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Abstract. We discuss the nature of non-localisable fields constructed as certain
limits of sequences of local fields. For sequences for which the corresponding Wightman
functions converge we construct a PCT operator; if the sequences converge strongly
in a given Hubert space then a scattering theory can be constructed for the non-localisable
limit field. Such fields are shown to have the same S-operator as any local field which has
the defining sequence of local fields in its Borchers class, and has the same in field. We give
non-trivial examples of this equivalence between local and non-localisable fields.

1. Introduction

The problem of describing all relativistic quantum fields corre-
sponding to a given S-matrix has not been yet solved. An important
result in this direction was obtained by Borchers [1] in the frame of the
(Wightman) axiomatic quantum field theory. According to this result
of Borchers, fields are S-equivalent (i.e. correspond to the same S-matrix)
if they are relatively local (or weakly relatively local). The relative
locality (or the weak relative locality) is a relation of equivalence among
quantum fields, so that all fields in a Borchers class (i.e. a class of relatively
local or weak relatively local fields) are S-equivalent. The converse is not
true: a Borchers class does not exhaust all fields with the same S-matrix
(see for instance [2], p. 170) but we do not consider this problem here.

The S-equivalence of relativistic quantum fields was also studied
in perturbation theory; we refer the reader to [3] and references quoted
there for detailed results.

Roughly speaking the above results (in the axiomatic or in perturb-
ation theory) are known to physicists in the following form: two fields,
one of them being a local function of the other one, have the same
S-matrix.
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We will show in this paper that quantum fields can be equivalent
also in the "non-local" case. In particular we will show that a local
quantum field can be S-equivalent to a non-localizable field. We think
that this result can be of some interest because it shows that non-
localizable fields can have a well-behaved S-matrix which is actually
the S-matrix of a local quantum field. Some trivial and non-trivial
examples are also given.

2. The Non-localizable Fields

We will adopt in this paper the Wightman formulation of a local
quantum field theory. We will construct non-localizable fields along
the general lines given recently by one of us [4]. We remark that there
are also other interesting approaches to non-localizable (or non-local)
fields [5, 6] or to a scattering theory for non-local fields [7]. We hope to
discuss the connexion of the limiting approach [4] to other approaches,
especially to [7], in a separate publication. In [4] we look at non-
localizable fields as limits of local ones in a topology considered already
by Borchers [8] and Jaffe [9].

Let Sa and Sa(a > 0) be spaces of test functions considered by
Gelfand and Shilov ([10], Chapter IV). The test functions in Sα are
roughly speaking infinitely differentiable functions φ(p) vanishing like

e-a\P\ί/a for |p|_^QQ wnere |p| is the Euclidean norm of p(p°,p) and a

a positive constant which may depend on φ. A natural topology can be
put on these test functions as in [10], Chapter IV. The elements of SΛ

are Fourier transforms of the functions in SΛ. The spaces Sx and Sa

are both nuclear and dense in S (the Schwartz space of infinitely differ-
entiable functions vanishing at infinity, stronger than any polynomial).
The set of functions which belong to Sa(u > 1) and have compact support
is dense in the Schwartz space 2 (infinitely differentiable functions with
compact support).

Let us now consider a Wightman-Jaffe [11] type theory (over test
functions in SΛ in coordinate space) for the scalar neutral field A(x).
If for a given field A(x\ α can be chosen larger than one A(x) can be
localized in any finite region of space-time and local commutativity can
be formulated as usual: [A(φ).>A(ψ)~]_Φ = Q for suppφ and suppφ
space-like separated (φ, ψ e Sα) and Φ in the dense domain of definition
for A).

For α < 1 the functions in S* are analytic, the field A(x) is no longer
localizable in a finite region of space-time and local commutativity for
these fields cannot be formulated, at least in the usual fashion.

Such a behavior of A(x) is generated evidently by a high energy
behavior of these fields like e

εlplί/Cί (with £-+0+) (α< 1). We can look
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at the (non-localizable) fields A(x) in this case (imposing a reasonable
generalized local commutativity) as follows.

Let S* = Sα(IR4n) the S^-space of test functions depending on 4n
independent variables (SJ = & = complex numbers). We construct the
(locally convex) direct sum of S*, n = 0, 1,2, ... (see for instance [12], p. 214)

£*=®S« (1)
w = 0

The elements of Σa are of the form φ =(φ0,φ1, ...,φn, ...) with φneS*
and φ has only a finite number of components. The locally convex
topology in Σα can be given by a set of non-denumerable seminorms [12]
and can be characterized by convergence as follows: {φm} is convergent
to φ in Σα if and only if

i) there exists an integer N so that φ™ = 0 for all n > N and
ii) each component φ™; n = 0, 1, 2, ... converges to φn for m-»oo in

the topology of SΛ

n.
Let now Ak(x), k — 1, 2, ... be a set of tempered scalar neutral

relativistic quantum fields. This means that the Ak(x) are tempered
Schwartz distributions satisfying the following (Wightman) re-
quirements [2]

a) Hubert space of states,
b) covariance under the inhomogeneous Lorentz group,
c) positive energy,
d) local commutativity.
Evidently the Ak(x)'s are also operator valued generalized functions

over the spaces 5α. For a given field Ak(x) we consider all its vacuum
expectation values Wk with test functions from S* for a given α. For
all k = 1, 2, ... we have (compare with [8], p. 220)

2)
3)
4)
5) Wk(φ+xφ)^0.

In 1) £α is the dual space of Σα, i.e. the space of all continuous linear
functionals on ΣΛ. Zα can be identified with the direct product of the
spaces S* = 5α'(lR411) [12] but this fact will not be of special interest for us.
We remark only that the space Σα is complete [12] (see also [8], p. 235).
The condition 2) represents the covariance under the inhomogeneous
Lorentz transforms (α, A). In 3) Ms

α

p is defined as

if _
Pn>Pn-ι+Pn, ,P2 + ~ +PneV+ and
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where

V+ is the closed forward light cone and F stands for Fourier transform.
Condition 3) represents the positivity of the energy.

In 4) (which is the local commutativity) Ic is defined as a linear
subspace of Σ = C®S(]R4) + 0S(IR4")Θ with the following base:
φ(x l5 ...,xj is an element of the base if φ can be decomposed as the
difference

φ(xl . . . X f ^ X i . . .x k ,x k + 1 ...x^-φ(xί . . . x t _ 1 ? x r . . .x k,,x k + 1 . . .xw)

and 0(xt ... X j ... xk ... xn) = 0 if Xj — Xi is timelike for φ / ; j,l = i,
i + 1, . . . (if . . . k) is any permutation of (i ... k).

Finally, in 5) - which is the Hubert space requirement, φ+ is defined as

φ+ = (φ0,..., φn(xn>. ..,*!),...)

where the bar means complex conjugation.
It is clear that 27 becomes an algebra with involution if the following

definition for the product is chosen

One can study the algebraic structure of Ms

α

p and Ic but we don't need to
know this explicitly for the purposes of this paper, and we send the
interested reader to [8].

All the (tempered) fields Ak(x) were taken as local and the local
commutativity given through 4) for fc= 1,2, Now we turn to the con-
struction of the non-localizable field A(x) from the given tempered local-
izable fields Ak(x). Let the sequence l/FfceΣα be convergent in Σα/. It is not
difficult to prove (see for instance [8]) that the limit W of the sequence
{Wk} satisfies the conditions 1)—5) with the possible exception of 4).
Moreover, 4) is satisfied if α > 1 but it cannot be satisfied for α < 1.

Certainly from W we can reconstruct the fields and for α > 1 we get a
Wightman-Jaffe field. If α < l A(x) will continue to be a field in the
Wightman sense which we call a non-localizable field (for a discussion
of the case α = 1 see [13]).

The crucial point in this construction is that the local commutativity
of the fields Ak(x), k = 1, 2,... induces in the limit /c-*oo a general local
commutativity which we understand as a fast decrease of the commutator
for A(x) in space-like directions (for only a partial discussion of the
extended commutator in space like directions see [14]. The result of [14]
doesn't apply to a massive field in which case the decrease of the
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commutator in space like directions is much stronger; a more complete
discussion is given in [15]). Certainly the (small) acausal effects we have
described here depend on α < 1 and tend to vanish in the limit α -»1
(for α> 1 the commutor vanishes exactly for space time directions). The
non-localizable fields constructed as above have many important
properties as for instance PCT-invariance. A scattering theory for such
fields exist and was discussed in [4].

Before going into the discussion of the equivalence between a
local and a non localizable field let us consider a little further the
limit Ak-+A which we required as the basis of constructing non lo-
calizable fields. The non-localizable field A(x) was recovered by the
reconstruction theorem, which gives us also the Hubert space jjf in
which A(x) acts. The reconstruction theorem gives us unfortunately
not too much information about ̂  which is constructed as the com-
pletion of a pre-Hilbert space in whose formation condition 5) enters
essentially. It is therefore difficult to compare the Hubert spaces in which
two non-localizable (or a local and a non-localizable) fields constructed
as above are acting. Because fields which have the same PCT operator
are good candidates for S-equivalence and because we have not yet
enough control on the reconstructed Hubert space, in looking for
fields having the same PCT operator we will assume that all the fields
Ak, k = 1, 2,... and A are acting in the same Hubert space (see examples
in §6).

On the other hand it will be helpful for deriving certain results to
consider also the following strong form of the limit Ak-*A:

Let Ak(x)k= 1,2,... be (tempered) local fields acting in the same
Hubert space 3tf^ having the same invariant domain of definition D
and the same vacuum Ω and let A(x) be a non-localizable fields con-
structed from Ak(x). We assume that A(x) has D as invariant domain
and Ω as vacuum and moreover

s - lim A(*ι) Ak(xn} Ω = A(x,)... A(xn) Ω (3)
fc-> 00

where s — lim stands for the strong limit (i.e. the norm limit in 3F).
More precisely (3) means that for all φl9..., φne Sα(lR4") we have

s- HmAk(φl(x1))...Ak(φn(xn})Ω
Λ - α o (4)

= A(φi(xi))...A(φn(xl$Ω.

The convergence in (3) (or (4)) is stronger than the convergence of
Wk in the sense of 27. Writing (3) in the form

Ak(x1)...Ak(xn)Ω-A(x1)...A(xn)Ω-*Q for fc-κx>,
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we can write (3) in terms of vacuum expectation values of the fields
Ak,k= 1, 2, ... and A.

3. The PCT Operator

Let A(x) be a (tempered) local scalar neutral field satisfying the
Wightman axioms a)-d) of § 2. Let D be the invariant dense domain in
ffl on which A(x) is defined. Let U(a, A) be the unitary representation
of the inhomogeneous group Pi which corresponds to the field A(x):

U(a,Λ)A(φ) U-l(a,A) = (φ(a,Λ}) (6)

where φ e S(1R4) and φ(aiΛ)(x) = φ(A~'l(x — a)). We assume that the
vacuum ΩeD for A(x) is a cyclic vector (the field A(x) is irreducible).
The field A(x) determines the Borchers class of all fields relatively local
(or weak relatively local) to A(x\ corresponding to the same unitary
representation of U(a, A) of the inhomogeneous Lorentz group, the same
invariant domain D (in the Hubert space 2tf\ the same vacuum and also
the same PCT operator.

Let now Ak(x), k= 1, 2, ... be a sequence of fields in the Borchers
class of A(x) (there are always infinitely many fields equivalent to a
given field!). We assume that the sequence {Ak(x)}is convergent in the
sense of (3) to a non-localizable field B(x) defined in the same domain D
as A(x) and having the same vacuum Ω as a cyclic vector. We have

Theorem 1. The non-localizable field B(x) has a PCT operator Θί

and Θί=θ where θ is the PCT operator for the local (tempered) field
A(x).

Proof. The PCT theorem for Ak(x\ k = 1, 2, ... gives

(Ω9Ak(xί)...Ak(xJΩ) = (Ω,Ak(-xJ...Ak(-xl)Ω) (7)
or

(Ω, Λ(Φι (Xι )) - . . Ak(φn(xJ «)) ̂  (Ω, Ak(φn( - xn) . . . Λ(Φι (- xi)) Ω)) . (8)

Taking in (8) k-+oo for φl9 ..., φnε Sα(lR4)C5(lR4) one gets

( Ω 9 B ( φ ί ( x ί ) ) ... B(φn(xn))Ω) = (Ω,B(φn(-xJ ... B(φί(-xί})Ω)) (9)

i.e. the PCT theorem is valied for B(x) (a fact which was already proved
in [4]).

Moreover (9) implies the existence of an antiunitary operator Θ1

(the PCT operator for B(x)) such that

x))9 ΘVΩ = Ω, φεS* (10)
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(see for instance [2], p. 143). We will write (10) as

^=B(-x). (11)

We have also

ΘA(x) 0-1 - A(-x) , ΘAk(x) θ"1 = Ak(-x) fc = 1, 2, ..., ΘΩ = Ω .

(12)
We can write now

ΘAk(xn)...Ak(xl)Ω = ΘAk(xn)θ-1ΘAk(xn.ί)θ-ίθ...θ-ίΘAk(x1)

xθ-1ΘΩ = Ak(-xn)Ak(-xn^)...Ak(-xl)Ω
and

θ1B(xJ...B(xί)Ω = B(-xn)...B(-x1)Ω. (14)

Taking in (13) the strong limit for /c->oo we get

B(-xn)...B(-xί)Ω. (15)

The vector φ = 5(xπ) ... B(x1)Ω runs over a dense set in ffl (B(x)
has Ω as cyclic vector) so that from (14) and (15) follows Θ1=θ and the
Theorem 1 is proved.

Remark. Theorem 1 is also valied if the (irreducible) field A(x)
is only weak local. The temperedness of A(x) can be weakened by
requiring A(x) to be only strictly localizable in the sense of Jaffe [11].

The meaning of the Theorem 1 is that we have associated to a given
Borchers class also some non-local fields constructed as (strong) limits
of local ones belonging to the given Borchers class. The (local) fields
in the Borchers class and the associated non-local fields are acting in
the same Hubert space, corresponds to the same unitary representation
of the Lorentz group, have the same vacuum and the same PCT operator.

4. Asymptotic States and the ^-matrix

We consider now (tempered) local fields Ak, fc=i, 2, ... which
produce in the weak limit (i.e. the Wks are convergent in the sense of
ΣΛ>) a non localizable field A(x). The first step in achieving a scattering
theory for our non localizable field A(x) is proving the cluster property. Let

Φ = Φ(α) - J dx Wτ(x + α) Φ(x) , Φ(x) e S*

an averaged translated truncated vacuum expectation value of A(x)
(we use here the notation of Jost [16], Chapter VI). The cluster property is

l i m J M Φ = 0; M = 0, 1, ... (16)
-
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uniformly in a where d = max | |α z — α,| |. Ruelle was able to derive (16)
ij

from locality [16]. For the non-localizable field A(x) we can write

I dM Φ\ ^ \dM(Φ - Φk)\ + \dMΦk\ (17)
where

Φk = Φk(a) = $ d x W k

 τ(x + α) Φ(jc) , Φ e Sα C S (18)

and from Ruelle's theorem we get

lim dMΦk = Q , fc=l,2, ...
d-^O

In order to have (16) for the non-localizable field A(x) it is enough to
require that the limit dM(Φ — Φk)-^0 is achieved uniformly in α for /c-+oo
and M = 0, 1, 2, ... but fixed. This condition is satisfied for instance if
(uniformely in α)

lim am\Wn(x + a) - Wn

k(x + a)\ = 0 , w = 0, 1,2, ... (19)
/c-» oo

where α m = Π («0'"' : α(α 0,α ι, . . .,απ), ^(O.αf.αf.α?)

x(x0, x l9 . . ., xπ) , xt-(xf , x? , xf, xf ) .

The condition (19) was imposed in [4] in order to assure the existence
of the cluster property. Once having the cluster property the Haag-
Ruelle scattering theory can be now derived following Steinmann [7].
We are able to give another proof of the asymptotic condition for
quantum fields considered as operator valued distributions on Z (the
functions in Z are Fourier transforms of functions in 2>) based on the
existence of the cluster property. This proof works exactly also for
our spaces Sα, α < l . The condition (19) looks rather technical. A dis-
cussion of the content of (19) will be given in § 7 of this work.

In the rest of § 4 we will show that the asymptotic condition for a
non-local field follows also from the assumption that the limit Ak->A
is achieved in the strong sense described in §2 in the same Hubert
space denoted by tff. Exactly this result will be used in § 5 in order to
prove an equivalence theorem (between local and some non-localizable
fields).

Let Ak be (tempered) local fields satisfying the requirements
described in [16], Chapter 4. In particular apart from the usual (Wight-
man) requirements we admit that the spectrum of the energy-momentum
operator Pk corresponding to Ak(x); fc=l, 2, ... coincides with the
corresponding spectrum for the free field of mass μ. The representation
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Uλ(a, Λ) which is the restriction of U(a, A) to the Hubert space J^
corresponding to the one particle hyperboloid is assumed to be irreducible
with spin zero (it corresponds to the mass μ). Let Pί the projection on
J&Ί we assume

(Ω, Ak(x) P, Ak(y) Ω) = IΔ + (μ2;x-y). (21)

Let h(λ) be the well known cut-off function (in momentum space) in
the Haag-Ruelle theory.

We consider the fields

Bk(p) = Ak(p)h(p2)9 fc=l,2,... (22)

so that we have

Bk(φ)Ωe^ for φ
and

(Ω, Bk(x) Bk(y) Ω) = ΪΔ + (μ2 x - y) (23)

for all k= 1,2,....
From (3) we get

s - lim Bk(xJ . . . Bk(xn) Ω = β^) . . . B(xn) Ω (24)
fc-»αc

and
(Ω, β(x) β(),) Ω) = iΔ + (μ\ x-y). (25)

Let φ E S(1R3); we construct the operators [4]

Bkφ(t}^\Bk(t,r)φ(r)dr (26)

where r — r(xl , x2, x3).
From [16], Chapter VI, Lemma 6, we know that Bkφ(t) are defined

on the common domain D, Bkφ(i) Φ.φeD are vectors in D which are
C°° in ί and continuous in φ.

The proof of Lemma 6, Chapter VI, [16], can be applied in order to
prove the same properties for the operator

(27)

Let now /m, m = 0, 1, ...,«, be w -f 1 smooth solutions of the Klein-
Gordon equation

fn(x) = " ( "
with ^ΐ (p) e Sα(lR3) C ̂ (1R3); m = 0, 1, 2, . . ., n. We will have certainly

/w(0, x) 6 5α(lR3) , - (0, 3c) e Sα(ίR3) . (28)
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From (26), (27) and (28) follows that the operators

Bkfm(t) = i ί fJ<*Bkdr, Bfm(t) = i J fo0Bdr

are defined on D and can be applied successively on the vacuum.
We construct now

Φk(t) = Bkfo(t)Bkfl(t)...Bkfn(t)Ω, k = l,2,... (29)

and
Φ(t) = Bfo(t)Bfl(t)...Bfa(t)Ω. (30)

From the Haag-Ruelle theory follows (as a consequence of locality)
that the strong limits of Φk(t) for t-> + 00 exist

s- lim φk(t) = φΓl, k = l,2,... (31)
t-» + oo

in

φ£ut are the asymptotic states for the fields Ak(κ\ fc = 1, 2,...
We have

Theorem 2. The vectors

φ(t) = Bfo(t)Bfί(t)...Bfn(t)Ω

have strong limits for t —> + oo:

s- lira β/0(ί)B/ι(ί)...β/n(ί)Ω = Φ:>nut(/o,/ι,...,/,)• (32)
ί-» 4- oo

These limits are independent, with respect to L\, of the special coordinate
system in which the various entities have been defined.

Proof. We write

-ψ(ί l ) l l ^ \\Φ(t2)-Φk(t2)\\ + \\Φk(t2)~Φk(tl)\\

We have for each k (see (3 1))

\\φk(t2)-ψk(tl)\\^V for

It remains to prove that

φk(ί)||=0 (34)
/C-^oo

and this limit takes place uniformly in t.
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We have

φ(t)-φk(t) = J

J fn(xΐ9fj3QHB(xQ

n9rJdrnΩ- f /0(xg, r) 3QOBk(xQ

Q9rQ) ...

-(/o(*o,>τo) 3ovBk(xlr0)) .. (M,rJ d0nBk(x°n,rn)Ω} dr0 ...drn

where δ0l ; z = 0,1, ...,n involves differentiation with respect to x°. This
expression is a finite sum of terms of the form

ί - ί

(36)

- - dr

where (i 0,...,in) is a permutation of (0,1,..., n) and O^j^n and

^(xz°,rz); / = 0, !,...,« is equal to //(xf, η) or to -^-//(x/0, rz). We go

over to momentum space in (39) and get that \\φ(t) — φk(t)\\ is smaller
than a sum of terms of the form

n

- Ak(pio) h(pl) . . . A^) h(pl) pi + 1 Ak(ph + j

where χ(p0, ...,pj is a function in Sa (IR3(n + 1)) (see 28).
In deriving (37) we have inserted in (36) a ^-function δ(x® — t)

I — 0, 1, . . ., n with the corresponding integration on x®.
We remark that (37) is independent of time.
Taking (3) into account we get that (34) is achieved for /c— »oo

uniformly in t.
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The second part of the Theorem 2 follows also from this uniformity
in r. Indeed let ΛεLlJ] Λ(x) = ft(A~ ί x)9 / = 0, 1, ..., w, 5/1(x) = J3μ~1x),

x / T a n d

ΦΛ(t) = B Λ

f o ( t ) . . . B Λ

f n ( t ) Ω (38)

Φk.Λ(t) = B*fo(t)...B*fιt(t)Ω. (39)

We have to prove that for ί-» + oo, \\φΛ(t)-φ(t)\\-*Q. We write

\\φΛ(t) - φ(t)|| £ HψΛί) - φt»|| + \\φk,Λ(t) - Φk(t)\\

+ \\φk(t)-φ(t)\}.

The first and the third term on the righthand side of (40) can be made
smaller than ε/3 (for ε > 0 given) independently of ί. Now we have only

c

to take |ί| large enough in order that \\φk,Λ(i)Φk(t)\\ < ~^~ f°r tne ^oca^

fields φk, k = 1, 2, . . . . This completes the proof of Theorem 2.
Let ^n(^out) be the norm closure (in jj? ) of the linear combinations

of elements φιn(φoυi) including the vacuum.
We have

Theorem 3. Define the linear operator v4ex(/) on the vectors

where φex stands for φιn respectively φout and f is a smooth solution of
the Klein-Gordon equation satisfying (27). Then the operators Aex(f}
correspond to the free scalar field of mass μ which we denote by A^

A™(f) = i ί f(x)30A**(x)d*r (42)
x° = t

and
C/(α, A) Aex(x] U~1(a,Λ) = Aex(Ax + a) (43)

θ1A
in(x)θ1=A°ui(-x). (44)

Proof. We have to prove that (φex(/0, ...,/n), φ°*(gl9 ...,gj) is the
corresponding scalar product for a free field. We write

\\Φk(t)-Φlxl
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By taking into account (34) (uniformly in ί) we get

s - lim φf - φex . (45)
fc-» GO

It follows that

(<T (/o, , /„), Φe*(9o, .., flu) = lim (Φΐ(f0, . . .,/„), ΦT(g0, . .., gm)) . (46)
fc-»oo

By the Haag-Ruelle theory (φ?(f0, ...,fάφί*(g0, ...,g,$ is (for all
k= 1,2, ...) equal to the corresponding scalar product for the case of a
free field and this proves the first part of the Theorem 3. The relation
(43) follows from the second part of Theorem 2 and (44) follows from

Concluding this section we remark that we have been able to prove
the asymptotic condition (under asymptotic condition we mean
Theorems 1 and 2) for (hopefully !) a large class of non localizable fields.
We have two types of results : In the first part of the section the asymptotic
condition was shown to be valid for non localizable fields defined as
weak limits of local fields, the limit being achieved in a uniform sense
(see (19)). In this case the cluster property is trivially satisfied and the
cluster induces the asymptotic condition. In the second part of this
section we have taken the strong variant (3) for defining non-localizable
fields. This condition enables us to prove uniformity in t for /c->oo and
in this way the Theorems 2 and 3 can be given a direct proof.

In order to discuss the S-matrix (in the next section) we assume that
the field A(x) satisfies asymptotic completeness. The S matrix operator
can be now defined by

5. Equivalence between a Non-localizable and a Local Field

In order to discuss the equivalence of fields along the line of Borchers,
we have to discuss fields having the same PCT operator. Because of
some Hubert space difficulties in the case of a non-localizable field
constructed as a weak limit of local ones we have not discussed the
existence of a PCT operator in this case. But we have proved that if the
limit An^B is achieved strongly in the same Hubert space the PCT
operator for B exists (see Theorem 1) and equals the PCT operator of a
local field A which generates the Borchers class containing Ak; k = 1, 2, . . . .
We have

Theorem 4. If A(x) is a local (tempered) field and B(x) a non-
localizable field constructed as in Theorem \ then the asymptotic fields
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Aeκt(x) and Be^(x) exists. Moreover if Aln(x) = Bϊn(x) then the two fields
A(x) and B(x) have the same S-matrix.

Proof. The proof follows immediately from the fact that A(x) and
B(x) have the same PCT operator and this operator takes in fields to
out fields.

Theorem 4 shows that a non-localizable field can be S-equivalent
to a local one. In the next section we discuss some examples in which
Theorem 4 applies.

6. Examples

Let us consider A(x) as being the scalar neutral massive free field.
We construct Wick series of this field (in four dimensions)

00

B(x)= Σ an:A(x)": (47)
n = l

A result of Jaffe [11] (see also [17] and [18]) shows that B(x) is strictly
00

localizable if the series ]Γ anz
n has an order of growth smaller than 2.

n= 1

For an order of growth equal to 2 and type zero we still get a localizable
00

theory in the sense of [13]. If the order of growth of £ anz
n is larger than

n = l

two B(x) will be non-localizable. We remark that the same thing also
happens for the massless case though for this case in the region of non-
locality the high energy behaviour of B(x) is very different from the high
energy behaviour in the massive case, because of a "contraction" of the
phase space volume by passing from m = 0 to m φ 0. A discussion of the
extension of the commutator of B(x) outside the light-cone ("acausal
effects") are discussed partially in [14] for the massless case; a full
discussion of this question for m φ 0 is the subject of [15].

Now coming back to S-equivalence, it is well-known that the series (47)
00

is in the Borchers class of A(x) if £ anz
n has order of growth smaller

n= 1

than two. It follows that in this case B(x) is trivial. Theorem 4 applies to
00

B(x) in the case in which ]Γ anz" has an order of growth larger than two
» = ι

(we leave the reader to convince himself that this is the case) and therefore
A(x) will be trivial also in the non-localizable case.

Another (non-trivial) example is given by taking A(x) to be a tempered
non-trivial field (we assume that a such field exists!) and considering

Kx(x) (48)
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d2 d2

where g(z) is an entire function (with real coefficients), Π* — 2 2
0 X uXo

and Kx = Πx — w2. If g(z) has order of growth smaller than 1/2, B(x)
is (strictly) localizable. If the order of growth of B(x) is larger than one
half B(x) will be non-localizable. In the localizable case it is easy to
prove that B(x) is in the same Borchers class as A(x) and is S-equivalent
but to B(x). In the non-localizable case the Theorem 4 applies and shows
that B(x) is still S-equivalent to A(x). Indeed it is easy to prove that the
convergence of partial sums in (48) to B(x) takes place in the strong
sense (3) and that (21) is also satisfied if a similar condition holds for A(x).

In the next section we will discuss in detail the cluster property in
the weak approach Ak(x)-+B(x) as described in § 2.

7. The Cluster Property in the "Weak" Approach Local -» Non-localizable

In § 4 we have formally remarked that the cluster property is valid for
B(x) if (19) is valid uniformly in α. We would like to discuss this question
here replacing the technical condition (19) by a condition which is more
connected to the existence of a scattering theory for the approximating
fields (which follows from the fact that the approximating fields are local).

Let us consider that all the (local) fields Ak(x) have the spectrum of
free field and that (21) is satisfied (we remark that these conditions are
weaker than those imposed on Ak(x) in §4; there it was for instance
assumed 17 (α, A) is the same representation of the Lorentz group for all
Ak(x).

Let α f = a{ — α0; i — 1, 2, ..., n (see the notation after (19)). Then the
second auxiliary theorem in § 5, Chapter VI, [16] tells us that

is in S(IR3n) with respect to ά. Let Wk(p) be the Fourier transform of
Wk(x)\ the translation invariance of Wk(x) gives in momentum space

(49)

The fact that J W£(x + a) φ(x\dx is in S(lR3π) in α< - at - α0, i = 1, 2, . . ., n
means that after integrating Wk

τ(ρ) with a test function from S(IRJo) in p°
we get a C°° function in p which is in MIR3")1. But θM(^p")C #αM(lR3n).

1 In fact a result of Borchers [19] allows us to find some stronger properties in p
but we are not interested in this problem here.
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Now the cluster property for B(x) constructed as a weak limit of Ak(x)
is valid if WrΓ'(p)eθαAf(IR^π)®S;(IRl,S). Therefore we are faced with
the following problem: let {/v(p°,p)} be a sequence of generalized functions
in S;0R£o)® #αM(IRp") which converges in the sense of S;(IR£"). We have to
require that the limit/(p0, p) of this sequence also lies in ̂ (IRpo)® $αM(lRpn).
It follows that a simple condition we can impose for the existence of a
scattering theory for A(x) is the following

Condition S: The field A(x) must be approximated by Ak(x) in
such a way that the truncated Wightman functions Wk

τ(p) converge in
the sense of S'ΛQR£0)®θΛM(1R%n). The condition S can be interpreted
as a regularity condition. Indeed the C°°-regularity of W/τ(p) in p (which
is responsible for the existence of the cluster property) must be retained in
the limit (with the same effect) and this is, roughly speaking, the content
of condition S.

8. Conclusions

We have shown how it is possible to formulate a notion of equivalence
between non-localizable fields, or in the special case of this paper between
a non-localizable and a local one. Indeed we may define this equivalence
by a natural extension of the idea of a Borcher's class as follows.

Definition. Two fields are PCT-equivalent if and only if they have the
same PCT operator.

Such a relation between two fields is evidently an equivalence,
and so divides the class of all fields into equivalence sub-classes. Each
sub-class will be composed of Borchers classes of local fields possibly
together with some non-localizable fields. Fields in the same PCT-class
will have the same 5-operator if they have the same in fields, so will be
S-equivalent. We showed in detail how a non-localizable field constructed
as a strong limit of local fields can be shown to be PCT-equivalent to a
given local field in terms of conditions on the local fields of the approxi-
mating sequence. However we haven't shown that there exist any non-
localizable fields which are not PCT-equivalent to some local field.
Our discussion in the paper has shown that non-localizable fields can
be as physically reasonable as local ones in describing a given S-matrix.
Apart from computational advantages there seems to be nothing gained
in using a local field equivalent to a non-localizable one. The idea of
imposing localizability on fields in non-polynomial Lagrangian theories
would seem to be unnecessary from this point of view.
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