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Abstract. Using the formfactors which are entire analytic functions in a momentum
space, nonlocality is introduced for a wide class of interaction Lagrangians in the quantum
theory of one-component scalar field ¢(x). We point out a regularization procedure which
possesses the following features:

1. The regularized S matrix is defined and there exists the limit

limS°=S§.

-0

2. The Green positive-frequency functions which determine the operation of multiplica-
tioninS-S™ = S®S™* can be also regularized ®° and there exists the limit

Im@ =@ =-.
-0
3. The operator J(8y,,, ;) =S @ S5%* is continuous at the point §, =5, =8, =0.
4. $P@°S =1 at 6>0.
Consequently, the S-matrix is unitary, i.e.

S®ST=S-8"=1.

1. Introduction

The postulate of unitarity of S-matrix in quantum field theory is one
of the principal requirements for the theory to be regarded as self-con-
sistent and physically acceptable. Therefore, the proof of unitarity is
crucial in constructing the S-matrix for various models of quantum
field theory.

If the Lagrangian of interacting quantum field is given, the S-matrix
is then looked for in the form of a formal expansion in powers of a func-
tion of “switching on” the interaction g(x) (see, for example [1]):

S[gl=1+ ZI —r—j!—fdxl...jdx,,g(xl)...g(x,,)S,,(xl,...,x,,) (1.1)
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while defining the operator expression S,(x;, ..., x,) in (1.1) one finds out
that the coefficient functions K _,..z.(x;x,) in the expansion of
S,(x1, ..., X,) in normal products of the quantized fields u,(x)

Saxps s X) = Y Kopp(Xps e X))ttt (12)
illee P

are expressed in terms of the products of the causal functions of the field
operators under consideration.

Since the causal functions have fairly strong singularities on the light
cone, the products of such functions are not mathematically definite.
This generates one of the main problems of quantum field theory — the
so-called problem of ultraviolet divergences.

There are different ways of solving this problem. These are the
subtractive procedure interpreted in varying manners in a local field
theory [1, 2], the summation of asymptotic series for the Green func-
tions and superpropagators [3], a nonlocal generalization of the theory
[4], etc. An important point is that all these methods use an intermediate
regularization making the S-matrix elements mathematically meaningful.

The coefficient functions in (1.2) are distributions or, in another words,
generalized functions defined on some space of the test functions. They
are constructed as a limit of the locally integrable functions
K .. s..(X15 ..., X,) by introducting a regularization precedure given by
the parameter 6, so that in the unproper sense [ 1], there exists a limit

lim Ki_amﬂ'_'(xl, cees xn) = K...a...ﬂ..,(xla s xn) (13)

0—0

or, differently, . b
S[g]= lim 8°(g]. (1.4)

It is absolutely obscure whether the S-matrix so obtained satisfies
the initial axioms and especially the unitarity relation:

S[g1S*[g1=S"[g]1S[g]=1. (1.5)

In the local theory [1,2] the unitarity and causality conditions are
directly used to formulate the subtractive method of regularization. This
circumstance ensures the fulfilment of unitarity of the S-matrix in each
order of perturbation theory, at least in the case of renormalizable
interactions.

It has been proved (5] that the unitary S-matrix can be constructed
in the case of local nonrenormalizable interactions of the polynomial
and nonpolynomial type. Although the problem of constructing the
unitary S-matrix in each order of perturbation theory has not yet been
solved, some promising results have been obtained [3].
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In the present paper we will prove the unitarity of S-matrix in a
nonlocal quantum field theory [4].

Section 2 formulates the proof scheme; Section 3 describes the class
of the interaction Lagrangians under consideration and the way of
introducing nonlocality into the theory; Sections 4 and 5 give the
regularization procedure employed; Section 6 investigates the algebraic
implications of unitarity and presents the proof of unitarity of S-matrix
in the n-th order of perturbation theory.

2. Proof Scheme of the Unitarity of S-Matrix

Suppose that S-matrix is known in the form of a functional expansion
(1.1), where the operators S,(xq, ..., X,) are given by expansions of the
type (1.2). If the S-matrix is finite and satisfies the axioms of quantum
field theory (see [1]), then the coefficient function K, z..(xy,...,X,)
satisfy the following requirements:

1. They are translationally invariant, i.e.
K. gp.xy+a,.. . x,+a)=K _ ,. 5.(X1,...,%,).

2. They are integrable on some space of sufficiently smoothly varying
test functions A, i.e. there exists an integral

[ fdxg o dx, K oo g (%15 ey %) [(Xg, oy X,) <00

for any f(xy,...,X,) € A.

Below we shall describe in details the space of the test functions in
reference.

If the coefficient functions K. ,.. 4...(x;, ..., X,) are known, then the
expansion for §* [g] is known as well.

Following Bogolubov and Shirkov [1], one can show that the
coefficient functions obtained by multiplying two operator functions
with different independent arguments

Sn(xl""axn)®sr:l—(yl’"'>ym) (21)
and having the form
K...a...ﬂ..-(xl’ ) K( )(x _y) K..,u...v...(yl’ (AEE] ym)
K( (x—y)= H A Xs— V) (2.2

A3 (k) ~ 2m0(ko) 8(k* —m?)

may be defined as generalized integrable functions on the space A. The
sign ® denotes the transition to a normal product of u,(x) field operators
in the product (2.1), according to the Wick theorem.
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So, if the S-matrix in the form of expansion (1.1) is known to us, then
the product

Jl91=509] S [g]1 =S[gl1®S"[g]

is given in each order of perturbation theory as a generalized operator-
valued function on the space of the test functions 4.
Our problem is to prove that

Slgl®S [gl=1.

We shall start from the method of definition a finite S-matrix through
the use of an improper limiting transition and construct out proof in the
following manner.

Suppose there exists a regularization procedure which possesses the
following features:

1. The regularized functions K? , s..(Xy, ..., x,) are continuous and
bounded, and

;i_{% K{.a.../}...(xla s Xp) = K...a,..g...(xb s Xy)
i.e. the regularized S°[¢g] matrix is defined and there exists the improper
limit ]
lim $°[g] =S[g] .

2. The Green positive-frequency functions which determine the
multiplication in (2.1) and (2.2) can be also regularized and there exists
the limit: ‘ ,

;1_{% K?—)(x =) =K(x—y)

or symbolically )
ne=9.
3. In the relation
— T 1 : o1 2 Q3+
Jlgl= 511190 61215110 lim S™[g] @S [g]

the limit is independent of the order of limiting transitions to the points
8, =0,=0,=0, ie. the operator J®%2%[g] = §%[g] ®"S%* [g] is con-
tinuous at the point 6, =3,=0;=0.

4. Regularization is chosen so that

S’[g]@°S°*[gl=1 (3>0).
Then there holds a chain of equalities such as follows

Jlg]=S[g]1®S" [g] = lim lim lim §*[g]@"S""[g]

—062,-093—0

1 2] 5 Qo+ 1 _
—‘lsgr(l)S[g]@S g]=lim1=1.
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Hence
S[g1S*[gl=1.

Our aim is to indicate in a nonlocal quantum field theory a regulariza-
tion procedure which would satisfy all the requirements listed above.
This will prove the unitarity of S-matrix.

3. Interaction Lagrangians and Nonlocal S-Matrix

3.1. Interaction Lagrangians

We shall consider the theory of an one-component scalar field ¢(x)
with the Lagrangian

&L =Zo(x)+9Z(x)
Lo=7:{0,6(00,¢(x) —m* $(x)} : (.1

94=gU@)=g Y. 54

If for a sequence of real numbers {u,}°, there exists in a complex &
plane a measure o(¢) such that

u,=i"&" da (&) (3.2)
then %, may be written as
Li(x)= [do(&): ™ (3.3)

The representation (3.3) is convenient in that it exhausts all the forms
of self-action of the scalar field now under study.
For example,

Zi(x)=:¢"(x) :=

()N e A8 o,
]
or

L0 =U()= [ dpO(p): e+

for any continuous function U(u) absolutely integrable over (— oo, + 00).
If U(z) is analytic in some neighbourhood of the real axis [Imz| <d
then

[ dBIOP) e <0
for 0<a<d. ”

Since the Lagrangian is Hermitian, the measure o(&) satisfies the
condition

"¢ da(&)= (i [(£*)"[da(&)]*. (3.4)
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Furthermore, we assume that there exists a strictly increasing non-
negative function M () such that

[lda(&) "M < o0 (3.5)
for any N >0.

3.2. Perturbation Series for S-Matrix

The S-matrix for the theory with a Lagrangian of the form (3.3) is
formally representable as

Slgl= ZO %Mxl-~-§dxng(x1)---g(xn)fdﬂ(él)---fda(én) (3.6)
-1 exp{i(&1 @(xy) +- o+ &, d(x,)} - 1<H< eXp{—&i & Adx;—x;)}

where 4 (x) is the causal function of the scalar field:

d4ke—th
(27:4 j ~k?—ig’

4.(x)=
g(x) belongs to the space of the test functions.
Introducing the notation
W= W(éfj, x; — ) = g Gigide(ximxy) _ 1
® ) 3.7
d#,:dxjda(fj) g(x)) &9, (3.8)

the series (3.6) may be rewritten as

cdw,s T (t+wy). (39

15i<j<n

Slgl=

Here w;;=w(¢; ;5 x; — x;) is a two-point function — the so-called “super-
propagator” — describing a sum of Feinman graphs such as

Fig. 1

In the S-matrix representation (3.9), firstly, the superpropagator
w(&;; &;5 x; — x;) and, secondly, the superpropagator products

[Tw&i&;x—x) (3.10)
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are mathematically indefinite, because both the constructions are
expressed in terms of the product of generalized singular functions.

One of the most important problems in modern quantum field theory
is to specify the multiplication of generalized functions which would
conform to the principial axioms of quantum field theory. There is a
number of methods of definition this operation (see [5]). A detailed
analysis of these methods is beyond the scope of this paper. We shall
define w(¢;¢;; x; — x;) as a nonlocal generalized function defined on a
space Z, and make a series of assumptions on its analytic properties which
will enable us to define (3.10).

3.3. The Space of Test Functions Z,
The space Z,(a = 1) consists of all those entire functions f(z,...z,) of
n complex variables z; = x;+iy; (j=1, ..., n), which satisfy the following
requirements:
1) For any f(z,...,z,) € Z,, there exist positive

C>0 and 4,>0 (=1,...,n),
such that

|f(z4, ...,zn)|<Cexp{ > Ajlzjl"} .
j=1
2) For any yq,..., y,

[ dxy... [ dx,|f(xq 40y, ey Xy i) <o0.

The number a is chosen depending on the interaction Lagrangian
under consideration and the way of introducing nonlocality into theory.

The space Z,, which is a space of the Fourier transforms of the func-
tions f of Z,, is made up of the differentiable functions fi (py5---» p,) Which
satisfy the condition:

3) There always exist positive C and Bj, such that

|f~(l’1a Pl <C eXp{_ Z Bj|Pj|y} s
i=1

where
a
>1.

r= a—1

On the space Z,(a = 1) one defines all nonlocal generalized functions
K(x) (for details see [6]), for which the Fourier transform K(p?) is an
entire analytic function in the p?-plane the order of which is

a

N R ATPE
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3.4. Nonlocal Superpropagator
We assume that nonlocality is introduced into the theory so that the
Fourier transform of the superpropagator w( &), x;—x;) may be
written as

Ww(&, x) = #fd“ke‘”‘"ﬁ(i, K2, (3.11)
[+ d 2 2 k2
WEk)= | %79_(—5]{7'%;1 (3.12)

Here
=8¢, x=x—x;.
The Fourier transformation is interpreted in the sense of generalized
functions.
The function ¢(¢&, k2, k?) satisfies the conditions (4,):
1) It is an entire analytic function in the complex k? plane, the order
of which is
R R
SN R A TP

l\)| —_
lIA

2) For k> + «©
O(exp{Ak?|¢}), k? > + ©

2 k)= 1
o(&, k%, k%) 0(W),0</1<1, k*— — o0

for any &, uniformly for all k? € [m?, + o).

3) The function ¢(&, k2, k?) is defined for all x?e[m? + o), and
decreases as k2 — o0, so that the function

WEK) = | dolE k%K)

is entire in ¢ and k? planes.
Here the following estimation is true

o(&, k) = C exp {A[k*®+ M, (€]},
where the function M, (u) is such that for u >0
M (uyuy) S M(uy) + M(uy)
(see (3.5)). As k? > — 0

1
v@m%=0@¢;$:ﬂ~
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4) The function g(&, k2, k?) is normalized by the condition
Q(éa Kz’ kz)‘x2=k2 = QO(&» kZ)
[m] 5),.
= —&3(k> —m?) + Z

1
2,05)= (2m)3— 1 j 2w1 J~2co 00 —ky = =)

wo=)/m*+k*, p*=pi-p*=x’.
5) Lo(&, 12, k%)]* = o(&X, k2, (k?)¥).

The methods available in a nonlocal quantum field theory (see [4, 5])
lead to the superpropagators w(&, k?) having all the properties listed
above.

Consider one of the possible versions. We assume that nonlocality
is introduced into the theory so that the causal function of the scalar
field changes according to

1 V(I*k?)
m?—k?—ic  mP—k®—ic

Q,(<?);

: (3.13)

where the function V(z) satisfies the conditions (4,):

1) It is an entire analytic function in the z-plane of some finite order
150<0o,

2) LV(@)*=V(z¥),
3) V(Pm*) =1,
4) V(Z)=0<—'Z~|—11:T), O0<i<l1, Rez—> —o0.

For example,
Vi(1Pk?) = e P2 =i (3.14a)

Sinl‘/mz—kz}4 (3.14b)
/m*—k* |’ '
P
V(1 k?) =ml[10(lk2)K1(mD+ Ill(l—l/lg;-)leo(ml)] (3.14¢)
where I,(z) and K, (z) are the Bessel functions.

The change the propagator (3.13) in the Euclidean x-space means that
the two propagators

V,(Pk?) =

I
Qn* ' m*+k}

A(m, x3) = (3.15)
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and
1 d*ky V(—lzkE)

lkExE
2n)* =y k2 (3.16)

D(xg) =
are related by
D(xg) = A(m, x) 9(x7) .
It is easily to show that the function 9(x32) is real and satisfies the con-
ditions
ow”), o=1+4, u—0
Hu) 0 (3.17)
1+0(exp{ uze” 1}), u— + 00

where a is a constant.
Conversely, if D(xZ) = A(m, x3) 3(xZ), where 3(x3) satisfies the con-
ditions (3.17), then in the momentum representation
~ V(I?k?)
Dk = ——F—"—
&) m? —k?—ig’

where V(z) satisfies the conditions (4,).
Consider now the function w(&, x) in the Euclidean x-space. We
perform identity transformations such as

w(¢, xg) = exp{— ED(xF)} — 1

=3 SV pr= § 59 e
) et (3.18)

_ f 5)" [ 2,0 A0e,xD) 976
_ T4

(mn)?

) K2 ;21 ( 16)" Q. (k%) A, x3) 9"(x3) .

Since 9"(u) satisfies (3.17), where o = n(1 + 1), we get

* dko(6 k%K)

LTk (3.19)

W(E ki) =
] (- 5)"
e& K% k=Y Q,() V, (1%, kB . (3.20)

n=1

2

Here the function

V(K% k3) = (K% + k3) [ d* x5 A(xc, x3) [9(xP)]" &'*=*=
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is entire in the k? plane and satisfies all the conditions (4,). Moreover, for
some C>0and a>0

alz|e

e

IVn(KZ, Z)l _§ CW .

(3.21)

For example, for the formfactor V;(I>k?) in (3.14¢) the corresponding
function is 3(u) = 0(u — %) and V,(x?, I*k?) = V;(I*k*) at m=«x.

Going in (3.19) and (3.20) to the Minkowski space, we obtain the
representation (3.12), where the function o(¢, «?, k?) satisfies all the con-
ditions (4,).

For the superpropagators (3.12) we can uniquely define a product
integrable on the space Z, through the use of the intermediate regulariza-
tion R°(3<g<1) or the postulate of “Euclideanness” (¢=1). This
ensures the finiteness of S-matrix in each order of perturbation theory.

In the present paper we shall consider another regularization which
enables one to uniquely define the product of superpropagators for any
finite order o.

4. Regularization Procedure

4.1. Mellin Representation for the Function (&, k2, k?)
and the Introduction of Regularization

The Mellin representation

—pf—ix 2
ot iy = L T ARG D

2_L,2__ ;¢ 4.
20 _phin sinn{ (" — k" —i2) @D

with 1 < <2 holds for the function o(¢, k2, k%) (which was discussed in
3.4) in the region k? < k2.

Proceeding from the properties of the function g(¢, k%, k?), one can
obtain:

1) The function R(¢,«k?,() is regular in the half-plane Re{ > —2,
and in this region

C(|¢], k%) ™!
R w7, DS — ) S “2)
(b (1+ 2]
for VN>0,{=x+iy.
At the point { = — 1 the function has zero of the first order at least.

2) R(é, K2a0)=90(69 Kz)'
3) [RE k2%, O1* =R(&*, %%, (%)
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4) The function

f60= ] dRPRE R0

is entire in the £ plane and regular in the half-plane Re{ > — 2.
The following estimation holds for this function:

eI+ Mi(gD

& 01=C .
(1+ |y|)NF(1 + —Q—)

for any N > 0. At { = — 1 the function has zero of the first order.

We emphasise once more that the representation (4.1) holds for
k? <x?. For the passage to the region k* > k2, one has to go over from
the integration in the {-plane over the contour

L=Lo={{:x=~fY}

to that over the contour

Ly= {C:ReC> —2,arg{=+ (% —0), for |C|—>oo},
as shown in Fig. 2.
y=Imé A
d
=10}
Lo
3 g B 3 xiRet
DN
v

Fig. 2

The formula (4.1) with the integral over the contour L, (O <= %)

gives the representation of ¢(&, k2, k?) for all k? € (— o0, + o0).
Let us introduce in our discussion a regularized function

1 d{R(, K%, ) &%

) 2 2y +
0'(& 1% k) = 2i Lje sinz(

(K*—k?—ieff  (4.3)
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where
i

<fh<—
0=9=4.

One can readily recognize that with 6 > 0 the function ¢°(¢, k2, k?) is
a) regular in all the complex k*-plane, except for the branch point
with k? = k2 —is,

1
b) 0°(¢, k%, k%) =0 (W)’ k%= o0 . (4.4)

c) lim (&, %, k%) = (&, k%, k%).. (4.5)

4.2. Regularization of the Superpropagator w;;
Using (4.3), we obtain a regularized expression

k= LLEE) 49

for the superpropagator w(¢, k?).

The function WP(&, k?) satisfies the conditions (45):

1) It is analytic in the whole k? plane, except for the branch line
along the beam [x?, + ).

2) wa(é,k2>=0(—l—k~2—llm>, Koo, 0<i<l.
3 1im (6, k%) = #(&, k)
for any k2.

4) There exists the Fourier transform

L %) —ikx
w’(&, x) = i [ d*kWo(E, k%) e~
1 ~BTiw dc oY =® (47)
T2 Cpriw ST fd PREK O DG %, %)
where P
2 e
D(C,K ,X) (27'54 j‘(K kZ—IS)l 4
(4.8)

_ 2t tleimt HP) (c])/x* — i)
Cosar(1-y9 (/X -ttt

H®(u) is the Hankel function.
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The function w®(&, x) is bounded at zero, i.e., w’(&, 0) < oo since
(KZ)I + 1

Arr 1+
In this sense of generalized functions

;ijgwé(i, x)=w( x),

D, k2, 0)=

ie.
tim J d*xw?(€, ) £ () = [d*xw(&,2) ()
for any
fxez,.
Thus, with > 0 the superpropagator w’(£, x) is a continuous bounded
function, so that the products of such functions are well defined.
The regularized S-matrix may be written as

cdw,: [T (+w). (49

1gi<jsn

S°[gl=

Using the condition (3.4), we obtain for the Hermitian conjugate
S°-matrix

© __l)n
S gl=1+ Z [ frdpydw,: T (+wi (4.10)
n= 1<i<js<n
where b Cosrem e o , "
wij =[w(&FEF, xi—x))]*. (4.11)

4.3. Removal of Regularization in the Matrix Elements of S Matrix

We now consider how to go over to the limit § —0 in the integrals
defining some arbitrary matrix element of S-matrix. We shall follow the
method given in [4].

In the x-space the integral for an arbitrary connected Feynman
diagram G in the n-th approximation of perturbation theory of the
regularized S°-matrix is given by

Fo(xy, . x)= ][] wé(éiéj,xi—xj) (4.12)
i,jeG
where i,j=1, ..., n, according to a given connected diagram G. If in (4.12)
we go over to a momentum representation, then we find

F¥py,.... Py =]dx,...Jdx, P HPeOFd(x L ..., X,)
=Q2n)*6*(p;+ - +p,) T°(P1s---> P (4.13)

L N
T°(py,..->Pn =jj1__[1 d*l; U Cjs J
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where N is the number of internal lines in a diagram; L is the number of
independent integrations. Here &;=¢;; ¢;, and k; is the four-momentum
corresponding to a given line in the diagram which connects the points
x;; and x;,; [; are the four-momenta over which the integration is
extended. The momentum k; is a sum such as

L n
kj= Zl 0,1, + Zl 8P
v= u=

where the numbers 6;, and 9;, can take only one of the three values
—1,0, + 1 depending on any given line in the diagram.

The integrals in (4.13) are well convergent for § > 0, since the func-
tions WP(&, k%) decrease as (k?)~?*#, according to the conditions (A45).
We now take the following step. We substitute the representation (4.6)
into (4.13), and make use of the Feynman parametrization:

4 Q(Sp ? 2)
T (p,, .. ,p,,)— dkl deNj “_Idln*—‘“kz—_

=(N—1)!jdoc1...jdocNé<1—— 5 oci> [a.. | d
0 m2

i=1 m2
HQJ(éJ,KZ k2
'j”'jnd“li NJ - (4.14)
i Y ozj(;cf—kf)—ie}

j=1

From the expression standing in the denominator one can always
remove the terms linear in [; by transforming the variables of 1ntegrat10ns
like l;=1;+ ZA”p, Then we obtain

N

,Zl o (i} —k7) = (o, k%, p;p)) + Ko, 1))

J
Here K(o, [;17) is a uniform quadratic form of the new variables of the
1ntegrat10n I; with coefficients dependent only on the parameters o;;
oo, x ,p,p,) is a nonuniform quadratic form of the vectors (p,pj)
characterizing the external momenta of any given diagram.

So we have

1 1 © 0
T°(py,....p) =(N = 1)! [ day... [ doy | dx}... f dx? (4.15)
] 0 m2
H@a(i,, K7, ki?
[Pp(o, ,PIP,)'FK(OC 1) —ie]"

where k;=Kk(I', p, ®) is the momentum corresponding to the j line. After
the variables are replaced, it is dependent on I}, p;, o.

(1 —Zop-f- H_[d“’
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Now in the expression (4.15) we can go to the Euclidean metric,

. . . T, .
rotating the contours of integration over [;, by the angle 5 le Lio—il;4.

Then we get
1 1

T°(py, ... p) =(N—1) [day ... [doy T dx? ... T dkgd(1—Za)  (4.16)
0 0

[1eE0 2 1K 0y, o)
L. 4, Jj
e e g S TR Lol —ieT"

In the integral (4.16) we can go to the limit 6 =0, since the functions
0(&;, k3, [k(Iz, p, ®)]%) decrease when k> — — oo, and the integral (4.16)
converges in the limit 6 = 0.

Note that while rotating the contours of integration over [, it is
necessary to take into account the cuts of the functions °(&, k2, ki]) in the
plane [;,. This results in the fact that in addition to the Euclidean integrals,
there appear contributions arising from the integration over the edges
of the cuts of the functions ¢°(¢, x*, k%) in the planes [;,. But with =0
these contributions vanish, since the functions @°(&,x?%, k%) at =0
become entire analytic functions. Therefore, while rotating the countours
it is important to correctly circumvent the singularities of Feynman
denominators. This is ensured by the representation (4.16).

5. The Functions w®) (&, x)

5.1. Regularization of the Functions w*)(¢, x)
Consider the functions

—EEAE) (x;—x
wiP) =wE(EE, x—x) = e HGAP X g

= 3 CS o, - (5.1
Using the represenntlation
[4D(x)] j di? Q,(x*) AF)(x, x) (5.2
" m2
which holds for x =+ 0, one can easily obtain
wENE, x) = oj?z dri?0o(&, k%) AF)(k, x) . (5.3)

In general, this integral exists in improper sense all x =0 (see, for
example, [7]).
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The Fourier transform of the function is equal

BOERY = T dieqlé ) 400 b 54
=270(F ko) O(k> —m?) 0o (&, k7).
Making use of the relation
A® ke, k) = 2m0(F ko) 6(k> — ?)
1 1 1 (5.5)

i|k?—k*—ie  Kk?P—k*Ficky)’

we introduce in our discussion the regularized functions

Wa(E k)= | di?o’(& 1, k%) A, k)

—p-ioo (2 (5.6)
B % —ﬁ!;ioo ‘slfnenc ,;,[2 dKZR(é’KZ’ 0 DN(i)(C’ k)
where
Ds(¢ )= % [(? —k* —ig) ™' — (k* —k* —icko) ™ ']
, (5.7)
= 270(F k) O(K* — 1) ST 2 _ g1,

The representation (6.7) implies that in the complex k,-plane the
contour of integration should be such as shown in Fig. 3.

K,
c+ ct!
———4——'\
E—————2) ' ==K
Fig.3

In the x-representation one can get

1 —B-iw dceét_? ®©

Wol&N=5r |G LRGP, 68
1 _
Dis)(6:3) = ey [ ke ™™ DK (5.9)

2yl +t —inl gy(2) z_; 2
K {e HY L (k]/ x” —ig) +20(+ x0) 0(x?) J_I_Z(Kl/x&)}.

BT R Ve (/3
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It is easily seen that
D40, k) = Ak, k
)0, k) +(K ) (5.10)
D10, x) = 4k, x) .

The functions D, )({,x) and ﬁ(i)(C, k), as generalized functions

defined on the space Z,, are entire analytic functions and increase as
2

, and— > —,

F(—Z—C—) when Re{— + 0.
’ ¢
(g
Q Q

the integral in (5.8) is convergent, provided that one goes to the contour

-1 1

Since the function R(&, k2,() decreases as

of integration L, (O <f= %) in the plane {. Than we can go to the limit
0—0, obtaining
;i_{'% W?i)(fs k) = W(i)(éa k) .
Foro>0

1
#2260 = 0]

ask?— + c0. Here 0< A< 1.
The function wfi)(f, x) is continuous and bounded for real x. At the

point x =0 it is
—B—ioo dC eécz

e o= T T
e 20 g (SInm)(1+0)C

j dx?R(¢, k%, )< .
5.2. Continuity in the Parameters d;(j= 1,2, 3)

Following Bogolubov and Shirkov [1] one can show that the follow-
ing statement holds for the regularization chosen:

If 'K'i(xl,...., x,) and K5(yi,...,),) are translationally invariant
coefficient functions and in improper sense

}in&K‘i(xl, e X)) =K (x),...,X,)

MM K5 (31, o0 V) = Ko(15 -5 V)

where K (x4, ..., x,) and K,(y,, ..., y,) are generalized functions defined
on the space Z, and the arguments x,, ..., X,; ¥y, .-, ¥,, are independent,
then the limit

lim lim lim K$(xq, ..., X) K20y, oeos Vo) TWE2 (X, — )

51—20 6,—0 630

=K1(x1a "'sxn) Kz()’u -"5ym)HW(—-)(xs_yt)



Nonlocal Quantum Field Theory 19

exists as a generalized function on Z, and is independent of the manner of
going to the limit 6, =5, =5, =0.

The proof is based on the simple fact that the boundedness of the sum
of negative frequencies implies the boundedness of every separate
frequency.

Indeed, consider the functional

B(51’52’ 53)=fdxl"'jdxnjdyl"'jdymf(xl3 "'9xn;y19"'9ym)
: K‘il(xly ""xn) ng(yl’ ceey ym)nw(éi)(xs—yt)
S,t

where feZ,. Let us go over to a momentum space. The translational
invariance of the functions K’(...) (=1, 2) yields

fdx, ... [dx,e®>+ -+ ge(x, . x)
=5(p1 + o ""Pn)K‘i(Pn apn)

After simple transformations we obtain for

B(8,,8,,09)=[d*p,...[d*p, [ d*k,...[ d*k,,
5(}2 pj— Z k)f(pl, Puikys s k) QP25 (p Dk k),
Q%%2%(py, s, P ks ey k) (5.11)
= 11]dg0 (é pi— Sths,> U W2 (dse)
Iz(il("ij—‘ ;qi,, ) K32(...,kj+ gqu, )

Since W{_)(q) ~0(qo) O(qg*> — m?), the integration in (5.11) is over a finite
reglon Therefore, the limit with 6,—0 (j= 1,2, 3) exists independently
in every parameter d,, since each of ‘the functions K3, K% and W, tends
to a finite limit.

3.3. Relations between the Regularized Propagators
One can easily see that the regularized functions
WEN, WHER),  wh(Ex)
are related (with 6 > 0) by

W, x) = O(x0) W_y(&, X) + O(— xo] Wi, (&, x)
W& x) = 0(—xo) W{—(&, %) + 0(xg) Wl (&, %)
W (& %) = 0x0) W(E, %) +0(—x0) W (¢, x)
Wi (& x) = 0(— xo) W(E, %) +0(x0) w** (¢, x)

(5.12)
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where

1, u>0

6. Proof of the Unitarity of S-Matrix in the n-th Order
of Perturbation Theory
6.1. Unitarity in Perturbation Theory

Using the representation (3.9) for the S-matrix and the unitarity
relation

. SSt=S8*S=1,
we obtain
0 in
Yo [l fidpy e dp, 412, ) =0. (6.1)
Here et
A,(1,2,....n) (6.2)
= Y (=P, .. nn+ 1, om) A, (L .ongn + 1,0,
ni+ny=n

An,nl(l’ "'5n1|n1 + 19 "'7n)EAn,n1(élx15 LR énl'xnllénl+1xn1+19 rey énxn)

= [T O+w&x—x) [ {1 +wo G x—x)} (6.3)

1si<js=m 1sk=ny
n+1=I<n

I_I {1+W+(ését;xs—xt)}9

ni+1=s<t=<n
P, ..oning+ 1, ].m)=P(Exy, oo, &y X v 1 X b1 e EnXy
is the symmetrization operator denoting the sum over arbitrary decom-

. L n! .
positions of n points into ———— sets, each containing ny,n,, ..., n

nl..;-nk.
k
points( Y ni=n>.

i=1
The right-hand side of (6.3) is represented as a sum each term of which
describes some ordinary graph! (which, in general, is disconnected) with
n vertices.
In the case ny = n this sum may be written as
An, n— l_[ {1 + Wij}
1<i<jsn
= > P, kilki+1,. L ki+ky|... ). ki +k,+-+k) (6.4
. i

'Fkljk,(l’ ""kl)szjkz(kl + 1, "'9k1 +k2)"'Fkvjkv(n_kV+ 1, ,n)

! The graph without loops two adjoining vertices of which are connected by one line
only [8].
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Here v is the number of connectivity components of a given n-vertex
graph; F,; (1...k) is the function describing some connected Feynman
graph G, ; with k vertices; and the index j, denotes the type of a graph
and ranges over 1 <j, < N, where N, is the number of different connected
graphs with k vertices.

As j, we can use some index connected, for example, with the matrix
of adjacency of a vertex [8], the elements of which are given with the help
of w;; contained in F ;.

We shall not discriminante between the graphs obtained from one
another by permuting the vertices. This implies that F; with fixed k
and j, describes the sum of graphs over every possible permutations of
vertices.

Consequently, every function F (1, ..., k) is symmetric with respect
to the permutation of its arguments.

The summation in (6.4) is over all

ks Jip k520, 3 ky=n, 1<), SN,
j

By definition,
Fo=1.

As it is easily seen from (6.3), the set of graphs described by the func-
tions A4, , with n;#n is isomorphic to the one considered (n; =n),
provided that one does not discriminate between the edges of the graphs
to which different superpropagators (w; ;, w;;, w_y;;) correspond. There-
fore, 4, ,, may be represented by the formula similar to (6.4)
Apm= > 2 PO, kylky+1, ki +kylo kg + - +k)

ki) pip) 65)
“Fvipiip, (s cooskg) oo B i pug, (B—kyy 1)

where
Fejopi,(1--K)
=P(l..plp+1,...k) B, (L...plp+ 1...k).

Here
Fejpip(Lplp+ 1K)

denotes the function describing the connected graph G;; which is
decomposed into two subgraphs of the p and (k — p) vertices; the index
Jp indicates the decomposition technique and ranges over 1 <j, < My;, .
where the number M, ;, , denotes the number of independent decomposi-
tions of this kind. The function w(&;&;, x; — x;) corresponds to the edges
of the graph G, ; which connect the vertices of the first subgroup (1...p),
the function w* (¢, x; —x;) the those connecting the vertices of the
second subgroup (p+ 1...k) and the function w._,({;¢;, x; —x;) to the
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lines connecting the vertices of the first and second subgroups. By defini-
tion,
ijk,pjp(l "'plp + 1"'k)lp=k =F;‘jk(1 k) .

We introduce additional functions

M, p

Fo(l...plp+1.. k)= > Fejupi,(Locplp+1...k)

jp=1

Fojop(l. )= P(L..plp+1...k) Fj (L...plp+1...k).

Taking (6.4) and (6.5) into account, the function A4,(1...n) may be
written as

A,(1...n)
= Y (=) > Pl..kgki+1. .k +k,|...]n—k,+1...n)
nytnz=n &, jii} {p, jp}
‘Fkuk, pup,( 1) Fkvjk s Pvipy (n_k +1"'n) (6'6)
=(=y > P(1.. n—k,+1...n)
tk, i
T S PR [ 1 3 k)
{pi, Jp,} =1
We insert (6.6) into (6.1) obtaining that the S-matrix is unitary
subject to
foofrduy . dw: Y (=) Fejp,pj,(1...)=0 6.7)
{p, jp}

or more specifically,

fdxy...[dx,g(xy)...9(x,) [da(&)...[da(&,)

GBI F e+ End(xn)) y (—)”ijk,pjp(xl i x,6)=0.
{p, Jp}

(6.8)

The formulas (6.7) and (6.8) represent the unitarity relation for any
connected Feynman graph.

So the problem of proving the unitarity of S matrix reduces to proving
the relation (6.8) for an arbitrary connected graph.

6.2. “Unitarity” of the Regularized S-Matrix (S°®°S°* =1)
Following Veltman [9], we will show that for the functions F;,, i»
constructed from the regularized superpropagators w’, w’* and w{_,
there holds an identity
Jofidpydm: Y (<P, (1. =0 (6.9)

{p, ip}
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which provides for the condition S°®°S°* =1 to be fulfilled (see Sec-
tion 2).
Taking into account the relations (5.12), one can easily verify that

F. (1..a... +1...k
k i, 17( a...plp ) (6.10
ijp (1...a—la+1...pla,p+1...k)

for x,0<x;0(i=1,. —1,a+1,..., k) since in this case
Wé(éafs’ xa_xs)'__wzs—)(éafs’xa_xs)v (S=1"'a_ 15a+ 1 p)>
W\ (Ea EnXa—x) =W TH (6L x,—x), (t=p+1,...,k).

Hence

B(lk): Z ( ) k_lkp( k)
e (6.11)
- ;)(—)Ppu,_,mpﬂ R (plp+1...k)=0.

The sum (6.11) contains 2* terms. All the terms cancel in pairs
because of (6.10).

Indeed, suppose that one of the arguments (x,o,..., X;o) is the
smallest. Without loss of generality we can assume

X105X0 (=2,3,...,K). (6.12)

Then the sum in (6.11) may be decomposed into two terms

k

Z (=)PP(1...plp+1..k) F;_,(1...p|p+1...k)

(=VPQ ....plp+ 1, .. D F (1, ..oplp+ 1., k) (6.13)

1

"TIM»

-1
+ Z (=)VPPQ2,....p+1lp+2,.. .k F ,2,....,p+1]1,p+2,...k).
p=0
Taking (6.10) and (6.12) into account, we obtain

k
B(1..k):= Y (=PPQ..plp+1..k) E;_, 1(2...p|Lp+1,....k)
p=1
k—1
+ Z (=YPQ..p+1lp+2.. 0 F; ,2..p+1|1,p+2...k)
p=0 (6.14)

1

k—
Z( YP2..p+1|p+2...k)

A=F 2. p+ U Lp+2. ) +F ,2..p+1|1,p+2...k)} =0.
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Thus we see that B(1...k) =0 for any relations between the arguments
(X10-.-Xo), 1.6, for any choice of a minimal argument. And so there
holds (6.9).

Note that our considerations are true, provided that the super-
propagators w’, w’*, w?_, from which the functions F?;_, are constructed
are locally integrable and obey the relations (5.12).

6.3. Conclusions

Thus we have demonstrated that the regularization chosen possesses
all the properties (1) — (4) stated in Section 2. Hence the unitarity of the
S-matrix in the n-th order of perturbation theory is proved in a nonlocal
quantum field theory.

To conclude, the authors extend their gratitude to Prof. D. I. Blokhintzev and
M. L. Rutenberg for fruitful discussions.
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