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The Entropy Density of Quasi Free States
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Abstract. For lattice invariant quasi free states on the Fermi lattice system the mean
entropy is explicitly calculated; it is proved that it is a norm continuous functional on this
set of states which is not weakly continuous.

I. Introduction

In the algebraic approach of statistical mechanics a lot of work has
been done on the existence and properties of the mean entropy of
translation invariant states (Ref. [1,2]). For classical systems and
quantum lattice systems the existence of mean entropy has been proved;
furthermore as fundamental properties it has been proved that the
entropy-functional on the set of invariant states is affine and semi-
continuous.

In this work we study the mean entropy of the quasi-free lattice
invariant states on the Fermi lattice system. The existence of the mean
entropy follows from Ref. [2]. Here we derive an explicit form of the
mean entropy for those states (Theorem 2). This result may be usefull in
deriving rigorous results for solvable models in statistical mechanics.

Furthermore much attention is given to the continuity properties of
the entropy functional with respect to different topologies on the set of
quasi-free states. It is proved that it is continuous with respect to the
norm topology (Theorem 1) and that it is not continuous with respect
to the weak topology (Theorem 3).

II. Entropy density

A. Preliminaries

1. The Fermi Lattice Algebra

We consider the one-dimensional lattice Έ = {0, ± 1, ±2, . . . } . The
Hubert space 12(Έ) can also be considered as an Euclidian space H
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equipped with the inner product:

s(ψ, φ)=Re(ψ, φ)

where <...> is the ordinary complex inner product.
Let A C TL be a finite set, then

12(Λ)C12(Έ)

and the corresponding Euclidean space HΛ C H.
It is clear that

H = |J HΛ where . means the closure .
ΛCΈ

To every finite AcZ we associate the C.A.R. algebra stfΛ of observables
of the volume A. It is generated as a complex algebra by the elements
B{φ)\ φ e HΛ. The r-linear map φ-^B(φ) satisfies:

i) B*(φ) = B(φ),

li) {B(φ)9B(ψ)} = 2s(φ9xp).

If Ax CA2 then there exists an isometric injection s^Aχ^s^Ar

Hence si — [j stfΛ can be equipped with a C*-norm compatible with
ΛCΈ

the norms on each stfA.
stf = [j stfA is called the Fermi lattice algebra of the quasi-local

ΛCΈ

observables. Furthermore, if J / ( H , s) is the C.A.R. algebra [3] constructed
on H, we have ,5/ = stf(H, s) because they contain both the same dense
algebra generated by the set ίB(φ\ φ e [j HΛ\.

\ ΛCΈ J

2. Lattice Invariant Quasi Free States

Let έ 612(Έ) be the sequence (δix)xeΈanά fln~x = en\ f2n- \e\ neΈ.
The set {e\ ieΊ) is a complete orthogonal basis of 12{Έ) and so is {fn,neΈ}
for//.

We define a s-orthogonal operator TeB(H\ called the translation
operator, by:

T induces an automorphism τ τ of d defined by [4]:

ττB(φ) = B(Tφ), φeH.

A state ω on j / is called translation invariant if
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In what follows we restrict ourselves to the set of quasi free states ωA

on sd.They are uniquely determined by their two-point functions:

ωA(B{φ)B(ψ)) = s(φ, ψ) + is{Aφ, ψ),

where A e B(H) (all bounded operators on H) satisfies

A+ = — A (A+ = adjoint of A with respect to s),

0^A+ A^>1.

The quasi free state ωA is translation invariant iff [A, Γ] = 0, i.e. iff the
operator A is translation invariant [4].

Translation invariant operators can be described as multiplication
operators as follows [5]: let C x be the circle of radius l/2π and L2(CX)
the real Hubert space of square integrable functions on <Cί. The map U
of H into the underlying real subspace of l}{<£γ) defined by

Ufn = fn(χ) = e2πιnx is unitary .

If [A, T] = 0 and fe L2(C t) then:

x)= £ s(f\Af°)fk(x\
keΈ

iϊϊ)\\A\\ = sup\a(x)

Hence we see that each quasi free state ωA which is translation
invariant defines a multiplication operator A:

(Af)(x) = a(x)f(x) = ib(x)f(x)
with

x->b(x) real,

b(χ)= -fo(l-χ),

Mx)\ ύ 1

3. Definition of the Local Entropy

If A CΈ is a finite set we denote by N(A) the number of points in A.
For a translation invariant state ω the existence of the entropy density

SJω)
s(ω)= \imsΛ(ω)= lim -

yl-^30 yl-^oo N (A)

has been proved [2], where SΛ(ω) is the local entropy which can be
written in the following form if ω = ωA is a quasi free state [6]:

log + log
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where
\ΛΛ\ = (AUΛ)112

AΛ = PΛAPΛ

and PΛ is the projection operator on HΛ.
In the following we derive an explicit expression for the entropy

density s(ωA) of a translation invariant quasi free state ωA in terms of the
associated multiplication operator A. We denote by S the set of transla-
tion invariant quasi free states on si.

B. A Continuity Property of the Entropy Density

Define a continuous real function /: [0,1] -• [0, log2] by:

= 0.

Lemma 1. \f(x)-f(y)\^f(ί-\x-y\), x, ye [0,1].

Proof. The case x = y is trivial. Suppose y > x and put ε = y — x > 0.
The case ε = 1 Qy = 1, x = 0] is again trivial. Hence we suppose 0 < ε < 1.

Now:

4^44^ for x β ( 0 , l ) .4 4 g 4
αx 2 1 + x

hence x->/(x) is a monotonically decreasing function of x e [0,1] and:

1/W - f(y)\ = f(χ) - f(y) = f(χ) - fix + β) = Fε(χ). (l)

The function x-^Fε(x) is defined and continuous for x e [0,1 — ε] and:

dFE(x) 1 ( l-x)( l- fx + ε) A . m 1 .

dx 2 (l + x)(l -x-ε)

Hence x-^Fε{x) is monotonically increasing for x e [0,1 — ε] and thus:

F ε(x)^F e(l-ε) = / ( l - ε ) (2)

The lemma follows from (1) and (2). •
Theorem 1. The entropy functional s : <ί-> [0, log 2] is continuous with

respect to the norm topology on S.

Proof. The map ωAe$-*AeB(H) is continuous with respect to the
norm on $ and B(H). We prove now that the map A-+s(ωA) is norm
continuous. A C TL is a finite volume.

If SEB(HΛ) is a symmetric operator we denote by μπ[S], 1 ̂  n ̂  2N(Λ)
the eigenvalues of S in ascending order.
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If S, TeB(HΛ) are symmetric then ([7], Theorem 6.44):

283

Let ωA and ωB be elements of $ such that Hω^ — ωB | | ^ —, ε ^ 1, then

Using Lemma 1 we get:

2N(Λ)

Σ
n = l

1 2N(Λ)

^ 4 Σ
1

Now for x j ^ O w e have \x — y\^]/\x2 — j / 2 | , hence:

j 2JV(Λ)

Furthermore we have:

I lKi l 2 - !^

and hence:

\\BΛ\\)\\AΛ-BΛ

^Bl). D

C. Explicit Form of the Entropy Density

Lemma 2. Let

Λ ( x 1 , . . . , x t ; n ) = Σ - Σ
then

x l i • " ' Xk+ 1 i

sm(πxk+1)
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Proof.

and

Lemma 3. Let xelRk and

* sinπx[

M sinx,

e ί 2 π Λ - k + 1 , ,
ky

. D

/sin n £ x.

i s m 2_j xi

L^ί / ε = {JC GlRk I - π + ε ^ X f ^ π - ε ; /=l, . . . , fe; 0 < ε < π } and let
/ : IRfc-^IR be a bounded integrable junction on /ε, continuous at the origin,
then:

lim \ dx f(x)δk(x;n) = πkf(Q).

Proof. Choose a <5 satisfying 0 < δ < π — ε and such that / is con-
tinuous in Ix = /(π_ό). Put I2 = IJIX (see Fig. 1 for the 2-dim. case).

We prove first that only the origin contributes to the integral.
/ k \ k

The zero's of sin Σ xι) a r e located on the parallel planes Σ χi = nπ
\i = 1 / ι = l

neΈ. There are at most three of those planes (n = — 1,0,1) which intersect
I2. We divide I2 in two regions Rx and R2:

lx is such that it consists of strips containing the zero's of sin

that f dx < η with η > 0, arbitrarely small and

x i

that >ξ>0 in R2 = I2/Rί



Entropy Density 285

Fig. 1

(see Fig. 2 for the 2-dim. case).

Fig. 2

sin\n X x

Then ^-T-JΓ—Γ = 1 i n Ri- S o t n a t

πsin V

δk(x; ή) is bounded by φ in R{ and

n(5k(x n) is bounded by — in R2

both bounds are independent of n and moreover φ is independent of η.

dxf(x)δk(x;n) dxf(x)δk(x\n)

^Cίηφ-

1
dxf(x) nδk(x; n)

nξ

where |/(x)| S C f° r x E h a n ( i ^2 — \ dx.

Hence we have:

lim j dxf(x)δk(x\n) (3)

Take now δ sufficiently small Then |/(x) — /(0)| < a for JC ε /x with α > 0
arbitrarely small.

dxf(x)δk(x\n)-f(O) $ dxδk(x;n) < α
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We estimate now

Ak — lim \ dx δk{x\ή).

Take a ζ > 0. Then for δ sufficiently small we have:

k

<ζ
n{ΣXi)

because x -> — — — is continuous at x = 0.
smx x

After the transformation Xi-^nx^.

Γ JL sinίnXj ) sinn(Γx ) + " δ JL sinxt sin(ΣxJ^ (Σx

Then
+ Λ sinΣx f

Hence
lim J dx/(x) δk(x; ή) = πkf(0). (4)

Combining (3) and (4) we get the desired result. •

Now we calculate the entropy density in the case the multiplication
operator A is a step function.

Lemma 4. Let ωAeS be such that A is the multiplication operator by
the step function ib(x).

Let

,'(« = - f dx

Γ/ien s(ωA) = s'(b).

Proof. Let Λn= {1, ...,w}cZ n = l , 2 , . . .
For notational convenience note:

Pn = P ^ the projection on //„ = HΛn

Then
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The exchange of Tr with Σ is allowed because Ύr\An\
2k^2n and

^ ^ ^ is convergent.

Then

| * 1 } «.(*)• (5)

First we look for lim aJk) for k fixed.

2n J = 1

S

1 2Λ .-,

In ^ '

where B is the multiplication by b(x).
Asb(x)= Σ bne

ί2nnx v/e get

Σ - Σ K

and hence

Σ
- l 0

1 x *
= ^Γ" ί ' ί dxι dx2kb(x1)... b{x2k) glk(x1,..., x2fc 2w).

Z ί 1 0 0

Note

h (v

then

Using

^lk) In

Lemma

•ί

2:

\dx
0

an (k) =

2k-l ^ J

1

b

^ sin2wπ(xί_1 — x;

C=\ s inπ(x i _ 1 -x / )

where we have x 0 = x 2 k .
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Let π(xι^1 —xι) = zl9l=ί,...,2k—ί with xo = x2k

 t n e n

Xι = xik O^ + + Z J , / = 1, . . . , 2 / c — 1 ,
π

dx1...dx2k_ι =

Using Lemma 3 we have as b(x) is a step function

i) lim hn(x2k) b{x2k) = b2k(x2k) almost everywhere furthermore

ii) \b(x2k)hn(x2k)\^l.

i) and ii) assure the conditions of the Lebesgue dominated con-
vergence theorem. Hence

i

α(/c)= lim αM(fc)= \dxb2k(x).

In virtue of Weierstrasz's rule we can interchange lim and Σ in [5]. Hence

s(ωA) = lim sn(ωA)

= l θ g 2 ~ t ? 1 ~2k(2k^T) >

= s'(i>) D

S is the set of multiplication operators with kernel b(x) on L2(C t) such
that ib(x) f(x) = (Af) (x), / e L2^) and such that ωΛ e #.

We define the functional s': /-> [0, log2] by:

log (-T-) + (-^-j l o g

Theorem 2. s'(b) = s(ωA) ωAeS where A = ib.

Proof. First the map be$-^s'{b) is continuous with respect to the
norm topology (i.e. the supremum norm on the functions b(x)) (cfr.
Lemma 1). Consider the complex C*-algebra ^ generated by i, the
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subalgebra of step functions on <CX is dense in J^ because it separates
the set of states on 3F (see [8], Theoreme 11.3.1). Hence every function
bei can be approximated in norm by a sequence bn of step functions of
S. Choose a sequence of step functions bneS° converging in norm to
bed where A = ib. Then the corresponding operators AneB{H), where
An = ibn converge also in norm to A and:

s(ωA)— lim s(ωAn) (Theorem 1).

By Lemma 4
s(ωAn) = s'(bn).

Hence
s(ωΛ)= Mm s'(bn) = s'{b). D

Theorem 3. ωAeS>->s(ω^) is not continuous with respect to the weak
topology on $.

Proof. Consider for instance the sequence of step functions /„,
n= 1,2, . . . , / M e i defined by:

and

The multiplication operators

(Fnψ)(x) = ifn(x)ψ(x) φ e L 2 ( d )

converge weakly to zero. Therefore the corresponding quasi free states
ω" converge also weakly to the central state ω 0 e ^, defined by:

ωo(B(ψ)B(φ)) = s(ψ, φ), ψ,φeH.
But

Hence
lims(ωΛ) = 0, but s (ω 0 )=log2. D
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