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Abstract. Using the formfactors which are entire analytic functions in a momentum
space, nonlocality is introduced for a wide class of interaction Lagrangians in the quantum
theory of one-component scalar field φ(x). We point out a regularization procedure which
possesses the following features:

1. The regularized Sδ matrix is defined and there exists the limit

lim Sδ = S .
(5->0

2. The Green positive-frequency functions which determine the operation of multiplica-
tion inS S+ =S®S+ can be also regularized ®δ and there exists the limit

Df

3. The operator J(δl9δ2ί <53) = Sδl ®δ2Sδ*+ is continuous at the point δί = δ2 = δ3 = 0.

4. Sδ0δSδ+ = l at «5>0.

Consequently, the S-matrix is unitary, i.e.

S0S+ =S S+ = 1.

1. Introduction

The postulate of unitarity of S-matrix in quantum field theory is one
of the principal requirements for the theory to be regarded as self-con-
sistent and physically acceptable. Therefore, the proof of unitarity is
crucial in constructing the S-matrix for various models of quantum
field theory.

If the Lagrangian of interacting quantum field is given, the S-matrix
is then looked for in the form of a formal expansion in powers of a func-
tion of "switching on" the interaction g(x) (see, for example [1]):

l+ Σ -^-idxi...ldxng(x1)...g(xJSn(xl9...,xJ (1.1)
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while defining the operator expression Sn(xί9 ..., xn) in (1.1) one finds out
that the coefficient functions X..α...jj...(*ιxJ ώ the expansion of
Sn(x1 , . . . , xn) in normal products of the quantized fields ua(x)

Sa(xl9...9xJ = £ K...a...β...(xl9...9xJ:...ua...uβ...: (1.2)
...«.../?...

are expressed in terms of the products of the causal functions of the field
operators under consideration.

Since the causal functions have fairly strong singularities on the light
cone, the products of such functions are not mathematically definite.
This generates one of the main problems of quantum field theory - the
so-called problem of ultraviolet divergences.

There are different ways of solving this problem. These are the
subtractive procedure interpreted in varying manners in a local field
theory [1,2], the summation of asymptotic series for the Green func-
tions and superpropagators [3], a nonlocal generalization of the theory
[4], etc. An important point is that all these methods use an intermediate
regularization making the S-matrix elements mathematically meaningful.

The coefficient functions in (1.2) are distributions or, in another words,
generalized functions defined on some space of the test functions. They
are constructed as a limit of the locally integrable functions
K^.a...β...(xl9...9x^by introducting a regularization precedure given by
the parameter <5, so that in the unproper sense [1], there exists a limit

limK?..β...^.(x1,...,x l l) = X...α.../ϊ...(χ1,...,χ l i) (1.3)

or, differently,
/]. (1.4)

It is absolutely obscure whether the S-matrix so obtained satisfies
the initial axioms and especially the unitarity relation:

S[0]S+[0] = S+[0]S[0] = 1. (1-5)

In the local theory [1,2] the unitarity and causality conditions are
directly used to formulate the subtractive method of regularization. This
circumstance ensures the fulfilment of unitarity of the S-matrix in each
order of perturbation theory, at least in the case of renormalizable
interactions.

it has been proved [5] that the unitary S-matrίx can be constructed
in the case of local nonrenormalizable interactions of the polynomial
and nonpolynomial type. Although the problem of constructing the
unitary S-matrix in each order of perturbation theory has not yet been
solved, some promising results have been obtained [3].
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In the present paper we will prove the unitarity of S-matrix in a
nonlocal quantum field theory [4],

Section 2 formulates the proof scheme; Section 3 describes the class
of the interaction Lagrangians under consideration and the way of
introducing nonlocality into the theory; Sections 4 and 5 give the
regularization procedure employed; Section 6 investigates the algebraic
implications of unitarity and presents the proof of unitarity of S-matrix
in the rc-th order of perturbation theory.

2. Proof Scheme of the Unitarity of S-Matrix

Suppose that S-matrix is known in the form of a functional expansion
(1.1), where the operators Sn(xl9 ...,xπ) are given by expansions of the
type (1.2). If the S-matrix is finite and satisfies the axioms of quantum
field theory (see [1]), then the coefficient function X...α...0...(xι, ...,xw)
satisfy the following requirements:

1. They are translationally invariant, i.e.

2. They are integrable on some space of sufficiently smoothly varying
test functions A, i.e. there exists an integral

for any f(xl9...,xJeA.
Below we shall describe in details the space of the test functions in

reference.
If the coefficient functions ^..^..^..(xi, >',xn) are known, then the

expansion for S+ [g] is known as well.
Following Bogolubov and Shirkov [1], one can show that the

coefficient functions obtained by multiplying two operator functions
with different independent arguments

>i,...,jJ (2.1)

and having the form

(2 2)

may be defined as generalized integrable functions on the space A. The
sign (g> denotes the transition to a normal product of UΛ(X) field operators
in the product (2.1), according to the Wick theorem.
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So, if the S-matrix in the form of expansion (1.1) is known to us, then
the product

is given in each order of perturbation theory as a generalized operator-
valued function on the space of the test functions A.

Our problem is to prove that

We shall start from the method of definition a finite S-matrix through
the use of an improper limiting transition and construct out proof in the
following manner.

Suppose there exists a regularization procedure which possesses the
following features :

1. The regularized functions Kδ.,.Λ...β,.m(x^ ...,xw) are continuous and
bounded, and

i.e. the regularized Sδ\_g\ matrix is defined and there exists the improper
limit

2. The Green positive-frequency functions which determine the
multiplication in (2.1) and (2.2) can be also regularized and there exists
the limit:

limKδ_)(x-y) = K(_)(x-y)
δ—>0

or symbolically
lim ®δ = (g) .
δ^O

3. In the relation

J[0] = lim lim lim Sδί [0] ®02 S03 + [0]
<5ι->0 <52->0 <53-»0

the limit is independent of the order of limiting transitions to the points
δl - <52 - (53 - 0, i.e. the operator J<5ι;<52;<53[#] = Sδl[jg] ®02S03+ [_g\ is con-
tinuous at the point δ1=δ2 = δ3 = 0.

4. Regularization is chosen so that

Then there holds a chain of equalities such as follows

[f l f ]=l im lim lim S* [0] ®*

= lim S'Cfli] ®όSδ+ [_g] = lim 1 = 1 .
<5-»0 δ-*Q
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Hence

Our aim is to indicate in a nonlocal quantum field theory a regulariza-
tion procedure which would satisfy all the requirements listed above.
This will prove the unitarity of S-matrix.

3. Interaction Lagrangians and Nonlocal S-Matrix

3.1. Interaction Lagrangians

We shall consider the theory of an one-component scalar field φ(x)
with the Lagrangian

o = τ'. (8μΦ(x) 8μφ(x) - m2φ(x)} : (3.1)

If for a sequence of real numbers {uk}^, there exists in a complex ξ
plane a measure σ(ξ) such that

(3.2)

then &j may be written as

: (3.3)

The representation (3.3) is convenient in that it exhausts all the forms
of self-action of the scalar field now under study.

For example,

or

&,(x) = U(φ(x))= J dβU(β):eί/lφ(x}:
— GO

for any continuous function U(u) absolutely integrable over (—00,+ oo).
If U(z) is analytic in some neighbourhood of the real axis |Imz| <d

then

f dj8|ί/08)|^ l / ! |<oo
— oo

for 0 < a < d.
Since the Lagrangian is Hermitian, the measure σ(ξ) satisfies the

condition

i»l? dσ(ξ) = (- ί)Λ ί(ξ*Πdσ(ξϊl* (3.4)
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Furthermore, we assume that there exists a strictly increasing non-
negative function M(u) such that

(3.5)
for any N > 0.

3.2. Perturbation Series for S-Matrix

The S-matrix for the theory with a Lagrangian of the form (3.3) is
formally representable as

= Σ -^Sdxi...ldxng(xi)...g(xi)ldσ(ξ1)...$dσ(ξJ (3.6)
nl

(ζιΦ(xι)-\ \-ζnΦ(χ

n})} '• Π

where Δc(x) is the causal function of the scalar field:

A ( \- f
c(X) 4 J(2π)4i J m2-k2-iε '

c) belongs to the space of the test functions.
Introducing the notation

W = wί?" P Y Y ^ = p~ ζίζjΔc(Xι ~Xj) 1vvi j ^vSί Sj5 Λi •λj) ^ J-

oo / K K \n /o *j\

n=l n'

)JW*9 (3.8)

the series (3.6) may be rewritten as

l+ Σ -ί-ί:^,...^: Π (l + w(;. (3.9)

Here wo = w(^. ̂  xi - x^ is a two-point function - the so-called "super-
propagator" - describing a sum of Feinman graphs such as

+ «C ^> •*• +χ\

Fig. 1

In the S-matrix representation (3.9), firstly, the superpropagator
w(ξi;ξj;xί-xj) and, secondly, the superpropagator products

Π wf^.^. x — x) n ^(ϊ\W V S ϊ S / ? Λi Λj7 ^J.IUj
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are mathematically indefinite, because both the constructions are
expressed in terms of the product of generalized singular functions.

One of the most important problems in modern quantum field theory
is to specify the multiplication of generalized functions which would
conform to the principial axioms of quantum field theory. There is a
number of methods of definition this operation (see [5]). A detailed
analysis of these methods is beyond the scope of this paper. We shall
define w^^ Xf — x^ ) as a nonlocal generalized function defined on a
space Zfl and make a series of assumptions on its analytic properties which
will enable us to define (3.10).

3.3. The Space of Test Functions Za

The space Za(a ^ 1) consists of all those entire functions f(zi...zn)oί
n complex variables zj = Xj + iy^ (/=!,...,«), which satisfy the following
requirements:

1) For any f(zί , . . . , zn) e Zα, there exist positive

C>0 and ̂  >0 ti = l,...,n),
such that

=ι
2) For any yl9...,yn

00 00

J dx^... J dxn\f(xί + ίyί,...,
— oo — oo

The number a is chosen depending on the interaction Lagrangian
under consideration and the way of introducing nonlocality into theory.

The space Zα, which is a space of the Fourier transforms of the func-
tions / of Zfl, is made up of the differ entiable functions f(pi9 . . . , pn) which
satisfy the condition:

3) There always exist positive C and BJ9 such that

uwhere

' α-1

On the space Za(a ^ 1) one defines all nonlocal generalized functions
K(x) (for details see [6]), for which the Fourier transform K(p2) is an
entire analytic function in the p2-plane the order of which is

1 _ a
ρ < T T ~ 2(α-l) '
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3.4. Nonlocal Superpropagator

We assume that nonlocality is introduced into the theory so that the
Fourier transform of the superpropagator w(ξt ξj9 x{ — Xj) may be
written as

Γ J d4ke-ίkxw(ξ, k2) , (3.11)

Here

The Fourier transformation is interpreted in the sense of generalized
functions.

The function ρ(ξ, κ2, k2) satisfies the conditions (A^:

1) It is an entire analytic function in the complex k2 plane, the order
of which is

1 1 α

τ^ ρ < τ y = 2(ϊ=ΊΓ
2) For /c2->±oo

for any ξ, uniformly for all κ2 e [m2, + oo).

3) The function ρ(ξ,κ2,k2) is defined for all κ2 e [m2, +00), and
decreases as κ2 -> oo, so that the function

υ(ξ,k2)= ] dκ2ρ(ξ,κ2,k2)
m2

is entire in ξ and k2 planes.
Here the following estimation is true

where the function Mx(w) is such that for u > 0

(see (3.5)). As k2-*- oo

(-k2)2\ί+λ
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4) The function ρ(ξ, κ2, k2) is normalized by the condition

The methods available in a nonlocal quantum field theory (see [4, 5])
lead to the superpropagators w(ξ, k2) having all the properties listed
above.

Consider one of the possible versions. We assume that nonlocality
is introduced into the theory so that the causal function of the scalar
field changes according to

2 2

( '
m 2-/c 2-ίε m2-k2-ίε '

where the function V(z) satisfies the conditions (A2):
1) It is an entire analytic function in the z-plane of some finite order

2)

3)

4)

F(/2m2) = l ,

V(z) = , Rez- • 00 .

For example,

F2(/2fc2) =

V3(l2k2)=ml I0(lk2)Kί(ml)

(3.14 a)

(3.14b)

mlK0(ml)\ (3.14c)

where Iv(z) and Kv(z) are the Bessel functions.
The change the propagator (3.13) in the Euclidean x-space means that

the two propagators

(2π)4
(3.15)
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and
1 e d4kEV(-l2k$

~ (2π)4

are related by

f E v E) eίkEXE (3 16)J 2 2 " (J'i()J

It is easily to show that the function $(xf) is real and satisfies the con-
ditions

Ό(u"), σ=ί+λ, w
θ(κ)H , r ρ n (3.17)

where α is a constant.
Conversely, if D(x|) = ,d(m, xf)θ(x|), where θ(x|) satisfies the con-

ditions (3.17), then in the momentum representation

where F(z) satisfies the conditions (^12).
Consider now the function w(ξ, x) in the Euclidean x-space. We

perform identity transformations such as

_ _

= Σ ---Eΰ^l)]^ Σ -— -[^(m,χl)]»5"(xl)
"=1 "' "=1 "' (3.18)

oo / _ κ\n oo v '

= Σ J— Γ- ί d^ίZ

= ί

Since 9>n(u) satisfies (3.17), where σ = n(l + λ), we get

^«-j*^®. (3,9,
m2 AC -t- /C£

[̂ ]

Q(ξ,κ2,k2)= Σ iz^lβ||(ιc2)7j|(ιc2jfc2)β (320)

w = 1 ^ '

Here the function

Fn(κ2, fc|) = (κ2 +
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is entire in the k2 plane and satisfies all the conditions (A2). Moreover, for
some C > 0 and a > 0

(3.21)

For example, for the formfactor V3(l2k2) in (3.14c) the corresponding
function is B(u) = θ(u - 12) and Vn(κ2, 12k2) = V3(l2k2) atm = κ.

Going in (3.19) and (3.20) to the Minkowski space, we obtain the
representation (3.12), where the function ρ(ξ, κ2, k2) satisfies all the con-
ditions (Aj).

For the superpropagators (3.12) we can uniquely define a product
integrable on the space Zfl through the use of the intermediate regulariza-
tion Rδ(^^ρ<ΐ) or the postulate of "Euclideanness" (ρ^l). This
ensures the finiteness of S-matrix in each order of perturbation theory.

In the present paper we shall consider another regularization which
enables one to uniquely define the product of superpropagators for any
finite order ρ.

4. Regularization Procedure

4.1. Mellin Representation for the Function ρ(ξ, κ2, k2)
and the Introduction of Regularization

The Mellin representation

with 1 < β < 2 holds for the function ρ(ξ, κ2, k2) (which was discussed in
3.4) in the region k2 < κ2.

Proceeding from the properties of the function ρ(ξ, κ2, /c2), one can
obtain:

1) The function R(ξ, κ2,ζ) is regular in the half-plane Re(> —2,
and in this region

' " " (42)

for VJV>0, ζ = x
At the point ζ = — 1 the function has zero of the first order at least.

2)

3)
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4) The function

r(ξ,ζ)=]dκ2R(ξ9κ
2,ζ)

m2

is entire in the ξ plane and regular in the half-plane Reζ > — 2.
The following estimation holds for this function:

π\y\+Mι(\ξ\)

b T Γ i + JίL

for any N > 0. At ζ = — 1 the function has zero of the first order.
We emphasise once more that the representation (4.1) holds for

k2 < κ2. For the passage to the region k2 > κ2, one has to go over from
the integration in the ζ-plane over the contour

to that over the contour

as shown in Fig. 2.

-2

Fig. 2

The formula (4.1) with the integral over the contour Lθ 0 < θ ̂  —

gives the representation of ρ(ξ, κ2, k2) for all k2 <= (- oo, + oo).
Let us introduce in our discussion a regularized function

2i sinπζ
(4.3)
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where

One can readily recognize that with δ > 0 the function ρδ(ξ9 κ2,k2) is

a) regular in all the complex /c2-plane, except for the branch point
with k2 = κ2 — ίε,

c) Iimρ*(ξ9κ
2

9k
2) = ρ(ξ9κ

2

9k
2). (4.5)

4.2. Regularization of the Superpropagator wί;

Using (4.3), we obtain a regularized expression

^ . l

for the superpropagator w(ξ, k2).
The function wδ(ξ,k2) satisfies the conditions (A3):

1) It is analytic in the whole k2 plane, except for the branch line
along the beam [κ2, 4- oo).

Λ\ ~ Λ / ^ r 9 \ Λ ( -*-

3)
3-»0

for any k2.

4) There exists the Fourier transform

(47)

2ι -.β

j

+ίx s
where

2 _ Λ 2 _ . ) 1 _ ζ
v 7 ^ ; (48)

8πΓ(l-C)

M) is the Hankel function.
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The function wd(ξ, x) is bounded at zero, i.e., wd(£, 0) < oo since

In this sense of generalized functions

i.e.
lim f d4xw*(& x) /(x) - KXW(£, x) /(x)
(5->0

for any
/(x)eZβ.

Thus, with (5 > 0 the superpropagator w^, x) is a continuous bounded
function, so that the products of such functions are well defined.

The regularized S-matrix may be written as

n<7] = l+ Σ ^l-l .dμί...dμn . Π d + O (4 9)
n = l n' l^i<j^n

Using the condition (3.4), we obtain for the Hermitian conjugate
S^-matrix

S'+[ff] = l+ Σ ^f-f:^...^: Π (l + O (41°)
n = l W l ^ i < j ^ n

where

4.3. Remoυαl of Regulαrizαtion in tke Matrix Elements of S Matrix

We now consider how to go over to the limit (5->0 in the integrals
defining some arbitrary matrix element of S-matrix. We shall follow the
method given in [4].

In the x-space the integral for an arbitrary connected Feynman
diagram G in the n-th approximation of perturbation theory of the
regularized S^-matrix is given by

,xt-xj) (4 12)
iJeG

where ij = 1, . . . , n, according to a given connected diagram G. If in (4.12)
we go over to a momentum representation, then we find

+pn) T\Pί, ...,Pn) (4.13)
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where N is the number of internal lines in a diagram; L is the number of
independent integrations. Here ξj = ξ^ ξj2 and kj is the four-momentum
corresponding to a given line in the diagram which connects the points
xjί and xj2'9 /,- are the four-momenta over which the integration is
extended. The momentum kj is a sum such as

kj= Σ θjaιv+ Σ »iltpμ,v=ί μ=l

where the numbers θjv and $jμ can take only one of the three values
— 1,0, + 1 depending on any given line in the diagram.

The integrals in (4.13) are well convergent for <5>0, since the func-
tions wδ(ξ,k2) decrease as (k2)~(2 + λ\ according to the conditions (A3).
We now take the following step. We substitute the representation (4.6)
into (4.13), and make use of the Feynman parametrization:

00 °° δ

r (p l f...,?„)= f dκ\... ί dκSj
1 1 / N
P 7 C 1 c / -i V~* \ P 7 9 f 7 9
J dttί... J d&No( I— 2^ αί J "Kι... J α/c^

0 \ i = l

(4 14)

From the expression standing in the denominator one can always
remove the terms linear in lj by transforming the variables of integrations
Jike /y = /y -/- £ -4/ί A Then we obtain

Σ «/^2 - k]) = 0(α, /c2, Pί

7=1

Here X(α, ζ/y) is a uniform quadratic form of the new variables of the
integration /} with coefficients dependent only on the parameters α f;
φ((x,9κ

2

9pipj) is a nonuniform quadratic form of the vectors (PIP)
characterizing the external momenta of any given diagram.

So we have

Ts(Pl,...,pn) = (N-l)\}dα1,..]dαN]dκ2

1...]dκ2

N (4.15)

where fcy = fcy(Γ, p, α) is the momentum corresponding to the / line. After
the variables are replaced, it is dependent on /}, pp αfc.
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Now in the expression (4.15) we can go to the Euclidean metric,

rotating the contours of integration over 1JO by the angle-—, i.e. / ί0-^^i4

Then we get

1 1 oo oo

f άκ\... \ d κ 2

N δ ( ί - Σ a j ) (4.16)

• iL f •J («, κ2, PίPj) +
In the integral (4.16) we can go to the limit δ = Q, since the functions
ρ(ξj9 KJ, [/CJ(/£,P, α)]2) decrease when k'2 ^> — oo, and the integral (4.16)
converges in the limit δ = 0.

Note that while rotating the contours of integration over / 0, it is
necessary to take into account the cuts of the functions ρδ(ξ, κ2, k ) in the
plane 1J0. This results in the fact that in addition to the Euclidean integrals,
there appear contributions arising from the integration over the edges
of the cuts of the functions ρδ(ξ, κ2, k2) in the planes 1J0. But with δ = 0
these contributions vanish, since the functions ρδ(ξ,κ2,k2) at (5 = 0
become entire analytic functions. Therefore, while rotating the countours
it is important to correctly circumvent the singularities of Feynman
denominators. This is ensured by the representation (4.16).

5. The Functions w<±>(£,jc)

5.1. Regularization of the Functions w(±)(ξ, x)

Consider the functions

= Σ -
n= 1 ^ •

Using the representation

[Jί±)(x)]»= J dκ2Ωn(κ2)A(±\κ,x) (5.2)
(nm)2

which holds for x φ 0, one can easily obtain

w(±)(£, x) = ] dκ2

Qo(ξ, κ2) A^(κ, x] . (5.3)

In general, this integral exists in improper sense all x φ 0 (see, for
example, [7]).
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The Fourier transform of the function is equal

17

(5.4)

0)θ(k2-m2)ρ0(ξ,k2).

Making use of the relation

J(±)(ιc, k) = 2πθ( + fe0) δ(k2 - κ2)

1 Γ 1 1
7 I ir2 _ k2 — IP K2 —ί l f v — rv — to K- —

we introduce in our discussion the regularized functions
00

m2

1 ^Γ1'00

(5.5)

(5.6)

where

(5.7)

The representation (6.7) implies that in the complex fc0-plane the
contour of integration should be such as shown in Fig. 3.

Fig. 3

In the x-representation one can get

C>x ) ' (5 8)
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It is easily seen that

D^M.to = Λ-(K.k) (ίuQ)

The functions D(±)(ζ,x) and D(±)(ζ, fc), as generalized functions
defined on the space Zα, are entire analytic functions and increase as

/ 2 £ \
Γ — whenRe£-> + oo.

1 C Yl ~ i 1 2ΓJ— , and— > —
Q

the integral in (5.8) is convergent, provided that one goes to the contour

of integration Lθ 10 < θ ̂  — 1 in the plane ζ. Than we can go to the limit

<5-»0, obtaining

limwf± )(ξ,/c) = vv ( ± )(£,/c).

For δ > 0

as fc2-> ± oo. Here 0<λ< 1.
The function wf±)(£, x) is continuous and bounded for real x. At the

point x = 0 it is

π2 ~β-^

5.2. Continuity in the Parameters δj(j= 1, 2, 3)

Following Bogolubov and Shirkov [1] one can show that the follow-
ing statement holds for the regularization chosen:

If K i (x 1 , . . . , xn) and K δ

2 (y x , . . . , ym) are translationally invariant
coefficient functions and in improper sense

where ̂ i (Xi , . . . , xn) and K2(y^ , . . . , y J are generalized functions defined
on the space Zα and the arguments x1 , . . . , xn ^j , . . . , ym are independent,
then the limit

lim lim lim Kil(xl9 ...,xj K$(yi9 ...,y
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exists as a generalized function on Zα and is independent of the manner of
going to the limit δ± = δ2 = <53 = 0.

The proof is based on the simple fact that the boundedness of the sum
of negative frequencies implies the boundedness of every separate
frequency.

Indeed, consider the functional

s,ί

where /eZα. Let us go over to a momentum space. The translational
invariance of the functions K] (. ..)(/'= 1, 2) yields

After simple transformations we obtain for

Σ PJ- Σ fc, /(pι,...,P«;fcι, ..,fcJβίlίιas(Pι,...,P.;fcι,...,fcJ,
j = l i=l /

...,pn,k^...,k^ (5.11)

Since wf_)(<5f)-%0) %
2 -m2), the integration in (5.11) is over a finite

region. Therefore, the limit with fy-^O (/ = 1,2, 3) exists independently
in every parameter δj9 since each of the functions K\^ Kδ

2

2 and wfi } tends
to a finite limit.

5J. Relations between the Regularized Propagators

One can easily see that the regularized functions

W(ξ9x)9 u^+(f,x), w?±)(£x)

are related (with (5 > 0) by

w*(ξ9 x) = (?(x0) wf_}(£ x) -f (?(- x0) wf+ }(f, x)

w' + (ξ, x) = θ(-x0) wf_)(ξ, x) + Θ(x0) <)«, x)

wf_}(ξ, x) = Θ(χ0) ̂ (ξ, x) + θ(-xo) wδ + (ξ, x)

wf+)(ξ, x) = θ(- x0) w^(ξ, x) + Θ(x0) w5 + (ξ, x)
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where

Hi: -.
6. Proof of the Unitarity of S-Matrix in the w-th Order

of Perturbation Theory

6.i. Unitarity in Perturbation Theory

Using the representation (3.9) for the S-matrix and the unitarity
relation

SS+=S+S=1,
we obtain

Σ ~tt l:dμ1...dμn:An(l,2,...,ri) = 0. (6.1)

Here "= 1

An(ί,2,. ,n) (6.2)

= Σ (-ΓP(l,...,n1 |n1 + l , . . . ,n)X l l p l l l ( l , . . . ϊ n 1 | n 1 + l , . . . > B),

• Π
Ml + 1 ^S

is the symmetrization operator denoting the sum over arbitrary decom-
. . , . . n\

positions oi n points into— -sets, each containing nί9n29...9nk

points £ "i = n .
\ i = l /

The right-hand side of (6.3) is represented as a sum each term of which
describes some ordinary graphx (which, in general, is disconnected) with
n vertices.

In the case nί = n this sum may be written as

An,n= Π {!+*„}
l^ i< j^«

= Σ P(l,...,k1\k1 + l,...,kί+k2\...\...k1+k2 + +kv) (6.4)
fft.Λ)

1 The graph without loops two adjoining vertices of which are connected by one line
only [8].
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Here v is the number of connectivity components of a given rc-vertex
graph; Fkjk(i...k) is the function describing some connected Feynman
graph Gkjk with k vertices; and the index jk denotes the type of a graph
and ranges over 1 ̂ jk ^ Nk where Nk is the number of different connected
graphs with fc vertices.

As jk we can use some index connected, for example, with the matrix
of adjacency of a vertex [8], the elements of which are given with the help
ofwij contained in Fkjk.

We shall not discriminante between the graphs obtained from one
another by permuting the vertices. This implies that Fkjk with fixed k
and jk describes the sum of graphs over every possible permutations of
vertices.

Consequently, every function Fkjk(l, . . . , fc) is symmetric with respect
to the permutation of its arguments.

The summation in (6.4) is over all

By definition,

As it is easily seen from (6.3), the set of graphs described by the func-
tions An>tlί with nίή=n is isomorphic to the one considered (n1 = n),
provided that one does not discriminate between the edges of the graphs
to which different superpropagators (wί</5 w^ , w (_ ) f > /) correspond. There-
fore, An>ni may be represented by the formula similar to (6.4)

{kJh} {pjp} //- Cx

where
^Wί1-*)

= P(l...p\p+ί,...,k)Fkjk9pJp(l...p\p+l...k).

Here

denotes the function describing the connected graph Gkjk which is
decomposed into two subgraphs of the p and (k — p) vertices; the index
jp indicates the decomposition technique and ranges over 1 ^jp^Mkjk>p,
where the number Mkjk>p denotes the number of independent decomposi-
tions of this kind. The function w(ξiξp xt — x/) corresponds to the edges
of the graph Gkjk which connect the vertices of the first subgroup (1 . . . p),
the function w+(ξίξj,xi-xj) the those connecting the vertices of the
second subgroup (p+l.. . fc) and the function w(_)(ξ ί^/ , xf — xj) to the
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lines connecting the vertices of the first and second subgroups. By defini-
tion,

We introduce additional functions

Fkjlop(l...p\p + l...k) = fP Fkjk>pjp(\...p\p+i...k)
JP=1

Fkjk,p(\...k)=P(\...p\p+l...k)Fkjk<p(l...p\p+\...k).

Taking (6.4) and (6.5) into account, the function An(l...n) may be
written as

An(\...ή)

= Σ (-)"2 Σ Σ P( l . . . /c 1 l /c 1 + l . . ./c 1 + /c 2 | . . . |n-/c v + l...n)
m+n2=n {k, jk] (p, jp }

• F

klJkl,PίjP1 (1 •• fci) *Uv>p.Λ> - fc, + 1 n) (6.6)
= (-)" £ P(l . . .k 1 | . . . |n-fc v +l. . .n)

Σ (-)"^Al.Λ;Λί=ι Upi.jp,}

We insert (6.6) into (6.1) obtaining that the S-matrix is unitary
subject to

$...$:dμi...dμk: Σ (-)pFfcΛ.p,,(l...k) = 0 (6.7)
{P,JP>

or more specifically,

The formulas (6.7) and (6.8) represent the unitarity relation for any
connected Feynman graph.

So the problem of proving the unitarity of S matrix reduces to proving
the relation (6.8) for an arbitrary connected graph.

6.2. "Unitarity" of the Regularized S-Matrix (Sδ®δSδ+ = 1)

Following Veltman [9], we will show that for the functions Fkjk,pjp

constructed from the regularized superpropagators w<5,w^+ and W ( _ }

there holds an identity

l..\ dμι...dμk . Σ (-y^^(l...fc)=0 (6.9)
<P,JP>
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which provides for the condition Sδ®δSδ+ = 1 to be fulfilled (see Sec-
tion 2).

Taking into account the relations (5.12), one can easily verify that

= J k , , _ 1 . . . β - > α + . . . p α , p + . . . )

for xo0 5Ξ Xj Q (/ = 1, ...,a — 1, α+ 1, ..., k) since in this case
δw(ξaξs,xa-xs) = wf-)(ξaξs,xa-xs), (s = 1 . . . a - 1, α + 1 . . . p) ,

Hence

p = 0

The sum (6.11) contains 2k terms. All the terms cancel in pairs
because of (6.10).

Indeed, suppose that one of the arguments (x10, ...,xk0) is the
smallest. Without loss of generality we can assume

x 1 0^x j 0 (/ = 2,3,.. .,fc). (6.12)

Then the sum in (6.11) may be decomposed into two terms

δΣ (-)pP(2,...,p\p+ί,...,k)Fk

δ

jk!p(ί,...,p\p + ί,...,k) (6.13)
P = l

p=0

Taking (6.10) and (6.12) into account, we obtain

l. . .*;)== Σ (

Σ (
p = 0
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Thus we see that B(l... k) = 0 for any relations between the arguments
(x10...x fc0), i.e., for any choice of a minimal argument. And so there
holds (6.9).

Note that our considerations are true, provided that the super-
propagators w5, w<5 +, wf_ } from which the functions Fζjktp are constructed
are locally integrable and obey the relations (5.12).

6.3. Conclusions

Thus we have demonstrated that the regularization chosen possesses
all the properties (1) — (4) stated in Section 2. Hence the unitarity of the
S-matrix in the rc-th order of perturbation theory is proved in a nonlocal
quantum field theory.

To conclude, the authors extend their gratitude to Prof. D. I. Blokhintzev and
M. L. Rutenberg for fruitful discussions.
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