they are

assumed to have peculiar topology ([1], § 30);
(iii) the boundary conditions for Einstein spaces of the second and

the third types are formulated in terms of the highly mobile Einstein
spaces of the same types ([1], § 65) so that topology of arbitrary Einstein
spaces of the Petrov type II or III is determined by the topology of the
corresponding Einstein spaces having maximal mobility.

Taking this into consideration we shall investigate below the global
structure of the Einstein spaces T29 Γ2*, Γ3 and Γ3*, possessing maximal
mobility.
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§ 2. Topology of the Space Γ2*

2.1. The highly mobile Einstein space T2* - let us denote it by V - in
a special coordinate system has the metric

(2.1)βχ(dχ) = - exp(2x4) [Idx1 dx* + (</x2)2] + αexp(-x4)

-(3/κ)(dx*)\ α = ±l, κ>0

and admits the Lie algebra L of Killing vectors spanned by the in-
finitesimal operators

Xi = Pi(i = 1,2, 3, pα -

Z5 - 5x1p1 + 2x2p2 -
(2.2)

(see [1], §30). By the repeated Greek (Latin) indices the summation
over the range 1, 2, 3, 4 (resp. 1, 2, 3, 4, 5) is meant.

2.2. Make the commutators of X^s and find the structural equations
ofL:

1*1X2] = = 0, IX2X*] = -Xι,

Obviously the center of L is equal to 0, so that L has 'the isomorphic
adjoint representation in terms of the matrices a(g) = (a\) determined
by the equation [Jf Jζ] = a\Xk, X = glXt:

0 -g2

A „$-flf

0

Find the connected and simply connected Lie group G with L as its
Lie algebra. For this purpose one may use the exponential mapping:

(2.3)

7-1

fι(s)
Θ3(E2-E3)

0

E3
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The set G of matrices A(g) forms the Lie group with the Lie
algebra L. The correspondence A(g)+->g = (g1, g2, #3, g4, g5) is analytical
homeomorphism between G and the Euclidean space 1R5 so that G is
really connected and simply connected. Coordinates g1 of A(g) are
canonical ([2], § 42, Example 77). The center of G consists of the only
unit matrix, hence there are no other Lie groups with the Lie algebra L
([2], §51).

Make the transformation of coordinates in G:

α1 = /2 (β\ a2 = /3 (g)/2, a3 = g3 (1 - E~'),

In the new coordinates alA(g) takes the form:

^5 2a4F2 -2(a4)2F~ί -(a:

r?2 Λ 4 17— 1 3

(2.4)

0

F3

a1-

2a2

α3

6α4

1 J
F = exp(-α5).

From the equation B(ab) = B(a)B(b) one may obtain the composition
law in G (in the coordinates α'):

(a,b)^ab (a,beG),

(ab)2 = a2 + b2 exp(-2α5) - 3α3fe4 exp(-3α5) - α4^3 exp(α5) ,

2.3. Determine topology of V. G acts on V transitively so that V
may be represented as the homogeneous space G/H of left cosets gH,
geG, H being a subgroup of G. Obviously H has the dimensionality
dim// = dim G — dimF= 1.
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Let LH be the Lie algebra of H. LH.can be taken as the subalgebra
of L consisting of all infinitesimal transformations X(x)eL with the
property X(0) = 0. We obtain from (2.2) that X(0) = 0 implies X = const.
X4 so that LH is spanned by X4.

Let first H be connected. LH lies on the axis g4 in the vector space L
and so H in the canonical coordinates gl lies on the same axis g4. It is
immediately verified that under the transformation (2.4) the axis g4 is
transformed into the axis α4, hence in the new coordinates a1 H consists
of the elements h = (0, 0, 0, c, 0), c is real.

Calculate the homogeneous space V — G/H. For any geG the left
coset gH consists of the elements:

3g5), g2 -leg* exp(-3#5),

It is easy to see that for the every geG there exists in gH the unique
element with zero fourth coordinate (the corresponding value of c
is equal to c = — g4 exp(3g5)). This element

(gί+6g4(g2 + 3g*g4\ g2 + 3g3g4, g\ 0, g5) (2.5)

will be considered as the one representing the left coset x = gH. We
shall also denote it by

(x1,*2, -5x\ 0, x4/2) (2.6)

and so the defined numbers xα(α = l,2, 3, 4) will be considered as co-
ordinates of gH in G/H. Comparing (2.5) and (2.6) we obtain the co-
ordinate expression for the canonical projection of G onto G/H:

G^G/H,

</2 + 30V), P2(β) = g2 + 30V,

The homogeneous space V = G/H consists of all points x = (x1, x2, x3, x4).
If g runs over IR5 then xα run over all real numbers so that V = p(G)
= p(IR5)=riR4 is homeomorphic to the Euclidean space R4.

Determine the action of G on V. For this purpose one must take an
element geG and a point x = aH e V and calculate p(gά)\

(g, x)\->g(x) = g(aH) = (ga) H = p(ga) ,

g^x) = x1 exp(- 5g5) + 10* V exp(-205) - 50x3(#4)2 expfe5)
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If g^s are infinitesimal then

4-5χig5, δx2 = g2 + Wx*g4-2x2g5, (2.7)

On the other hand we must have

δχ« = ξ«gl (2.8)

where ξt are Killing vectors. Comparing (2.7) and (2.8) we find ξ"(x)
and then the infinitesimal operators Xi(x) = ξf(x)pΛ. These X{ coincide
with (2.2) so that coordinates xα in (2.2) and (2.6) are the same and we
may use the Eq. (2.1) for the metric of V=G/H.

2.4. Investigate whether H may be nonconnected. Let H be a non-
connected subgroup of G. Then H contains H as its connected component
of the unit element and G/H is obviously a factorspace of the space
G/H. IΪH is closed then the corresponding homogeneous space V— G/H
always exists, but it admits a factorstructure of the Riemannian structure
of the space V = G/H if and only if the equation

0o(dx) = go(fh(dx)) (2.9)

is satisfied for all h e H (see [3]). Here 0 is the point H e V, fh is the
automorphism of the tangent space T0, induced by the inner auto-
morphism g\-*h~ίgh of G, dx e T0 is any.

In the case under consideration the Eq. (2.9) has only the trivial
solution h = (0, 0, 0, c9 0), c being any real number, i.e. heH. So heίf
implies heH and this gives H = H. Therefore, H may not be non-
connected and V is always homeomorphic to 1R4.

§ 3. Topology of the Space Γ2

3.1. The symmetric Einstein space V of the Petrov type II has the
metric

gx (dx) = 2dx1 dx4 - ch2 x4 (dx2)2 - cos2 (x4 + c) (dx3)2

c = const

and admits the Lie algebra of Killing vectors L spanned by the in-
finitesimal operators

(3.2)

tg(x4 + c) p3 - p4
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(see [1], § 30); note that the second metric (30.26) given in [1] under the
name of the symmetric one does not admit a 6-ρarametric Lie group
of motions and does not satisfies the field equations.

3.2. As usual, for the global investigation of the metric (3.1) we first
find the structural equations of L:

= X5, IX5 X,-} = X49 other [^X,] = 0 .

The center of L is nontrivial and is spanned by X1 so that we may not
use the adjoint representation. To determine the Lie group G with the
Lie algebra L we may proceed as follows.

The composition law (α, b)\-+ab =f(a, b) in every Lie group satisfies
the equations

where 4(α)'s can be obtained from the Maurer equations

akι;}-<^ = 4«« 4(0) = 4,

<?mn being the structural constants of L. In our case:

ι>ί = l ( l£i£6), v2 = -a\ vl = -a\ v4 = -a5,v5

6

υ\ = a*/2, υ\ = - a2/2, v\ = a5/2, υl = - a4/2,

V1

6 = l(a2)2-(a3)2-(a4)2-(a5)2 ]/2ί other vlj = 0.

The composition law in G is as follows:

(ab)3 = a* + b2 shα6 + b3 chα6 , (3.3)

(ab)4 = a4 + b4 cos α6 + b5 sin α6 ,

(ab)5 = a5-b4 sin a6 + b5 cos a6 ,

(ab)6 = a6 + b6.

The group G consists of all points a = (α1, ..., a6) with the composition
law (3.3) and so is homeomorphic to 1R6 and is connected and simply
connected. Note that the center of G is nontrivial so that there are other
Lie groups with the algebra L, but we loosing no generality may restrict
ourselves to considering only simply connected group G.

3.3. Determine the topology of F. G is transitive on V so that V is
a homogeneous space G/H. The Lie algebra LH of H is spanned by Jf3
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One-parametric subgroup of G with tangent vector X = eίXi can
be calculated from the equation ([2], § 42)

dg^ή/dt = wί (0(ί)) e\ 0l'(0) = 0, wi(α) = 3/< (α,

t being canonical parameter. We obtain

X = X3: 0(0 = (0,0,t, 0,0,0),

X = Z5 + X4 tgc: flf (s) = (0, 0, 0, 5 tgc, 5, 0) .

The connected subgroup HcG with the algebra LH can be obtained
by making all products o ϊ g ( t ) and g(s):

h e H=>Λ = (0, 0, ί, s tgc, 5, 0) ,

5 and t being any real numbers.
Calculate G/H. For the every g e G the left coset gH consists of the

elements

s(g4 tgc + /) sin/], g2 + tshg6, / + ίch/,

), g5 + s(-tgc sin/ + cos/), g6) .

Choose an element gegH representing gH as the unique element
satisfying the conditions :

(gh)3 = 0, ((gh)4)2 + ((gh)5)2 = minimum .

It follows from this that

t = - //ch/, s = ~(g4 sin(/ + c) + g5 cos(/ + c)) cose ,

§ = (/ + (g3/2) (g2 - g3 th/) + (N/2) (g4 sm(g6 + c) + g5 cos(/ + c)) ,

#2-/th/, 0, AΓcos(/ + c), -ΛΓsin(flf 6 + c), /),

N = g4 cos(/ 4- c) - g5 sin(/ + c) .

g also will be denoted by

(x1, x2, 0, x3 cos(x4 + c\ -x3 sin(x4 -h c), x4)

and so defined xα's will be considered as coordinates of gH. Therefore,
the analytic expression of the canonical projection G-^G/H is as follows:

Pl (9) = 9' + (//2) (g2 - g* th/) + (N/2) (g4 $m(g6 + c) + g5 cos(g6 + c)) ,

P2(β) = Q2~f th^6, p*(g) = AT, P

4(g) = / .

Obviously p(IR6) = 1R4 so that V= G/H is homeomorphic to 1R4.
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G acts on V as follows :

g1 (x) = x1 + 01 + (g3/2) (g2 - g3 th(g6 + x4)) + x2 g3 chx4/ch(g6 + x4)

+ (x2)2 sh#6 chx4/2ch(#6 + x4)

+ [g4 sin(g6 + x4 + c) + #5 cos(/ + x4 + c)]

- [x3 + (#4/2) cos(#6 + x4 + c) - (#5/2) sinfo6 + x4 + c)] ,

g2(x) = x2 chx4/ch(#6 + x4) + g2 - g3 th(06 + x4) ,

03(x) = χ3 + g4 cos(g6 + x4 + c)-g5 sin(gβ + x4 + c) ,

When gfps are infinitesimal we obtain:

g(x) = x + δx:

= g4 cos (x4 + c) — g5 sin (x4 + c) ,

X4 zn χ3 sin(x4 + c) P! + cos(x4 + c) p3 ,

X5 = x3 cos(x4 + c) P! — sin(x4 + c) p3 ,

X6 - (1/2) (x2)2

 Pl - x2 thx4p2 + P4 -

To obtain the metric of V one can solve the Killing equations for these
operators Xt :

gx(dx) = 2dx1 dx4 - ch2x4(dx2)2 - (dx3)2 + [(x3)2 + c] (dx4)2

c = const .

This metric automatically satisfies the field equations jRα/s = 0 and
belongs to the Petrov type II.

3.4. Let us compare (3.1) and (3.4). Note first that the Lie group G
is an analytic manifold; hence G induces an analytic structure in its
homogeneous space V = G/H so that V is also an analytic manifold and
gx(dx) must be an analytic function of x and must not possess any
singularity. It is the result (3.4) that we have obtained.

It follows from this that the singularities in the metric (3.1) (at
x4 = (n + 1/2) π — c9n being any integer, det gx = 0) are connected with
a "bad" choice of the coordinates. It should be noted that coordinates xα

in (3.1) and in (3.4) are transformed into each other by functions of the
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class C° (i.e. continuous but without continuous derivatives). The metric
(3.1) admits only a local group of motions (with the Lie algebra L)
whereas the metric (3.4) admits the full group of motions G.

So our method enables one to determine global structure of the Ein-
stein space K, to remove the coordinate singularities in the metric (3.1),
and to obtain the correct global expression (3.4) for the metric of V.

3.5. Solving Eq. (2.9) we obtain:

h — (p, 0, g,rsinc? rcosc, 0).

Here the parameters q and r describe H (Eq. (2.9) is trivially satisfied
for all h e H\ the parameter p describes the center C(G) of G. Choosing
a nontrivial discrete subgroup N C C(G) we obtain the group G = G/N
which is homeomorphic to 1R5 T1 (topological product of the Euclidean
space IR5 and circle T1). It is immediately stated that the corresponding
homogeneous space V has topology IR3"!1, since now x1 eT1, i.e. the
axis x1 is rolled up into a circle.

§ 4. Topology of the Space Γ3*

4.1. The highly mobile Einstein space V of the Petrov type III (κ φ 0)
has the metric

gx(dx) = exp( - 2x4) (2e1 dx1 dx3 - (dx2)2) + 2e2 exp(x4) dx2 dx3

-(1/2) exp(4x4) (dx3)2 - (3/κ) (dx4)2,

el9e2 = ±l, %>0 (4.1)

and admits the Lie algebra L of Killing vectors spanned by the operators

Xt = Pi(ί = 1,2, 3), X4 = p4 + £ nix
ipi (n, =4,n2 = 1, n3 =-2) (4.2)

(see[l],§30).
4.2. L has the structure

IXtXj] = 0, KX4] = niXt (ij = 1, 2, 3).

Its center is trivial and so to find the group G with the algebra L one
may use the adjoint representation:

αfo)= "2" "2^2
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and the exponential mapping:

exp(-n2flf4) n2g
2E(n2g

4)

£(x) = (l-exp(-x))/x.

After the transformation

a1 = n^Efag4) (ί = 1, 2, 3), α4 - - g4

we obtain the more simple matrix representation of G:

B(g) =
Qxp(n2a

4)

exp(ft3α
4) c?

1 J

and (from the relation B(ab) = B(d) B(b)) the following composition law:

(aVf = a1 + bl exp (nt a
4) , (αfr)4 = α4 + b4 .

G is homeomorphic to IR4.
4.3. Construct now V=G/H (G is transitive in V). We have:

dimH = dimG — dim V = 0, so that H is discrete. The connected discrete
subgroup He G is just the trivial subgroup H0 = [e] consisting of the
only unit element e 6 G. The corresponding homogeneous space
V — G/HO coincides (as manifold) with G so that V is also homeomorphic
tolR4.

G acts on V as follows :

(g, x)h»0(x) = 0x (0 e G, x 6 V= G) .

When 0α's are infinitesimal we obtain:

From here we find the infinitesimal operators. They coincide with (4.2)
so that coordinates xα in V= G/H0 are the same as in (4.2) and we may
use the expression (4.1) for the metric of V.

4.4. Solving Eq. (2.9) we obtain the trivial result: ft = (0,0,0,0) = e.
Hence homogeneous spaces G/H with discrete nontrivial H do not
admit the Riemannian structure defined by the scalar product (4.1).
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§ 5. Topology of the Space Γ3

5.1. The highly mobile Einstein space Γ3 is not determined yet.
The previous result of Petrov ([!],§ 30) has turned out to be wrong.
Einstein spaces T3 possessing groups of motions have been considered
in [4-6] and it has been shown that there exists a space V with the metric

gx(dx) = - (x3)2/(*2)3 - ((ax*)2 + (dx2)2) + 2dx3 dx4

-(3x2/2)(dx4)2 ( '

and with the Lie algebra L of Killing vectors

Make the transformation:

x4-*x1, xl-+x2, lnx2-> — 2x3, 21nx3 —

after which we have :

gx(dx) = - (3/2) exp(-2x3) (dx1)2 - exp(4x3 + 2x4) (dx2)2

- 4 exp (2x4) (dx3)2 + 2 exp (x4 -x^dx1 (dx4 -dx3), *

*ι=Pι> *2 = P2, X3=x1pί-2x2p2+p3. (5.3)

In new coordinates the equations of the transitivity manifolds are
x4 = const. Besides, this new metric (5.2) does not possess coordinate
singularities (the old one (5.1) has such singularities on the axes x2 and x3

and, besides this, has incorrect signature in the region x2 < 0).
5.2. The theory of topological groups enables one to determine the

global structure of the transitivity manifolds F3 C V. We proceed as
before.

L has structure

Its center is trivial so that we can use the adjoint representation:

-ί/3 0 0

a(g) =

and the exponential mapping:

-2g

0 J

0 gίE(g3)

-2g2E(-2g3)

1



50 M. E. Osinovsky: Global Einstein Spaces

It will be convenient to transform the coordinates gl:

exp(α3) 0 a1

exp( —2α3) a2

1 .

The composition law in group G with the algebra L is as follows:

(ab)1 = a1 + b1 exp(α3), (ab)2 = a2 + b2 exp(-2α3), (ab)3 = a3 + b3.

Here F3 = G/H and dimH = 0 so that we must take the trivial subgroup
HQ = {e} as discrete connected subgroup of G. Hence K3 coincides
(as manifold) with G and we have (cf. § 4):

(g, x)\->g(x) = gx (g e G, xe F3 = G).

Taking infinitesimal g^s we obtain the same operators (5.3) so we can
use the metric (5.2).

G is obviously homeomorphic to 1R3, and so F3. The Eq. (2.9) in this
case has the only trivial solution h = e, hence the topology of F3 is unique.

5.3. The whole space V can have, in principle, very complicated
topology. To determine it one must introduce some additional demands
about V (e.g. geodesic completeness).
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