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Abstract. The problem of return to equilibrium is phrased in terms of a C*-algebra 3ί,
and two one-parameter groups of automorphisms τ, τp corresponding to the unperturbed
and locally perturbed evolutions. The asymptotic evolution, under τ, of τp-invariant, and
τp-K.M.S., states is considered. This study is a generalization of scattering theory and
results concerning the existence of limit states are obtained by techniques similar to those
used to prove the existence, and intertwining properties, of wave-operators. Conditions
of asymptotic abelianness provide the necessary dispersive properties for the return to
equilibrium. It is demonstrated that the τp-equilibrium states and their limit states are
coupled by automorphisms with a quasi-local property; they are not necessarily normal
with respect to one another. An application to the X — Y model is given which extends
previously known results and other applications, and examples, are given for the Fermi gas.

I. Introduction

We examine general properties of systems whose dynamics have been
locally perturbed and illustrate these properties with examples. Our
specific interest is whether systems, that have been perturbed in this
manner, return to equilibrium under the unperturbed evolution. In
this context we consider the behaviour of states which are invariant,
or satisfy the K.M.S. condition, for the perturbed dynamics. We demon-
strate that this type of problem is tractable with methods which are a
natural generalization of scattering theory.

For simplicity of formulation we work in an algebraic setting and
assume that the kinematic observables of our system form a C*-algebra 21.
The dynamics is specified by a one-parameter group of automorphisms τ
of 21 which we take to be strongly continuous, i.e.

These assumptions could be weakened at the cost of introducing more
detailed structure which is not directly relevant to the problem under
discussion.

In Section 2 we define a second group of automorphisms τp of 2ί
which is to be considered as a group arising from a local perturbation
of the Hamiltonian. We point out some properties which are stable
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under this perturbation and some that are not. In Section 3 we consider
the evolution under τ of states which are τF-invariant, or satisfy the
K.M.S. condition with respect to τp. In Section 4 we discuss the notion
of quasilocal automorphisms of 9ί and their relevance to the problems
of return to equilibrium. We give applications of our results to the X — Y
model and the Fermi gas in Section 5.

II. Local Dynamical Perturbations

In the following 21 is always a C*-algebra with identity and τ a
strongly continuous one-parameter group of automorphisms of 91.

Definition 1.Given the pair (91, τ) and P = P*e 91 the perturbed evolu-
tion τp is defined, as a strongly continuous one-parameter group of auto-
morphisms of 91, by the uniformly convergent series expansions

and

τf(A) = τ,(A)+ Σ '"" ί ds1...dsB[τ,1(P),[...[τSπ(P),

for all Λe^ and for t ^ 0, and t ^ 0, respectively.

Note that the n-th term of these series is bounded by (2|ί| \\P\\f ||i4||/n!
which ensures the convergence and allows one to check that τp is a group
of automorphisms etc. Alternatively one can calculate from these
series that ,

and hence deduce the integral relations

and

τϊiτt2(A)-τtί+t2(A) = i'i dsτζτ.s([τs(P), τ ( l + t2(Λ)]). (**)
b

We next show in what sense τp is a local perturbation of τ and
simultaneously deduce that covariance of representations of 9Ϊ is stable
under such perturbations. Recall that a representation π of 9ί, on a
Hubert space Jfπ, is said to be τ-covariant if there exists a strongly
continuous group of unitary operators U on J4?π which implement the
group of automorphisms τ in the following way

π(τt(A)) = U(t) π(A) U(-t), t e 1R, A e 91.
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Theorem 1. Let (21, τ, τp) be defined as above and let π be a representa-
tion of 21. The following are equivalent;

1. π is τ-covariant.

2. π is τp-covariant.

If these latter conditions are fulfilled and U, UP, denote the groups of
unitaries implementing the τ-, and τp-automorphisms, respectively, then
the infinitesimal generators H, and HP, of these groups satisfy the relation

HP = H + π(P).

Proof. To establish the equivalence it suffices to prove that con-
dition 1 implies condition 2 because τ can be expressed as a perturbation
of the evolution τp. But to show that 1 implies 2 it is sufficient to construct
Up in terms of U and π. We sketch this construction for t ̂  0, the case
t ^ 0 is similar.

Consider the integral equation

UP(t) = U(t) + / J ds UP(s) π(P) U( - s) U(t).
b

This can be solved by iteration and one finds

where Ur(t)=W(t)U(t)

W(t)=l+ Σ i" ί ds1...dsnπ(τSi(P))...π{τJP)).

It is then easy to check that

U
P
(t) π(A) U

P
(-ή = π(τ

p
(Λ)), A e 21, t e 1R

+
 .

The proof of the second statement of the theorem can be extracted
from [1], pages 496—497.

In the foregoing there is a symmetry between τ and τp, each group is a
local perturbation of the other with perturbations P, and — P, respectively.
There are, however, many properties of the pair (2ί, τ) which are not
stable under perturbations of the above kind and hence introduce an
asymmetry between τ and τp. We mention two such properties which are
of use in the analysis of the return to equilibrium of perturbed states.

There exist triplets (2X, τ, τp) such that (21, τ) is asymptotically abelian, i.e.

but (2ί, τp) is not asymptotically abelian.

It is easy to construct examples of this nature, several are given in
Section 5. We show in the following two sections that this asymmetry
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has a physical origin and arises whenever the perturbation isolates a
finite subsystem, either by strict isolation in space or by the formation
of bound states.

Next let ω be a state over 91 and denote by Nω the set of states which
are normal with respect to ω, i.e. the uniform closure of the convex hull
of the set of states {ωA A e 91} where

ωA(B) = ω(A*BA)/ω{A*A), Be% ω(A*A)>0.

The set of states Nω is often viewed as the set of local perturbations of ω.
It is known that these states have properties of return to equilibrium
under quite general circumstances (see for example [2], Chapter VI).
We cite, as an illustration, the result that if ω is a τ-invariant factor state,
(91, τ) is asymptotically abelian, and ω' e Nω then it follows that

lim ω'(τt(A)) = ω(A).
\t\-+co

It might appear that this property would be of use in studying the
evolution, under τ, of τp-invariant states. In general the situation is
however more complicated.

There exist triplets (91, τ, τp), with (91, τ) asymptotically abelian, and
a τp-invariant state ω' such that d is not contained in any set Nω associated
with a τ-invariant state ω in the above manner.

The set of states one is led to consider in the framework of dynamical
perturbations is not directly connected to the set of normal states but is
related to sets obtained by the action of certain automorphisms which
we discuss in Sections 3 and 4.

They are two physical reasons why the perturbed and unperturbed
equilibrium states are not normal with respect to each other and these
can be roughly explained as follows. As the perturbation P is bounded
the states differ by a finite amount of energy. This energy can be trans-
ferred either by a finite number of particles or an infinite number of
particles with infinitesimally small energy. In the first case normality
is usually respected but non-normality can arise if there is a super-
selection rule in the theory. In the second case the infra-red phenomena
is expected to destroy normality. Examples of both these phenomena are
given in Section 5.

III. Return to Equilibrium

In this section we examine the evolution under τ of states which are
τp-invariant. Firstly we consider a special subclass of such states, the
states that satisfy the Kubo-Martin-Schwinger (K.M.S.) condition with
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respect to τ p . To introduce this condition it is necessary to extend the
automorphisms τ, and τp, to imaginary times. We denote by 21, and W
the dense τ- and τp-invariant, sub *-algebras of 21 formed by the τ-, and
τp, analytic elements (cf.J3] and [4]; we follow Definition 1 of [4]). For
simplicity we take P e 2ί, then the definition of τp implies that 21 = 2IP

and the extension of τ p to positive imaginary times is given by

ί
for

and β^

The state ω is defined to satisfy the τp-K.M.S. condition, at inverse
temperature β ^ 0, if

ω{τp

β(A)B) = ω(BA), A,Be&p.

If this condition is satisfied then ω is automatically τp-in variant [5].
A similar definition and conclusion holds for τ.

Theorem 2. Let ω be a state over 9ί satisfying the τp-KM.S. con-
dition at inverse temperature β, where P e ί l . Further let ω+ denote
weak * limit points of τtω as t tends to ± oo.

// (21, τ) is asymptotically abelian it follows that ω+ satisfy the
τ-K.M.S. condition, at inverse temperature β. In particular, if there is a
unique state ωβ with this latter property then it follows that

ωβ(A) = lim ω(τt(A)), A e 91.

Proof. Take A ? # e 9 I c 9 I p . From (**) and the τp-invariance of ω
we have

\ω{τp

β(τt(A)) τt(B)) - ω(τt+iβ(A) τt(B))\

But using the τp-K.M.S. condition for ω we then find

\ω{τt(τiβ(A)B))-ω(τt(BA))\

The first factor of the integrand converges to zero as |ί| —> oo, because
(21, τ) is asymptotically abelian, and the second factor has a bound,
uniform in t, which can be calculated from the definition of τp using
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B e 91. Thus the first conclusion of the theorem is established. The second
conclusion follows because the assumed uniqueness ensures that all
limit points ω± are identical, i.e. the limit exists.

Remark. A slight elaboration of this proof establishes the more
general result that if ω' is a state normal with respect to a τp-K.M.S. state,
i.e. ω' e Nω, then all weak * limit points of τtω' as |ί| -» oo are τ-K.M.S.

The existence of the weak * limit of τtω is not established in the above
theorem, except by the implicit assumption of a unique τ-K.M.S. state.
It is unclear whether asymptotic abelianness of (91, τ) is sufficient to
establish that these limits exist but conditions of this type can be given
which are both necessary and sufficient.

Theorem 3. Take P = P* e 91 and let ω be a τp-invariant state. The

following pairs of conditions are equivalent.

1+) The limit

ω + (Λ)= lim ω(τt(A))
ί-> ±00

exists for all A e 91.

2±) The function
teJR-+ω([P,τt(A)])e<C

is integrable at ± oo for all A in some uniformly dense subset 9t of 91.

// these conditions are satisfied then

ω + (A)-ω_(A) = i J dtω(lP,τt(A)])>
— oo

and ω+ = ω_ if, and only if, the integral on the right hand side is zero for

Proof. The cases t > 0 and t < 0 are similar; consider the former. The
τp-invariance of ω and (*) imply that

ω(τ f 2U)) - ω(τ f lU)) = ω(τp_t2 τt2(A)) - ω(τp_tl τtl(A))

for all A e 91. The equivalence of 1 +) and 2+) follows immediately. If 2+)
and 2_) are valid the relation between ω+ and ω_ is established by the
same method.

The conditions of integrability introduced in the above theorem are
not usually of great practical use because they involve the state ω. In
certain examples (see Section 5) stronger conditions of integrability are
valid. We introduce these conditions into our general framework by the
following definition.
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Definition 2. The pair (91, τ) is defined to be asymptotically integrable
with respect to P e 21 if the function

is integrable at infinity for all A in some uniformly dense subset 91 of 91.

This condition is of interest for a number of reasons. If it is satisfied
then the problems under discussion are simplified by the following
purely algebraic result.

Theorem 4. Take P = P* e 91 and assume that (9ί, τ) is asymptotically
integrable with respect to P. It follows that the limits

y±(A)= lim τp_tτt(A), Ae<Ά
t->±oo

exist in the uniform topology on 9ί and define epi-morphisms of 91. These
epi-morphisms γ± satisfy the intertwining relations

Proof. If A G 91 we deduce directly from (*) that

ϊ'\ ds\\lP,τs(A)-}\\

and the existence of 7+ follows immediately. It is straightforward to
check that γ± preserve algebraic relations, e.g.

y±(AB) = y±(A)y±(B)

etc. but these mappings fail, in general, to be automorphisms of 91 because
their range is not necessarily dense in 91, i.e. the mappings

are not necessarily invertible.
The intertwining property follows from the definition of y± because

y±(τt(A))= lim τίsτt+s(A)
s-> ± 00

= lim τfτ^ sτ s04)
s-* ± 00

The epi-morphisms introduced by the above theorem are the algebraic
analogues of the wave operators of scattering theory. These latter
operators are in general isometric and are only invertible, i.e. unitary,
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in the absence of bound states. The lack of invertibility of the y± can be
understood by analogy. We will return to this point in the sequel.

The epi-morphisms y + lead by transposition to mappings ω\->ωy±

of the states of 2ί, i.e. , ., , , ...

ωy±(A) = ω{y±(A)).

If ω is a τp-invariant state then

ωγ±(A)= lim ω(τt(A)), AeM.
t-+ ± oo

Thus ωγ± are τ-invariant. This mapping conserves ergodicity properties.
Theorem 5. Consider the same assumptions as Theorem 4 and let ω

be a τp-ergodic (τp-weakly mixing), (τp-strongly clustering) state. The
limit states , ,λ r ι t Aw A or

ωy (A)= lim ω(τt(A)), AeVί
ί-> ± oo

exist and are τ-ergodic, (τ-weakly mixing), (τ-strongly clustering).
Proof. Recall that ω is τp-ergodic, (τp-weakly mixing), (τp-strongly

clustering) if the function

t G ]R\->ω(AτP (B)) - ω(A) ω(B)

has mean value zero, (its modulus has mean value zero), (it tends to zero
as |ί| —>oo) for all A,Be&. The properties of τ-invariant states are
similarly characterized.

From (*) and the definition of ωy+ one finds

\ωγ+{Aτt(B))-ω{τs(A)τt+s(B))\
00 00

S \\A\\ J dr||[P,τ r(B)]| + | |β| | f dr\\iP,τr(A)l\\ •
s + t s

But from (**) one concludes that

\ω(τs(A) τt+s{B)) - ω{τs(A) τfτ.(B))|

Thus
\ωy + (Aτ,(B))-co(τs(A)τfτs(B))\

Z\\A\\ ίdr| |[P,τ r(B)]| | + ||B|| ] dr\\iP,τr(A)]\
s s

Hence if ω is τp-ergodic

1 T

l i m — f dt{ωy+{Aτt(B))-ω(τs(A))ω{τs(B))}
T —* CO ± rp

00 00

ί
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Taking the limit s~*oo one deduces that ωy+ is τ-ergodic. The other
statements of the theorem follow in a similar manner.

Although the condition that (21, τ) is asymptotically integrable
with respect to P simplifies the discussion of the evolution of τp-invariant
states it does not shed any light on the question whether

The only criterion that we have developed for this equality is that of
Theorem 2, i.e. the uniqueness of the τ-K.M.S. state.

Finally we give a criterion for the stability of asymptotic abelianness.
It is clear that (21, xp) cannot be asymptotically abelian (except if 21 is
abelian) when the automorphism group τp has fixed points, i.e. there are
Ae$l such that τp(A) = A9 ί e R In this case it is also evident that the
epi-morphisms y+ are not invertible; the fixed points of τp are not in the
range of γ±. This presence of fixed points is the analogue for an infinite
system of the existence of bound states in scattering theory. It corresponds
to an isolation of a subsystem, the subsystem described by the algebra
of observables constituting the fixed points of τp.

Theorem 6. Let (21, τ, τp) be such that the following limits exist in the
uniform topology of 21

y±(A)= lim τίtτt(A),
ί * ± o o*±oo

// the epi-morphisms y± defined in this manner are invertible, i.e. if
y+ are automorphisms, then the following conditions are equivalent

1. (21, τ) is asymptotically abelian;

2. (21, τp) is asymptotically abelian.

Proof. The proof is a consequence of the intertwining property of the
y±. One has

Thus

Remark. We can rephrase this in a slightly more general form. The
ranges of y+ in 21 form C*-subalgebras 21+ of 21. Asymptotic abelianness
of (21, τ) implies asymptotic abelianness of (21+, τp). The 21 + correspond
to the dispersive observables of the perturbed system.

ΓV. Quasi-local Automorphisms

In this section we discuss a different question to that of the previous
section. We have seen that under a variety of circumstances τp-invariant
states ω have limits ω+ under the evolution τ. Essentially this arises
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because the ω are, in some sense, "local perturbations" of the limit states
ω±. One sees from explicit examples that the ω are not necessarily vector
states of the ω+ or, more generally, normal states of the ω±. It appears,
however, that these states are often interrelated by quasi-local automor-
phisms defined as follows.

Definition 3. Let y be an automorphism or, more generally, an epi-
morphism of 91. γ is defined to be τ-quasί-local if

\im\\γ(τt(A))-τt(A)\\=0, AeW.
t-*oo

The physical motivation of this definition is as follows. Under a
reasonable time-evolution τ one would believe that the local observable
τt(A) gradually delocalizes spreading throughout space. If y is an automor-
phism which only changes the structure in some local region then asymp-
totically one would expect the difference of τt(A) and y(τt(A)) to be small.

There are many examples of τ-quasi-local automorphisms.

1. Let y be an inner automorphism of 91 and let (91, τ) be asymp-
totically abelian then y is τ-quasi-local.

This follows because y(A) =UAU~1 with Ue91 and so

2. If for s e 1R we define ys by

and (91, τ) is asymptotically abelian then ys is τ-quasi-local.
This follows from (*). One has

\\γs(τt(A))-τt(A)\\ύ]dr\\lP,τt+r(A)']l
0

3. Let y+ be the epi-morphism defined in Theorem 4 by

γ+(A)=limτίtτt(A),
ί->oo

It follows that γ+ is τ-quasi-local.
This follows from the intertwining property of y +

= \\γJA)-τΊtτt(A)\\.

The useful characteristic of this kind of automorphism is that the
states obtained by its action automatically enjoy a property of return to
equilibrium.
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Theorem 7. Let ω be a τ-invariant state and ωy its image under
transposition of the τ-quasi-local automorphism y, i.e. ωγ(Λ) = ω(y(A)\
Aefy. It follows that

lim ωy(τt(A)) = ω(A), A e 91.

Proof. The proof is a direct consequence of definition 3 and the
invariance of ω. One has

\ωy(τt(A)) - ω(A)\ = \ω{y{τt(A))) - ω(τt(A))\

and hence the conclusion.
This is essentially the mechanism by which the results of the previous

section were derived and it motivates the notion that the ωy are local
perturbations of ω.

There are one or two properties of the set of τ-quasi-Joca] automor-
phisms which are easily derived. They form a group Γ. For example

h \\rι(τt(A))-τt{Ά)\\ = \\γ(τt(A))- τt(Λ)\\

-T(A)\\ ^ \\yi(τt(A))-τt(A)\\ + \\y2{τt(A))-τt(A)\\

If ω is a given state of 91 then the set of states {ωy y E Γ} is a set of states
each of which returns to ω under the evolution τ. These states are not
necessarily normal with respect to ω (Section 5) and the structural
properties and interrelationships of these sets remain an open problem.

V. Examples and Applications

A. The X-Y Model

This model has been studied in the context of return to equilibrium
in [6] and [7,12]. It is a model of a one-dimensional spin system for
which the vector space associated with each point inZ is two-dimensional.
The kinematics of the model is describable in terms of a C*-algebra 91
which is the uniform closure of a set of local algebras 9IW corresponding
to observables in the interval [-n,w]cZ. The 91, are generated by spin
creation and annihilation operators ap,a*,p,qe\_-*n,ri\ satisfying the
commutation relations

[flp,α*]=0=[αp,αβ], p + q

For convenience we take % to be the algebra of even polynomials in the
ap, α*5 i.e. the polynomials which are even under interchanges ap-+ -ap

α*-> - α * . To emphasize this particular choice we replace the notation
^ 2 I b 9 I ^ 9 ί e
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The dynamics of the X — Y chain are specified by the local Hamil-

tonians J n~1 n

H"=Y Σ (atap+i+at+iap) + h Σ aPa

P
p——n p= —n

where J, h e R One has from [8] that the following limits exist

τt(A) = HmeiHntΛe-iHn\ Λ e S I β , ί e R
n—* oo

in the uniform topology on %e and define a strongly continuous one-
parameter group of automorphisms of 2Ie. The following result is an
application of the results of Section 3.

Application ί

Consider theX-Y model and let P = P*be strictly local, i.e. P e 21* for
some neΈ. Let ω be any τp-KM.S. state at inverse temperature β.

It follows that the limit

ωΛA)= lim ω(τt(A)), AeW
|f|->oo

exists and ωβ is the Gibbs equilibrium state of the unperturbed model, at
inverse temperature β.

It further follows that (2Ie, τ) is asymptotically integrable with respect
to P and the conclusions of Theorems 4 and 5 are valid.

The first conclusion is valid because of the following three proper-
ties of the unperturbed model.

1. If P is strictly local then it is τ-analytic.

2. (2Ie, τ) is asymptotically abelian.

3. The Gibbs state is the unique K.M.S. state for (2Ie, τ).

These properties of the model are well-known but not all of then
appear explicitly in the literature. We have indicated proofs in the
Appendix together with an indication of the proof of asymptotic
integrability.

The result is valid for a wider class of perturbations of a quasilocal
nature but for simplicity we have avoided giving the complete characteriza-
tion of this class.

Note that all these properties, and consequently the proof of the
result, involve calculations with the unperturbed system only; the fact
that it is obtained by methods of scattering theory demonstrates why the
relaxation times obtained in [6] are so long. The relaxation is coupled
to the phenomena of wave dispersion.

The X — Y model also gives explicit examples of the phenomena
cited in the previous sections. For example if one takes P to be defined as

j p-ί p
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then the local algebra 2K _ t is left pointwise invariant by the perturbed
automorphism group τ . Hence (9Γ, τp) is not asymptotically abelian
and the y± are not invertible.

This example also illustrates that the above result describes the
return to equilibrium of an isolated sub-chain brought into contact with
the outer X - Y chain.

Finally note that for multi-dimensional spin systems one knows, for
small β and a large class of interactions Φ, that strictly local P are τφ-
analytic and the Gibbs state is the unique K.M.S. state for (91, τφ) [9].
Thus if (91, τφ) is asymptotically abelian statements similar to the above
can be made.

B. The Free Fermi Gas

This example is described by the quasi-local algebra associated with
the anti-commutation relations (see, for Example [2], Chapter VIII).
We take as underlying configuration space 1RV and the free evolution τ
is given by its action on the generating elements of the algebra

where
(Vtf) (x) = \dp f(p) eι^-^2t, feL20Rv)

(f is the Fourier transform of / ) . If we choose as basic algebra the C*-
algebra 9ίe of elements which are even in α(/), a*(g) then it is easy to
check that

It is also known [10] that the Gibbs state is the unique τ-K.M.S, state
for β > 0.

Application 2

Let P = P* G W be τ-analytic and ω a τp-K.M.S. state at inverse
temperature β. The following limit exists

ωβ(A)= lim ω(τt(A)), AeW
|ί|—> oo

and ωβ is the Gibbs equilibrium state at inverse temperature β.
If P = P* G 2Γ is strictly local then (9F, τ) is asymptotically integrable

with respect to P and the conclusions of Theorems 4 and 5 are valid.

The proof of the asymptotic integrability is given by noting that if
A is a monomial in the a{f\a*(g) then for P eSΆΛ the commutator
[P, τt{A)~] is bounded by a sum of terms of the form

tffrf
U
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It is a well-known property of wave-packets that if /eL2(IRv)nL1(IRv)
then this last expression is bounded by

const | ί | " v / 2

and hence is integrable at infinity for v ̂  3. If v ̂  3 it is necessary to
choose a restricted class of /. Namely / whose Fourier transforms
vanish sufficiently smoothly at the origin. One again obtains an integrable
bound.

The above application can be improved. It is not necessarily that
P is τ-analytic; one only needs an analytic continuation of the functions
t\->τt(A) for O^lmt^β. In the second part it is not necessary that P
is strictly local but can be in a much larger class of quasi-local elements.

In examples such as the Fermi gas one can also exploit the group of
space translations to prove that the limit states ω± as ί->±oo are
identical. If ω+ are invariant under space-translations it readily follows
that they are equal.

C. Quasi-Local Automorphisms

One can use the Fermi algebra to give a number of examples of
phenomena cited in the foregoing. If / eL2 (1RV) is normalized and twice
differentiable one can choose a local perturbation P of the form

P = _ λ[_a*{V2f) a(f) + a*(f) a{V2f)~\ .

One easily checks that

Hence (91, τp) is not asymptotically abelian because a(f) is a "fixed
point"; the degree of freedom / is isolated by the perturbation. Now if
ω 0 is the Fock state, i.e. the unique state on 9Ie with the property

ωo{a*(g)a(g)) = 09 geL2(W)

and ωf is the one-particle state determined by the condition

cof{a*(g)a(g))=\(f,g)\2, geL2{W)

it follows that ωf is τ^-invariant. Considered as a state on the even
algebra 9Ie it is, however, not a vector state of ω 0 nor of any other
τ-invariant state. Nevertheless it is the image of ω 0 under the τ-quasi-
local automorphism yf defined by

γf(A) = (α*(/) + a(f)) A(a*(f) + a(f)), A e 9P.

This automorphism is not an inner automorphism because of our choice
of the even algebra. This form of super-selection rule is not the only way
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in which the quasi-local automorphisms lead away from normal states.
The following example, extracted from [11], demonstrates the infra-red
phenomena.

Take g e Sf (1RV) and define P by

P = a*(g)a(g).

The action of τp is of the form

where Kpis a group of unitaries on L2(1RV). One can calculate that y±

exist, we take the results from [11], and

γ±(a(f)) =

where Ω± is the unitary wave operator in L2(EV) with kernel

It is explicitly argued in [11] that the states ω and ωγ defined by

y() (γ
and

ω(α*(/π)... α*(Λ) α ( 0 1 ) . . . a{gn) = δmn det [(/,, Ag$

p,q) = θ(μ-p2)δ(p-q)

generate quasi-inequivalent representations, i.e. ωγ is not normal with
respect to ω.

VI. Concluding Remarks

We have tried to demonstrate in this paper that the essential features
of the return to equilibrium problem can be described by a triplet
(91, τ, τp). The properties of this triplet which are necessary to the dis-
cussion are given by natural generalizations of scattering theory. The
comparable features are listed as follows.

The asymptotic evolution of τp-invariant states under the evolution
τ corresponds to the existence of the wave-operator. The asymptotic
behaviour is controlled by conditions of asymptotic abelianness of (91, τ)
which correspond to the dispersive nature of wave-packets. The isolation
by perturbation of finite subsystems is reflected by the lack of asymptotic
abelianness of (21, τ*) and this corresponds to the formation of bound
states or the lack of invertibility of the wave operator. The conservation



186 D.W.Robinson:

of temperature, as expressed by the K.M.S. condition, derives from the
intertwining property of the wave operator. The reversibility of the
system, i.e. the same asymptotic behaviour for large positive and negative
times, corresponds to no scattering.

The lack of scattering appears to be a general feature arising from
the equilibrium conditions, i.e. boundary conditions on the scatterer. The
heuristic picture conjured up by this analogy is that of the flow of an
infinite media past a local scattering centre. The absence of pervasive
scattering is therefore not surprising. This analogy gives some insight
into the irreversibility phenomena present in the general problem of
approach to equilibrium where the interaction is altered throughout
the system corresponding therefore to the flow past a scattering centre
which is extended throughout space.

Appendix: The X— Y Model

Let Wn denote the even algebra of local observables for the interval
[ — n,ή]eΈ. This algebra is the algebra of even polynomials in ap,
a*, p,qe[ — n,ή] and can also be considered as the algebra generated
by even polynomials in the transformed elements

bP = aP Π ( l - 2 α * α Γ )
r— — n

b* = a* Pγ\ (ί-2a*ar), pe [-*,«].
r = — n

These latter operators satisfy the anti-commutation relations

{bp9 6*} = δPtq, {bp, bq} = 0, p,qe\_-n,n\.

The transformation ap^>bp complicates the inherent local structure in
general, e.g. if p < n then ap e 9Ip but its image bpφ^Άp. Out choice of the
even algebras eliminates that difficulty, e.g. with p < q

Wp+l

and

In a-2b*br))bq.
Each SΆe

n is generated by polynomials in elements b*bq, bpb*, b*b*, bpbq.
In terms of the transformed elements the X - Y Hamiltonian becomes

b*bp.
p= —n
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This form allows one to calculate the action of τ on bp, fo* and hence on
a set of generating elements of 2ίe. One finds

ΦP)= Σ Ct(p-q)bq
qeΈ

where

|D4,τ f(B)]|| with A,BeWn by a finite number of
{bp,τt(b*)}\\=\Ct(p — q)\. But this last expression

Ct(r)=— J deeir6eu

This explicit form allows the analytic extension of τ on ftp, ft* etc., and
hence demonstrates that all strictly local elements are τ-analytic.

Asymptotic abelianness follows by using the anti-commutation
relations to bound
terms of the form
tends to zero like |ί|~* as |ί|->oo because

Γ* lγ\ — piht j (f\
^fl'j — c Jr\ι)

where Jr(t) is a Bessel function. The result extends to general A, B e 2ίe

by continuity.
This latter form of estimation is not sufficient to prove that (21, τ)

is asymptotically integrable with respect to a strictly local P. If however
we define for each / = {fp}peτ e ί2 elements b(f) e 2ί by

then with suitable chosen / we are able to conclude the result. If P e 2lM

and A is an even monomial in b(f\ b*(g) then || [P, τt{A)~\ || is bounded by a
finite sum of terms of the form

constant [ ]Γ \Ct*fp\
2 *

where
C f*/P= Σ Ct(p-q)fq

qeΈ

If / is chosen such that / vanishes smoothly atθ = nπ then these upper
bounds are integrable. This form of restriction on / still allows one to
construct a dense subset of 21* for which the norm of the relevant
commutator is integrable.

To demonstrate that there is a unique τ-K.M.S. state over 2Γ at
any β. One proceeds as follows. First from the τ-analyticity of strictly
local elements it is sufficient to consider

ω(τiβ(A)B) = (
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for A, B strictly local. But then it suffices to establish this relation for
A, B even monomials in the bp and b*. But assuming the relation is valid
one can, by a tedious calculation involving the anti-commutation
relations and some distribution theory show that ω is uniquely deter-
mined. The lines of this calculation are as follows (cf. [10]).

By Fourier transformation of

. ω(τiβ(b*pbq)bϊbs

one obtains

But the anti-commutation relations give

co(b%bθ4blbθ2) = 5(0, - θ4) ω(t>lbθ3)

-δ(θ2- θ3) ω(t>l bθ4) + ω(bl bθ2h>l bθ4).

Combining the equations one has

= δ(θt - θ4) ω(blbθ2) - δ(θ2 - θ3) ω(t>l bθ4).

Similar relations follow from

ω(τiβ(b*bs)bfbq) =
and

and after some calculations one finds that these relations are consistent if,
and only if, ^ ^ ^ _ ^ + eβ(JCosθι+hγι

and
ω(b* bq b* bs) = ω(fe* bq) ω(b* bs) + ω(fe* bs) ω(bq b*).

Similar calculations with higher order monomials then show that ω is
determined as a quasi-free state with the above two-point function.
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