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Abstract. This paper concerns an investigation of the Wilson-Zimmermann (or "short
distance") expansion for Λ(x) Λ(y) with x-+y where Λ(x) is a real scalar field fulfilling
Wightman's axioms. If one assumes that such an expansion exists, where the terms of the
expansion are operators relatively local to A(x), then the singularities arising in the 4-point-
function for x3-*x4 must control the singularities of the n-point functions (n = 4, 5, 6,...)
arising for Xj-+xJ +1? j = 1,2,..., n — 1. A similar consequence can be drawn if the terms of
the expansion are assumed to exist only as bilinear-forms (Section 2). For certain classes of
fields one can show that this condition necessary for the short distance expansion is indeed
fulfilled (Section 3). The result of the last section is that the above mentioned condition is
also sufficient for the Wilson-Zimmermann expansion, interpreted as an expansion into
bilinear forms, and also as an operator expansion in a somewhat modified sense.

1. Introduction

A field theory in which the principle of contact interaction shall be
valid needs for the definition of the interaction terms products of field
quantities taken at the same position.

If one intends to apply this principle also in a relativistic quantum
field theory one has to define products of field operators at the same
position. The difficulties which arise in this procedure are very well
known. They have their origin in the distributive character of the field
operators.

In the case of the free field A0(x) with χ = (χ0, χ l 5 χ2, χ3) however
it is well known how one can get An

0{x\ n = 2, 3,4 ... in the form of Wick
products of the field, by subtracting products of 2-point-functions W%.
The ΛQ(X) are again tempered distributions which are relatively local to
A0(x), this means

[Al(x), A0(yy] = 0 for x — y spacelike .

In the last years a heuristic ansatz for the products of field-operators at
the same position in the case for interacting fields has been proposed
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especially by Wilson and Zimmermann [1,2,3,4] and by Brandt [5].
For instance for a real scalar field Wilson and Zimmermann assume the
expansion

The Bj(x) are field operators relatively local to A{x), the Sj(χl9 ...,χn)
functions which become in general singular for Xj—>0, j= 1, 2, . . . ,n,
so that , Λ

0.

With respect to the operator Rm(x\ χ1,..., χn) it is assumed that

lim 3a^Ilii^.ssQ.

Thereby the operators J3/(x) are candidates for An(x). Zimmermann [2]
and Brandt [5] have proved the validity of such an expansion for certain
examples in perturbation theory, Wilson and Zimmermann [3] gave
conditions under which the expansion is valid and they discussed several
consequences of it; furthermore Lowenstein [6] has proved the expansion
rigorously for the Thirring model.

The aim of this paper is to present the first steps which must be
necessarily taken to give a proof of the Wilson-Zimmermann expansion
if one starts from a relativistic quantum field theory fulfilling Wightman's
conditions [7, 8].

We consider here only the simplest case: The product of two operators
for a real scalar field:

m

A(xx)A(x2) = Σ sj(Xi>X2)Bj(x) + RJx;x1,X2). d l)
j = i

We intend to characterize the theory by Wightman's distributions
(vacuum expectation values)

with Ω as invariant state under the Poincare group and with ξ. — χ.+ 1—xj.
If the expansion (1.1) with the above mentioned limiting conditions

for xγ->x, x2-^x shall be possible (Bj(x) are operators), one has to
assume that the vacuum-expectation values

.~Λj,.. Λn-i) for ξj-^O
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show singularities which are essentially
a) independent of n
b) for fixed n, independent of 7
c) for fixed n and / independent of the other variables.

The same statement remains correct if one interprets the result of the
limiting procedure xi-^x, x2-^x performed in (1.1) not as an equation
for operators but as an equation for bilinear forms.

The essential independence of the singularities of n leads especially
to a connection between the singularities of W± and Wn with n > 4: A
justification of the Wilson-Zimmermann expansion is only possible, if the
singularities of WA arising for

ς3->0 in W4(ξuξ2,ξ3) (1.2)

control the singularities arising for

^•-+0 in Wn{ξι,. .Λp.. Λn-ι), n>4. (1.3)

In Section 2 we will prove this statement: The assumed connection
between the singularities of W4 and Wn (n > 4) is a necessary condition
for the existence of the Wilson-Zimmermann expansion.

A much more difficult problem is whether one can prove by using the
usual properties of Wn, that really the singularities of W4 arising in (1.2)
control those arising in (1.3) for Wn, n>4. At the moment we are only
able to give a partial answer by proving this for special classes of field
theories (Section 3). A generalisation of our result to more interesting
cases would be important for the clarification of the situation.

In Section 4 finally we come back to the original question by showing
the connection between our results concerning the singularities of Wn and
the Wilson-Zimmermann expansion. We give there a discussion of the
difficulties arising if one tries to generalize the results of Section 3.

2. Necessary Conditions for the Existence
of the Wilson-Zimmermann Expansion

According to the remarks in the introduction we intend to show in
this section that the assumption of the existence of the Wilson-Zimmer-
mann expansion implies that singularities appearing for ζj-+O in

Wn(ξu ...,ξn_1) = {Ω,A(xi) - A(Xj)A(xj+1)... A(xJΩ)

have their counterparts in singularities appearing in

W^ξl9ξ2,ξ3) for £3->0.
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For this one has to assume that the expansion is an expansion for
operators. If it is an expansion which yields for ζj->0 only a sum of
bilinear forms, then the singularities appearing for ξj->0 in Wn (w>4)
must be found again for ξ1-+0, £3->0 simultaneously in W4r(ξx,ξ2,ξ3).

Before starting the rather simple proofs for these statements we wish
to repeat in short the assumptions and fix the notations.

The field A(x) and the Hubert space § are assumed to fulfil Wight-
man's conditions; an asymptotic condition for x o - * ± o o , however, is
not needed at the moment.

Notations: Subspace £) is
n

Φeξ>:Φ = Σ Φk ( n < o o )

Φ k = \ A(xλ)... A(xk) f(xu ...,xk) dx

and X> is dense in <r>.
While for the construction of £> polynomials of the field operators

of arbitrary degree have to be applied to the vacuum we need also some
subspaces of D.

Φ0 = λΩ;Φk= {A(x x ) . . . A(xk) f{x1 ,...,xk)dx>.

The closure of Dz is denoted by 9)l9 the corresponding projection operator
by Pt.

Let us now formulate the first part of the statement more precisely.
(A) It is assumed, that the Wilson-Zimmermann expansion is valid

in the form m

A(x + x) A(x - χ) = I sk(χ) Bj(x) + RJx, χ) (2.1)

and has the property, that

i Γ ' - 1

lim — — \A(x + χ) A(x - χ) - Σ Sj(χ) Bj(x) - B^x). (2.2)
*^° sι(X) [ j = i

The limit is taken for a fixed direction of χ, this means χ = λμλ^0,
μ a fixed 4-vector Φθ. If the left hand side is denoted by Cj(x,χ), then
it is assumed that for each fixed fe Sf and each sequence g^δ, g } e 5̂ ,

.lim (Ψ, f (Cz(x, x) - Bz(x)) f(x) gj(χ) dxdχΦ) = Q. (2.3)

Ψ arbitrary in §, Φ arbitrary in D. The limit of gj towards the Dirac
measure δ is understood in the sense that for each continuous c(x)

lim f c(x) g:(x) dx = c(0).
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The relative locality condition is assumed in the following weak sense:

(Φ, Bt(x) A(y) Ψ) = (A(y) Φ, B,(x) Ψ)

Φ, Ψ e D .

Under the assumptions collected in (A) one can prove:

Lemma 1. // the Wilson-Zimmermann expansion exists and fulfils the
conditions (A), then to each term sk(χ) Bk(x) corresponds a singularity of
the 4-point function W^(ξλ, ξ2, ξ3) characterized by sk(ξ3) for £3->0.

Proof. Let us assume the contrary, for instance for the first term of
the Wilson-Zimmermann expansion

lim(Φ2,C1(x,χ)Ω) = (Φ2,JJ1Ω) = 0

for each Φ 2 e l ) 2 .

Since Bί Ω by (A) is a vector in § it follows

(Φf

2,BίΩ) = 0 also for Φ'2eξ>2.

If on the other hand Φeξ> o n e has

lim(Φ,C 1(x,χ)Ω)=lim(Φ,P 2C 1(x,χ)Ω)

(Φ,BίΩ) = (P2Φ,B1Ω) = 0.

From this one gets

Since by our assumptions Ω must be a separating state for 2^ it follows

This is a contradiction to its appearance in the Wilson-Zimmermann
expansion. The assumptions collected in (A) guarantee that B1Ωeξ);
so one can perform the same conclusion for the term s2(χ) B2{x) assuming
that

lim(Φ2, C2(x, χ)Ω) = (Φ2, B2 Ω) = 0 for each Φ2 e D 2 .

Repeating this procedure for each operator Bk of the Wilson-Zimmer-
mann expansion one sees that each singularity expressed by sk(χ) must
appear in the 4-point-function W4(ξuξ2,ξ3) for ξ3-»0. q.e.d.

Since in Wn(ξu - Λp ...,ξn_i) for ξj-*O no other singularities can
appear than those expressed by sk(ξj) — if the Wilson-Zimmermann
expansion is valid in the sense of (A) - one recognizes that it is a necessary
condition for the existence of the Wilson-Zimmermann expansion, that
these singularities of Wn (n>4) are controlled by those of W4.
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We now proceed with the second version: The Wilson-Zimmermann
expansion as an expansion in bilinear forms.

(B) As in (A) the expansion shall be valid in the form (2.1) and (2.2)
but instead of (2.3) here

lim (Ψ, J (C,(x, χ) - BJx)) f(x) g}(χ) dx dχΦ) = 0 (2.4)

for ψ e D and Φ e £>.

Furthermore we make the plausible assumption that

(A(Xl)... ΛixJΩ^B^Λiy,)... A(yJΩ)

are tempered distributions over lRm + ".

Lemma 2. // the Wilson-Zimmermann expansion exists and fulfils
the conditions (B), then the 4-point function W4{ξ1,ξ2,ξ3) has a part
which for ξ1,ξ3-+0, simultaneously, becomes as singular as \sk(γ)\2.
(This means HC^x, χ)Ω||2++0 for χ->0.)

Proof. From the assumption

follows not only

but also

therefore

lim( ιF,C1(;

or

(Φ2>B

iΦ'i.B

x,χ)Ω) =

iΩ) = '

1Ω) = ι

lim(P2

0 for

0 for

ΨXΛ χ)Ω) = 0 for ^ e D

(Ψ,BιΩ) = (P2Ψ,BίΩ) = 0 for I P e l .

Using the fact that also for a bilinear form Ω is separating1 one concludes

(Ψ,BίΦ) = 0 for ΨeT), ΦeD.

This is a contradiction to the appearance of i ^ in the Wilson-Zimmer-
mann expansion. Proceeding as in the proof of Lemma 1 one can
generalize this result for each Bι of the expansion, q.e.d.

Remark. If the bilinear forms B{ have the property that

with Φ G D , Φψe Ί)2 and Φψ-^P2Φ then one can prove also in case (B)
the statement of Lemma 1.

1 Appendix 1.
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3. Connection between the Singularities of the 4- and n-point Functions
in Special Cases

In this section we intend to show that under special assumptions
concerning W^ the conditions which according to Section 2 are necessary
for the existence of the Wilson-Zimmermann expansion are fulfilled.
(In Section 4 we discuss to what extent these conditions are sufficient for
the construction of the short distance expansion (synonym for Wilson-
Zimmermann expansion).)

Let us first introduce some notations (we follow Jost's book [8]):

- 4 (3.1)

i:=(ίi ί,-!,^!,.,^!)^""8 (3-2)

τ r ± ( f c = 1, . . . , n - 1 ) }

(''forward/backward tube")

τ{n-iγ :={{ eC*"1'4 :3Λe &+(<£) s u c h t h a t

Λ t e τ ΐ " 1 * } (3.4)

("extended tube")

For π E Sn (group of permutations of n elements) we define

(
Σ Cj- Σ Cj,..., Σ Cj- Σ tj) (3 5)

. / = ] ; = 1 ; = 1 j=l /

-π

u -= {ieC?-* :ίπeτ<Γu} (3-6)
("permuted forward/backward tube")

i ) ' :={{eC 4 "-*: ί ,eτ 1 "-" 1 } (3.7)

("permuted extended tube")

J ί / p i ...dpΠΩ (3.8)

is a vector-valued holomorphic function for z, e τ'+ ;

(cf. Jost's book). (It is not necessary to distinguish between weak and
strong analyticity; this follows from the Banach-Steinhaus theorem
which states that a weakly bounded set in a Hubert space ξ> is also
strongly bounded.) We formulate now the following
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Theorem. Let us assume that a function r(ζ) exists with the following
properties:

a) r is holomorphic in τ{l}

c) r is invariant under the (homogeneous) Lorentz group
d) W4(ζi,ζ2,ζ3)r(ζ3) has a (locally unique2) analytic continuation

to the points (ζι,ζ2)Eτ{2\ ζ3e%(0) where %(0) is a real neighborhood
of 0 independent of ζί,ζ2 (W4 is the four-point function of our field
theory).

e) there exists an integer N > 0 such that for each compact subset

X C y+ ξe%, ~rΎ ^X,Y fulfils the following inequality

Vn

Then Wn({) r(ζj) has a (locally unique) analytic continuation to the points

The proof of this theorem will be given in three steps; each step
will be formulated as a lemma.

Lemma 1. Under the assumptions of the theorem for each Ψ e § the
function (ψ, Φ2{z, z + ζ) r(ζ)) has a (locally unique) analytic continuation
to the points zeτ{l\ ζe%(0).

Proof. We want to use the edge of the wedge theorem. Let us define
for fixed zeτ (

+

1 }, Ψ eξ>:

Fίt2:= (Ψ,Φ2(z, z + ζ))r(ζ) (3.10)

F2,z:=(Ψ,Φ2(z + ζ,zj)r{ζ) (3.11)

F1^z is holomorphic for ζ e τ(+\

F2%z is holomorphic for — ζeτ{l]; z^-ζ eτ (+\

If now FUz(ξ + iO) - F2^z(ξ - iO) for ξ e %(0) (in the sense of distributions),
then there exists a function Fz holomorphic for ( 6 τ ^ ; ζ e τ(l}n(τ(l}- z)
and Ce^ r(0), which coincides with F 1 < z and F2^ respectively, in their
domains of definition.

2 By this we mean that each point has a neighborhood in which the continuation is
unique (single-valued).

3 A sufficient condition for e) is that the boundary value r{ξ + ?0) = lim r(ξ + iη)
η-*0,ηeV +

exists as a tempered distribution. (We can assume that %{0) is bounded.)
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Now let us take geT) with supp(g)Cϋlίi.(ϋ) and define for ηeV+,

l m ( z - ζ ) e V + Φ ι Φ i + ξ + i ) { ξ

_r=$Φ2(z + ξ-iη,z)r(ξ-iη)g(ξ)dξ (3.13)

+ :=s-limΦ, (3.14)
η-*0

η (3.15)
η->0

(In Appendix 2 we show that the existence of these limits follows from
assumption e).)

T h e n IJ FltZ(ξ + iθ) g(ξ) dξ - J F2Jξ - zΌ) 0(ξ) dξ| ^

+ - Φ _ )

= lim (Φ , Φ + — Φ_) — lim (Φ_«, Φ + — Φ_).

t jεf+ i7e^ +

Each of these two terms vanishes because of assumption d):

Ψ Φ + - Φ _ ) = J r(ξ' + iη) [ Ψ t i z + ξ'- i η , z , z , z + ξ + z'O)

. r ( ξ + ϊ Ό ) - iT{z + ξ' - iη, z,z + ξ- zΌ, z) r(ξ - zΌ)]

•W)g(ξ)dξ'dξ

= ί Hξf-h /fy) [τT 4(z + ξ - iη,z,z,z + ξ + zΌ) r(ξ + zΌ)

- j K F T 7 ^ ) [H^4( - ξ' + iη, 2\ Imz, ξ + zΌ) r(ξ + zΌ)

- H/4(- ξ' + iη, 2z Imz, ξ - zΌ) r(ξ - zΌ)] ̂ (ξ7) g(ξ) dξ' dξ

= 0

(in the second step we used locality). The vanishing of the second term
can be seen similarly. Hence

FUz(ξ + zΌ) - F2Jξ - zΌ) (ξ 6 Φr(0)) (3.18)

and there is a function FZ(Q as described above. From the generalized
Hartogs' theorem (see Vladimirov [9], §20.64) we can infer that Fz(ζ)
is holomorphic with respect to (z,ζ) at the points zeτ{l\ ζe^ίr(O).

For the sake of completeness we prove the following corollary:

Corollary. Φ2(z,z ~\- ζ)r(ζ) can be continued as a vector-valued

analytic function of (z,ζ) to the points Z G T ^ , ζeΦ r(0).
4 The English translation contains a misprint in this theorem.
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Proof. The corollary follows from Lemma 1 and the following
general statement:

Proposition. // a vector-valued holomorphic function Φ:Gc(C"->§
(Hubert space) is such that for every Ψ eξ> the function (ψ, Φ(zj) can be
analytically continued into some larger domain GjG.Φ can be continued
as a vector-valued analytic function into G.

Proof of the Proposition. From the convergence of the Taylor
expansion of (Ψ, Φ(z)) for every Ψ e § follows the weak convergence of the
corresponding expansion of Φ(z) (because every Hubert space is weakly
complete). Therefore Φ(z) is analytic in G in the weak sense; according
to our previous remark this is equivalent to strong analyticity.

Lemma 2. Under the assumptions of the theorem Wn(ζ1,...,ζn_1) r (ζ π _ 1 )
has a (locally unique) analytic continuation to the points ( ς 1 ? . . . , ζn-2)

Eτ(n-2γ (extended tube), ζn_1 = 0.

Proof. We use Lemma 1 for

(with the usual restriction on the arguments); we learn that

(y,Φ2Uπ-l^n-l+Cw-l))KCr,-l)

= 1Tn(Σu...,zn_l,zn_ι + ζn_ί)r(ζn_l) (3.20)

can be analytically continued for fixed (zl9..., zw_2) into some neighbor-
hood Ψ* of τ(+} x %r(0). On the other hand Wn-r is holomorphic with
respect to z l J . . . ,z M _ 2 for fixed (zn_uζn_ί)eir if ζk = zk+ι-zkeτil)

(k= 1, ...,n — 2)andz,,_2 e τ ^ ; that means that also Wn r is holomorphic
with respect to (ς 1 ? ..., ζn_2) e τ{+~2) {zn_1 - ζ π _ 2 e τ(i}) for fixed
(zn_liζn_ι)€Y'\ by Hartogs' main theorem it is holomorphic with
respect to (ζu ..., ζ π _ t ), if ( ζ l 5 . . . , ζn_2) e τ{l"2\ zn_ί ~ ζn_2 e τ{}\

Since Wn r actually does not depend on zn_l9 we can conclude that
it is holomorphic for ( £ l 5 . . . , ςn_2) e τ ί ~ 2 ) , ζn_ί e%(0); Lemma 2 follows
if we take into account the Lorentz invariance of Wn and r.

From Lemma 2 we can already deduce a statement about the holo-
morphy of r(ζj) Wn(ζl9..., C/?_i) at ζj = 0, if we take into account the
locality condition. Locality tells us

r(ζ)W(ίζ)

ι=j
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We know from Lemma 2 that the right hand side is holomorphic at the
points

φ τ ( π " 2 ) '
If we define

(3.22)

(this is a permuted extended tube)

we can restate the result of Lemma 2 in the form r(ζj) Wn(ζί,..., ζn-χ) is
holomorphic for ζy = 0,

It is well known (cf. for instance the book of Streater and Wightman) [7]

Jf : = τ ΐ ~ 2 ) n 4 " ~ 2 ) / (3.23)

is not empty (it is clearly open). What remains to be done is to extend
the holomorphy of r(ζj) Wn(ζ) from the points ζj = 0, -ξ e Jt to all points

One possibility to achieve this is to use the pseudoconvexity property
of domains of holomorphy; this turns out to be rather complicated and
one has to be very careful to guarantee the single-valuedness of the
continuation. We can choose here an easier method because we have the
very advanced tool of the edge of the wedge theorem at hand.

Lemma 3. Let F(ζ1,..., C«-i) be holomorphic in ^ = τ ("~1 }uτ ("^ 1}

G τ(

π

w υ } , and in the points ζj = 0, i e J f C τ{+ 2) (,W open and not empty).
Assume that the boundary values

F(ζu...,ζj_uξj±i0,ζj+u...9ζn_ί)

exist as distributions5 in ξj depending holomorphically on -ξeτ + ~2 ).
Then F has a (locally unique) analytic continuation to the points ζj e ^ ( 0 ) ,
( C i , . . . , Cj-i5 Cj+i ί •••> ( n - i ) e τ + ~ 2 ) 5 where ^ ( 0 ) is some real neighbor-
hood of 0 G C 4 .

Proof. We choose a subdomain jfx CC Jίf (that means M)

ιa^e and
JfΊ compact). Then there exists a ρ>0 such that F is holomorphic for
-ζeJ^i and \ζj\<ρ (ςς| ... |" denotes the euclidean norm) [Proof: F is
holomorphic in an open neighborhood Λr of the compact set

J Γ : - K G € 4 " - 4 : C J = 0, ie&J. (3.24)
5 Over ^( !/;(0)).
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We take for ρ the finite distance between JΓ and the boundary of Jί\
We define now Λ

r { C D * I f O : | g < ρ } . (3.25)

Let us take a test function ge 5^(IR4) with supp(g)c Ve(0) and define

G±(4y-=$F(ζι,...,ζj_ι,ξj±i0,ζJ+1,...,ζ^ι)g(ξj)dξj. (3.26)

According to our assumptions G± are holomorphic functions of

ξ ( 2 ) F i tf h•ξ e τ(+~ 2 ). For i e 3tfγ we have

Therefore G^-GJ^O. (3.27)

G + β)-G_(- | ) = 0 in τ ( Γ 2 ) . (3.28)

The edge of the wedge theorem tells us then that for fixed-|eτ ("~2 )

F(ζi,...,ζn-i) can be analytically continued to the points ζjei^ρ(0).
We use again the generalized Hartogs' theorem (Vladimirov [9], § 20.6)
to infer that F is holomorphic with respect to all variables at the points
ζje'f"e(0),4eτiϊ-2\ This proves Lemma 3.

To prove now our theorem we have to show that F ( ζ t , . . . , ζn_ x)
= r(ζJ)Wn(ζί,...,ζn_1) fulfils the assumptions of Lemma 3. The only
point we have to consider concerns the boundary values (the other
assumptions have been proved above).

F(Ci,...,ζ J _ i , ξ j + /O,C j + 1,. . . 5ζw_ 1) is a distribution over
according to Appendix 2 (with respect to ξ j. The holomorphic depend-
ence on-£eτ + ~ 2 ) follows from the spectrum condition. For the other
boundary value we have, using locality:

= F{ζί , ... , ζj_ 2, ζj_ 1 + ξj, - ξj + fO, ζj+ ! + ξj, ..., ζn_ J

Hence the spectrum condition guarantees again the holomorphic
dependence on^ GT

Thus we see that r(ζj) Wn(ζi, ...,ζn_i) has a locally unique analytic
continuation to the points ζj = 0, -ξ e τ ( | 7^ 2 ); by using Lorentz invariance,
we can replace τ (+~2 ) by τ{n~2)l. This proves our theorem.

Remark. We should say something about the global single-valuedness
of our continuations. This problem is answered by the following

Lemma 4. Any domain

Qj •— ( I T(n-ί)\ j [y p ( p 4 - « - 4 . //' jr \f~ I I T ( j - 1 ) '

πeMjCSk I π e S ;

(ζj+u...,ζn-ι)e [j τ^~ι~J\ \ζj\<ρ(-ξ)\ is simply connected .
πeSn-j J

6 ?̂ denotes some real neighborhood of 0; @{%) is the space of all Cy-functions with
compact support in Jl/.
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Thereby Sn is the symmetric group of n elements and My is the subset of Sn

which lets the neighboring elements j — 1 and j remain neighboring; ρ(-ξ)
is a continuous positive function.

Consequence of Lemma 4. If a function is holomorphic and single-
valued in (J τ(

π"~1}/ and if it can be analytically continued to every

point of @nJ, the continuation is single-valued (theorem of monodromy).
If we specialize this result to n =j = 4 it follows that we do not need the
words "locally unique" in assumption d) of the theorem.

Proof of Lemma 4. For 0 ̂  λ ̂  1 we define a set of mappings

ω}:® „,-+&„, (3.31)
by

ωλ(ζ):=(ζ1,...,ζj_1,λζj,ζj+1,...,ζn-l). (3.32)

By use of these mappings we can construct a homotopy of every closed

5:[0,l]-^π, (3.33)

to the closed curves
sλ:=ω^s (3.34)

especially to
s0 = ω0

 c 5 (3.35)

s0 lies completely in the set

:ς, = 0: (ς 1 , . . . ,ζ J ._ 1 )e [j τ(tl)',

πebn-j

which is simply connected according to a theorem by Tomozawa [10].
Hence s can be contracted to a point, which proves Lemma 4.

Conclusion. Under the assumptions of the theorem the function
F(ζ) = r{ζn_1)Wn(ζ) has a unique analytic continuation to the points

ς π l = 0 , (ζ t , . . . , ζn-2)
e U τ{π~2)'Ί This has the consequence that

we have a Taylor expansion (with a finite range of convergence):

Y ζ^_iFΛ r(ζ 1,...,ζM_ 2) (3.36)

where the "coefficients" F^ are holomorphic in (J τ (^~2)/. In the next
πeSn-i

section we discuss how far the functions FN can be interpreted as vacuum
expectation values containing the composite operators of the short
distance expansion.

7 This fact implies that Wn shows the same singularity whenever two consecutive
arguments coincide; this is one of the assumptions made by Genz and de Mottom [11] for
their proof that the singularity of the two-point function is the dominating one.
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4. Application of the Results to the Short Distance Expansion
Question of Generalisations

Two essentially different subjects are contained in this section.
The first one concerns the connection between the statement of the

theorem of Section 3 and the short distance expansion. The second one
refers to the question how one should try to formulate generalisations
of this theorem. We intend to show the difficulties which one has to
overcome if one tries to prove these generalisations.

Let us begin with the first part. We know that with our assumptions

is analytic in the points ζj = 0,-ζeτ{n~2)r. As a consequence of this result
we can formulate

Lemma 1. The Wilson-Zimmermann expansion

χ)A(x-χ) = £ sk(χ) Bk(x) + RJx, χ)
. 7 = 1

exists as an expansion in bilinear forms (for the definition of Ct(x, χ)
compare (23)):

Jim (Ψ, J [C,(x, χ) - B,(x)] fix) gfa) dx dχ Ψ2) = 0 (4.1)

Ψ1 e 3> ^2 e 3- 3 z's the linear hull of the vectors (compare (3.8),)

{Ω}, {Φ^z,)}, {Φ2(A,z'2)}, {Φ3(z'[,4,4)},...
with

τ+ , z 1 e τ + , - 2 ~ z i e τ + , z 1 e τ + , z 2 — z 1 e τ + , z 3 — z 2 t τ + ,

3 /s J^5β in T) (̂ /or /ί /s constructed with testfunctions of £f exponentially
decreasing in momentum space) and therefore dense in § .

Proof of Lemma 1. One can write

Φk(z1,...,zk) = /l(z 1 )Φ k _ ι (z 2 , . . . ,z k )
with

> l ( z 1 ) = ί ^ z M ( p 1 ) d p 1 .

With zγ 6τ(

+

1}; Zj — z7_! e τ{l\j = 2,..., fe, Φk_j is in the domain of ^ ( z j ;
from the identity /4(zx)* = XίzJ (this equation does not take into account
the domains, which follow from the remark above) one finds

(Φj(/1,...,Z^Φn.j(z1,...,ZH.J))

= (Φ]-i(z'2,-,Zj),A(?ι)A(zι)Φn_j_1(z2,...,zn-j))
with

/ p r ( l ) . _/ 7' f. ( 1 ) 7 — 9 j

( 1 ) . - ( = T ( 1 ) 7 — 9 M /
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On the other hand we can write

( / i , , } ) , π J ( 1 , , l l j ) ) ; ( ζ i ,
with

T — 7' 71 k — 1 7

ίk = zk+i-,-zk-ji fc =./ + 1, . . . , H - 1 .

The theorem of Section 3 ensures us that

is analytic at Cj = 0, ieT ( r 2 ) .
So we can go over from

(ΦJ _1(zi,...,z;),^(r i)/l(z1)ΦII_ j_1(z2,...,zB__ ;))r(?1-z1)
with

7 P r ί 1 ^ 7 7 P T ( 1 ) 1 — 9 W I
z i t τ + , z — z ι _ 1 e τ + , ι — Δ,...,n—j

to
(ΦJ_1(zi,...,z})M(xi)A(x1)Φπ_J_1(z2ϊ...,zII_J.))r(x1-xi)

where F is defined by the left hand side of the equation, and ξj—χγ — x\
must be in a certain neighborhood of 0 (compare Lemma 3). If z\ and zγ

are chosen in this manner we can enlarge the domain of the other variables
from that of (4.2) to

Therefore Φj_ί and Φn_j_ι in (4.3) can vary over the whole sets of
states defined by (3.8) for / - l o r n —j — 1 arguments, respectively. Since
Fn_1 is analytic at ξj = O we can expand it into a Taylor series. We
intend to write this Taylor expansion in a form which can be compared
with the Wilson-Zimmermann expansion; to this aim we define

F π ( ζ 1 , . . . , ζ j _ 1 , ξ j , ζ ; . + 1 , . . . ,ζ M _ 1 ) = : F ( Φ j _ 1 , Φ n _ j _ 1 ; x , ξ )

with ξj = χ1 — χf

ι (compare (4.3)) and

ξ_ , = _ ξ_
xλ x + 2 , xΛ x 2 .

From the spacial states Φj_i, Φn-j-x we can go over to an arbitrary
pair of states Ψ γ, Ψ2 e 3
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F{Ψ1,Ψ2;x,ξ) is therefore a bilinear form defined on 3 x 3, de-
pending on x and ς. For a sufficiently small value of \ξ\ the Taylor
expansion

μ k 0,...,3

converges.
The comparison with the short distance expansion as formulated in

(2.2) leads for instance for the first term t o 8

As is well known (compare Ref. [4]) the operators Bj depend in general
on the direction of χ or ξ, respectively, if one performs the limit ξ -> 0
by a sequence ξ = λjξ with ξ fixed and λj-+O (/j real numbers). This fact
finds its expression in the form of the general term of the expansion:

with a directional dependence of the same kind as in Ref. [4]. Rm is
represented by the remainder term of the Taylor expansion.

The comparison of the terms of the Wilson-Zimmermann expansion
with those of the Taylor expansion of F completes the proof of lemma.

Remark. The bilinear forms defined by the derivatives of F are
C00-functions of x (smearing is not necessary). This is also true for A(x)
considered as bilinear form on 3 x 3 (° r ^ x ϊ ) for instance.

The theorem of Section 3 enables us also to get a certain operator
version of the short distance expansion. To this aim we formulate

Lemma 2. The Wilson-Zimmermann expansion is valid in the form

m

A(z + χ)A(z-γ)= £ sk(χ) Bk(z) + RJz, χ)
k= 1

with zeτ ( +\ the Bk(z) are defined on a dense subspace of 3 denoted by
Zsy; 3 y depends on y=lmz. (%y = e~~PyZs).

Remark. As before A(z) is a short notation for j eιpz A(p) dp\ since 3
is dense in §, 3V is dense in § ; 3^ is invariant under translations.

P r o o f of L e m m a 2. F o r f i x e d z ' , z x , . . . , z k w i t h

8 If F(Ψι, Ψ2 x, 0) = 0 we take instead of it the first nonvanishing derivative of F
with respect to ξ (at ξ = 0).
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we consider the vector-valued holomorphic functions

(ImC e y+, lm(zί -zr-ζ)e Y+)

Ψ2(Q:= r(ζ) A(z' + ζ) A(z') A(zλ)... A(zk)Ω

According to the theorem of Section 3 there exists a real neighborhood
of 0 such that

(Φ n - k - 1 (z π ,J n _ 1 , . . . ,z f c + 1 ),y l f 2 (ζ))

can be analytically continued to the points ζei^ if

\m(z' -zk + ι)eΨ~+ .

In Appendix 2 we show that the boundary values

Ψiίξ + iO), Ψ2(ξ-i0)

exist as distributions over
If we now choose a ^ ι e ^ ( f r ( 0 ) n f ) and define for

Ψ_η:=$Ψ2(ξ-iη)g(ξ)dξ

Ψ+:= lim ψη

η-+O,ηeΨ +

Ψ_:= lim Ψ_n

we can show that for each Ψ e §

(Ψ, Ψ+-Ψ_) = 0 (4.6)

in the same manner as in the proof of Lemma 1 of Section 3.
From the edge of the wedge theorem we can conclude that there

exists a vector-valued holomorphic continuation Ψ(ζ) of Ψ^ζ) and Ψ2(ζ)
to the points ζ e "Vc\°l/r(O). If we define χ:= —jζ;z = z' — χ weget

Ψ(ζ)=Ψ(χ) = r(-2χ)A(z + χ)A(z-χ)A(z1)...A(zk)Ω. (4.7)

If we divide the Taylor expansion of Ψ(χ) (at χ = 0) by r( — 2χ) we get the
short distance expansion in a similar manner as in the proof of Lemma 2,
but now in the sense of operators on 3 r

A remarkable point in the content of lemma is the fact that the short
distance expansion is not given for A(x + χ)A(x — χ) (x real) but for
A(z-\-χ)A(z — χ), with zeτ(+ }. Without further assumptions one is not
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allowed to perform the limit z->x. The resulting operators Bk are there-
fore also not given in the form

Bk(f) = J Bk(x) f(x) dx, fe ,SΌR4)
but as

Bk(z)= $eipzBk(p)dp ( f c = l , 2 , 3 , . . . ) .

Therefore one is not able to express locality properties of Bk by using
test functions with compact support in coordinate-space. Especially the
relative locality of Bk with respect to A(x) appears in the form that the
Wightman functions constructed with a Bk(z) and other field operators
have in their domains of holomorphy the same behaviour for permutation
of the arguments as if Bk and A would be fields relatively local to each
other. The "regularizing function" r is of course not uniquely determined;
it can be replaced by r(C) = K() Hi) where h is holomorphic in a neigh-
borhood of 0 and does not vanish for ζ ~ 0. This arbitrariness leads to a
transformation of the composite operators Bk and the singular functions
sk by a triangular matrix and is therefore very similar to the arbitrariness
found by Wilson and Zimmermann [3].

It is clear that our results so far can only be regarded as preliminary
if one is interested in more realistic situations. Let us make in the
following some remarks to generalisations.

a) A generalisation to cases, where "product-operators" appear at
more than one place in the n-point function seems to us only to be a slight
complication, not a true difficulty.

b) For a generalisation of the results from power 2 to higher powers
of the field A(x) some new considerations are necessary; for instance in the
case of three operators A{xx) A(x2) A(x3) it would be very helpful for an
answer if one could find arguments that the behaviour of such a product
for x1 —>x2 does not depend "too much" on x2 — x3.

c) The generalisation which seems to us as that of the greatest
importance at the moment refers to the assumed structure of the 4-point
function. Besides some plausible technical assumptions the essential
condition for the validity of the results of the theorem (Section 3) is d):

There exists a function r, such that

is analytic in

(d,C 2 )eτ (

+

2 ) and ζ3e%(0).

Instead of this special assumption one would prefer to assume: There
exist functions uk, such that

W^(ζuζ2,ζ3)= £ G[4)(Ci, C2,C3)^(C3) (4-8)
fc=l
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with G[4)(Cl5 ζ 2 , C3) holomorphic in the points

(ζ l s ζ 2 )eτ< +

2 \ ζ 3 e t r ( 0 ) .

It is not difficult to formulate some further plausible assumptions to
guarantee in this case representations of Wn, n= 5,6,7,... in the form

w ; ( C 1 , . . . , c n - 1 ) = Σ GP(ζ1,...9ζn_ί)uk(ζn_ι)

where G[n)(Ci> •••» (M-i) *s analytic in the points ( ζ l 9 . . . , £ „ _ 2 ) e τ ( + ~ 2 ) ,
{„_! 6 ^ ( 0 ) ($ r(0) is also a certain real neighborhood of 0).

The second part of the proof to get the analogue of the theorem in
Section 3 must lead from the analyticity of

G n c i , . . , ς - i ) , fe=i,...,/

with (ζ 1 , . . . ,ζ l l _ 2 )Gτΐ~ 2 ) , Cπ-ie^(O) to the analyticity of

with

where

Here lies the true difficulty with respect to the generalisation c).
While Wn was analytic in all the permuted tubes, it is not clear that the
same property holds for G[M), k= 1,...,/, and it is not even known that
one can find a neighborhood Ψ^(0) of 0 such that G[n), fc= 1,...,/ is
analytic for

( ^ may depend on the other variables).
If one had this last mentioned analyticity property for G[n) one could

get the desired generalisation.
Apart from the further treatment of these generalisations (expressed

in the assumption (4.8) - may be also with /= GO) a systematic study of
the 4-point functions themselves seems to be important in order to see
whether an assumption like (4.8) is true in general.

On the other hand the analytic properties expressed in the statement
of the theorem of Section 3 can also be used for the light-cone expansion.
With this respect we refer to a preprint in preparation. (Authors:
J. Kuhn and E. Seiler.)
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Appendix 1

The Separating Character of Ω for Bilinear Forms

We assume that B(x) is a "bilinear-form-valued tempered distribution"
on X> x D, that means:

B is a trilinear mapping from 5 (̂1R4) x ΐ x l into C which is con-
tinuous in the first argument (we write X> for the second factor to indicate
the antilinearity of B in the second argument). We denote the image of
g e ^(1R4); Φ, *F e T> under B by

B(g) (Φ, Ψ)

and sometimes incorrectly by

(Φ,B(g)Ψ).

Furthermore we assume that for

Φ=Φk(f)= $ A(xx)... A(xk)f(xi,...9xjdxi ... dxkΩ

Ψ= Ψι(h)= JAixj.^Aixi) fe(xl9...,xz) dx1 ...dxtΩ (A.I)

B(g) (Φfc(/), Φ/M) depends continuously on / and h, that means it
defines according to the nuclear theorem of Schwartz a tempered
distribution T over 5^(IR4(fc + / + 1 ) ) . Finally we assume that B is relatively
local to the field A in the weak sense defined in Section 2. Then the
following statement holds: If B{.) (., Ω) = 0 then B = 0.

Proof. The proof is completely analogous to the proof of the
separating property of Ω for local operators (see for instance Ref. [7]).
There is only one nontrivial point: One has to show that also in this
case the tempered distribution

T(f;g;yl9...,yι):=B(g)(Φk(f)9A(y1)...A(ydΩ) (A.2)

is the boundary value of a function holomorphic in τ ( j " 1 } (we cannot
just simply put in the spectral decomposition of Pμ because we could get
outside X), the domain of definition). But we know that Φι(h) = 0 if the
support of h lies outside the well-known support of the Fourier-transform
of the vector-valued distribution Φ J O Ί , ...,)>/); then B(g) (Φk(f\ Φι(h))
vanishes because of linearity. That means that the Fourier transform of
T(f',g',yi,...,yι) with respect to j ^ i , . . . , ^ has the same support prop-
erties as Φι(pl9 ...,Pι) and therefore T is boundary value of a function
holomorphic in τ^"1*.
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Appendix 2

A Boundary Value Property of Functions Hoiomorphic
in the Forward Tube

Proposition. Let us assume that F{ξ + it}) is a function hoiomorphic in
ζ=4 + iη.eτ{l] which fulfils for -ξe% (°U is a bounded open set) and each
compact subset Cff of Ψ"+ an inequality of the form

\F(4 + in-)\<Cκ(ηW2...η
2

ny\ q>0 (A3)

for 0 < 7 ^ ί g l ; J— e Jf (/= 1, . . . , n ) 9 . Then the boundary value
Vn)

lim F(-ξ -f irj) exists in the sense of distributions over Qjψlί)

(for each tf).

Proof. The proof is similar to the proof of Theorem 2.10 in Ref. [7],
Let us define for ge <3{%\ 0<ηj^ 1, ηj/]/ηJe Jf (/ = 1,...,n)

(A.4)

= (-i)N j F{ξ + iη) {DNg(-ξ)) d-ξ (A.5)

(we use the Cauchy-Riemann equation for F and partial integration).
If we use (A.3) we see that

%Cκ(η2

iη

2

2...ηir'pm(g) (A.6)

where

( ) = sup

Without loss of generality we can assume that ή.= (ήί, ...,ήn) with
^• = (1,0,0,0) (/=l, . . . ,n) is contained in JΓ; we consider the Taylor
expansion of Dh{n) around ή. in the following form due to Cauchy
(see Ref. [12], p. 118)

\κ — i). 0

( A 7 )

aλ ,

9 It is reasonable only to consider compact sets ,if which contain points η with η2 — 1.
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(tk-ί(ή)) denotes the Taylor expansion of Dh(η) up to (k— l)th order).
If we choose k>2nq it follows

(c1 ? c2 are some constants depending on g). Therefore (according to the
mean value theorem)

\h(η) - h(η!)\ SH- tf\ (Cl(g) + c2(g)Cκ) ]fϊ . (A.9)

This shows that the limit of h(η) for ^->0 {r\-J]fr\] G JΓ; 0 < f/j ^ 1) exists
for each ge@{%) which proves our proposition.

Applications

1) Multiplication of distributions. Two functions F 1 ? F2, fulfilling
the assumptions of the proposition can be multiplied; the product fulfils
again the assumptions and has therefore a boundary value in the sense
of Q}'^lί\ which can be interpreted as the product of the boundary
values of Fx and F2. If a function F(-ξ + iη) is the Laplace transform of a
tempered distribution with support in VI, it fulfils the condition (A.3)
according to Theorem 2.10 of Ref. [7]. Therefore the product r(ζj) Wn(ζ)
which occurs in Section 3 has a boundary value in the sense oϊ2#'(%(0)).
(β'ψll) denotes the dual space of 9(°l/))

2) The vector valued holomorphic function (cf. Section 3 and 4)

Ψ(ζ):=r(ζ)A(z)A(z + ζ)A(z1)...A(zk)Ω

(Imz 6 Ϋ\, Imς e f"+, lm(z1 - z - Q e τT+ , (A.10)

has for Imς = ̂ -^0 a boundary value in the sense of vector valued
distributions over @(%r(0)).

Proof. For ge@(%(0)) we define

Ψg(η):= j Ψ(ξ + iη) g(ξ) dξ (η e f , ) . (A.ll)

τ h e n \\ψg(η)-ψg(η')\\2 = (ψMψM

+ {ψg(η\ Ψg(η'))-(ΨM VgW)) (A. 12)

-{Ψg(η\Ψg(η)).
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Each term of (A. 12) converges for η^η'-^O; —j=ψ, —γ=ψeJf according

yn W
to our proposition to the same limit, since it is a product of a Wightman
function with r(ζ) and r(ζ) (the latter can be considered as a holomorphic

function of ζ e τ{+}). Hence Ψg(η) converges strongly for η ->0 —γ
γ
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