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Abstract. This paper answers the open question 1 of [3] in the affirmative and, con-
ditionally, the open question 2 of [3], too. Assuming irreducibility of the orthomodular
lattice G of all physical decision effects £, we shall prove in the first section that modularity
of G implies symmetry of the physical probability function μ. In the second section, we
shall consider the filter algebra M(B') being assumed to possess an involution * such that
T*T = 0 implies Γ = 0. Then this will be proved: If every atomic filter TP is a fixpoint of *
and * is, in a restricted manner, norm-preserving on the minimal left ideal ££P : = 3ύ{B') TP,
then G is modular.

I. Modularity of G

This section completes the connection between a purely lattice-
theoretical property of G and a symmetry property of the physical
probability function μ which induces the duality between the ensemble
space B and the effect space B''.

Therefore we begin with a summary of the main results about the
duality (B,B'}:=(B,B'9μ):

(1) B is a real finite-dimensional base norm space having a proper
generating cone B+ for which the compact convex set K of all physical
ensembles V is a compact base.

(2) The (Banach) dual B' of B is an order unit space whose order
unit is denoted by 1. Its proper positive cone B'+ is generated by the
compact convex set L of all physical effects F.

(3) The extreme points E of L form an orthomodular lattice G
and are called the decision effects of L. For all E e G, G(0, E) denotes
the orthomodular lattice segment with 0 and E as zero and unit elements,
respectively. The set of all atoms P of G is denoted by A(G).

Further symbols, notations and definitions introduced in [2-4]
will be used in the sequel without any explicit reference.

The implicit supposition for each proposition in this section is the
following
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Postulate. The orthomodular lattice G of all physical decision
effects E is modular and irreducible. As shown by Ludwig in [6], the
requirement of G being irreducible imposes no severe restriction on G.
It is, above all, a mathematical convenience.

First we shall show that B(P v Q) is even an order unit space and
thereby the assertion in question.

Lemma 1. For any different atoms P, β e Λ(G) and every Fe LPWQ\{0}

there hold the unique representations: either
(i) F = βR,βeR%,Re A{G{0, P v β)) or

(ii) F = β'PvQ,β'eR% or
(iii) F = β1S + β2S

1, where βuβ2ε ]0, 1[, βλ > β2 cind
S,S1eA{G(0,PvQj).

Proof. The trichotomy results from Ludwig's unique spectral
decomposition of an effect F (cf. [6], Theorem 15). The fact that
S, S1 e A(G(0, P v β)) is a consequence of modularity of G(0, P v β )
whence we have the lattice-theoretical dimension statement
dimG(0,PvQ) = 2. Q

Lemma 2. For all P,Qe A(G): co,4(G(0, P v Q)) is compact.

Proof. A(G(0,PvQ)) is compact by Ludwig's Theorem 18 of [6].
Then coA(G{0, P v Q)\ too, is compact (e.g. [9], Satz 3.10). Q

Theorem 1. For all P,Qe A(G): co^(G(0, P v Qj) is a compact base
ofB'iPvQ).

Proof. Observing Lemma 2 we have only to verify that every
YeB'(P v 2) + \{0} has a unique representation Y = aF where OCER%
and F ecoA(G(0,P v Qj). By Lemma 1 such a Y has a unique repre-
sentation either by

(i) Y = aR,aeR% or by
(ii) Y = α / Pvβ,α / eJRΪ or by

(iii) Y = cCiS + α 2 S 1 , α1? α2 e R% a n d α 1 φ α 2

(i) satisfies the assertion trivially. By modularity of G we have
for all Re A(G(0, P v Q))P v Q = R + R1. So, if (ii) holds, then, by
i(P v β) = \{R + R1) e co/l(G(0, P v Q)\ there exists a unique a" e /?ΐ
such that 7 = α//

2"(P v β). Supposing (iii) we obtain

x + α 2 αx 4-α2

where α : + α2 e /?$ is the required unique α e JR*. Q
Remark 1. From Theorem 12 in [1] there follows that

(B(P v β), F ( P v β)) is a duality with completely analogous properties
as (B, Bf). (B, B) being a finite-dimensional duality, B(P v β) is the Banach
dual of B'{P v β) for which P v β is an order unit.
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Theorem 2. For all P,QeA(G) there exists F P v Q e Kλ(P v β) such
that

(i) B(P v Q) is an order unit space with an order unit 2VPyQ

(11) VPWQ=$(VR + VRή for all R e A{G(0, P v β)).

Proof, (i) Theorem 1 says that B'(P v Q) is a base norm space.
Thus we can apply Theorem 5 of Ellis' paper [4] which states that,
for the dual partial ordering, B(P v Q) = B"(P v β) has an order unit
norm. The order unit XPVQ in B(P v β) is strictly positive satisfying
<XPVQ, F) = 1 for all F in the order base coA(G(0, P v β)) of F ( P v β)
(cf. [4], Lemma 2 and Theorem 5). B(P v β) itself being a base norm
space, XPΊQ has a unique representation by XPyQ = βVPyQ with βeR%
and F P v Q e ^ ( P v β) being a compact base of B(P v β).

By Theorem 15 of Stolz [8] dK1(P v β) coincides with the extreme
boundary deKι(P v Q) of Xi(P v β). To prove that VPyQ is an internal
point of KX(P v β) let us assume VPvQe deKγ{P v β). Then, as proved
in [1], Theorem 4, there exists only one Se A(G(0, P v β)) such that
< F P v Q , S> = 1. <XP V ( 2, î > - 1 for all K e A(G{09 P v β)), however, implies
the contradiction 1 = < X P v β , S1} = β(VPvQ, S1} = 0. Therefore, VPvQ

must be a proper convex combination VPS/Q = λVs + (l—λ)Vτ with
Vs, Vj-edeK^P v β). From < F P v Q , P v β> = 1 and <XPyQΛ(P v β ) ) = l
we conclude that β = 2 and so XPyQ = 2VPyQ.

(li) From 1 = <X F v Q , S 1 ) - < 2 F P v Q , S 1 ) = 2(1 - A) <F Γ , S1} and
1 = < ^ P V Q ?

T 1 > = < 2 ] / PVQ. T 1 > - 2 ; c < F s , T
1 ) we infer λ = i hence

7 r = » V and VPyQ = UVs+Vs,). Consider any ^ e δ A ^ v β ) . VPyQ

being internal, the unique line through VR and FP v β intersects 3eK1 (P v Q)
in F κ and FR, such that F P V Q is a proper convex combination F P v Q = otVR

+ (1 — α) VR,. Then the same argumentation as above shows that α = ^
and VR. = VR,. D

Corollary 1. For all P,QeA(G): any Ve K^P v Q)\{VPyQ} has a
unique convex ortho-decomposition

V = βVR + (l-β) VR, with R,R1 e A(G(09P v β)) and R1R1.

Proof, (i) For any F e deKί(P v Q) the assertion is trivially valid
withj8=l.

(ii) For any internal point Ve Kλ(P v Q)\{VPyQ} consider the
unique line through F and F P v ρ intersecting deKx(P v β) in VR and VR>
such that F and F P v ( 2 are proper convex combinations of VR and VR>.
Then Theorem 2 implies F#, = FΛ±. []

Corollary 2. Relative to the supremum norm in B(P v β) ί/zere to/ds
/or a// R e i ( G ( 0 , P v Q)) | | F R - VPvQ\\ =\.

Proof. For all R e A(G(0, P v Q)) we have | | K R - F Λ i | | = l and
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Lemma 3. For all P,QeA(G):B(PvQ) + is the convex hull of its
extreme rays each of which being generated by an extreme point of
KΛPQ)

Proof. Since dKί{PvQ) = deKί{PvQ) (cf. [8], Theorem 15) and
B(P v Q)+ is locally compact with compact base Kx (P v β), the assertion
follows from a theorem of Klee [5]. Q

Theorem 3. For all P, β e A(G)\ any

XeB(PvQ)\{B(PvQ)+{J-B(PvQ) + )

has a unique representation X = βί VR — β2 VR± with βι, β2 e R%,
R, R1 E A(G(0, P v Q)) and R1R1.

Proof. Since B(P v β ) + is a convex body with VPyQ in its interior,
the unique line through X and VPyQ intersects δB(P v β ) + in a unique
point λVR such that λeJ?$, F R e deKλ(P v β) and AFΛ lies in the open
line segment ]F P V ( 2 ,X[. This follows from Lemma 3. Decomposing
VPVQ by VR and VR±, we obtain AFR = /?'1£(FR + VRi.) + β'2X with
j8i, j?2 e R% and j8i + j8'2 = 1. Hence X = β1VR-β2 VR, where

2 / — β\ B\ 2/ — β\
β\ = —yj—-, j32: = ^ 7 ^ e Λ+ and — :-R,— > 0, too, by hypothesis. •

Remark 2. By Corollary 1 of Theorem 2 an analogous statement
relative to Theorem 3 holds for

XeB(P v Q) + \{λVPyQ\λeR + } with βu -β2eR+ .

The corollary of Theorem 5 in [3] states the equivalence of the following
postulates:

(1) Σ βiPi — Q iff Σ /̂ i X/pι = 0 with βi^R for every i e N n and any

neN.
(2) <FP,β> = <F Q ,P> for all P, βe^l(G).
(2) can be interpreted as a symmetry postulate of the physical

probability function μ:KxL—•[(), 1] inducing the duality <B, B'}.
Our further procedure will consist in verifying (1) relative to

G(0, P v β) provided G is modular and irreducible.

Theorem 4. For all P,QEA(G): (1) is valid with P iG>l(G(0,Pvβ))
for all iE Nn.

Proof, (i) Consider the non-trivial case where not all βt vanish, and
suppose Σ βiPi = Q w i t h Pi£A(G(0,Pv β)) for all ieNn. Theorem2

)="Σ A<2KPvQ,Pι>= Σ βi<VPι+V^fy =
ιeNn ieNn ' i
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Assume £ β. VPι = : l φ θ . There holds <X,P v β> - £ j8f = 0:
ieiVM

 ! ieNn

1) X G J B ( P V Q ) + is impossible because X = λV with λeR% and
F e K ^ P v Q ) would imply ( I , P v β ) = 2 > 0 . An analogous con-
tradiction can be derived from assuming X e — B(P v β) + .

2) XφB(PvQ)+u-B(PvQ)+ admits, by Theorem 3, a repre-
sentation X = β' VR - β" VR, withβfJ"eR%;R,R1eA{G(O,PvQ)). Using
0 = <X, P v β > = β ' - β " , we obtain βf = β" = ;β. Being the dual space
of the partially ordered Banach space B' having an order unit norm, B
has, by Theorem 4 of [4], the minimal decomposition property, i.e.
every Xoe B can be decomposed into Xo — Xx — X2 such that Xl9 X2 e B+

and ]|X|| = ll^ll + ||X2II Therefore X has a representation by
X = a1 V1 - α2 F 2 such that α l 9 α2 e R% F 1 ? F 2 e K^Pv Q) and
||X|| = α 1 4-α2. Again from < I , P v β ) = 0, there follows α 1 = α 2 = :α
and thus X = j8(FΛ~ 7^) = ̂ ^ - F2). From | | F R - F ^ | | - 1 we infer

that \\X\\ = β = 2α, i.e. α = —. Hence we obtain

whence 2 = <Kl5 P> - <F 2, jR>, contrary to |<F1 ? R) - <F 2, R)\ ̂  1.
(ii) Again, consider the non-trivial case ]Γ jδt FP i = 0. By Theorem 2,

ίeiVn

# C P V 6 ) i s a n order unit space with an order unit XPyQ, and
coΛ(G(0, P v β)) is a base of B(P v β). Thus ^ &P, = 0 follows in a

manner completely analogous to (i). []

Corollary 1. For all P,Qe A{G) there holds

Proof. The assertion is a direct consequence of remark 2 and the
last Theorem. []

Corollary 2. JB' becomes a real Hilberΐ-space.

Proof. Theorem 6 in [3]. Q
Combining these corollaries with Theorem 14 of [3] we can state the

first main theorem:

Theorem 5. Suppose that G is irreducible. Then there holds: Symmetry
of the physical probability function μ is equivalent with modularity of
the lattice G of all physical decision effects E.

Remark 3. Notice that no dimension requirement of G is necessary
(except dim G > 1 to exclude triviality).
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II. Separating Involutions on

This section investigates the connexion between the symmetry
condition in [3] and a separating involution on the filter algebra &(B;)
which leaves fixed all atomic filters TP of the orthomodular filter lattice
3~(G\ Henceforth we call an involution * on &(B') separating iff Γ* Ί — 0
implies Γ = 0.

For the other terminology see [2]. There we proved in Theorem 13,
its corollary and Theorem 14 that for every TP

(i) @p\={X®P\XeB} = TP0β{Bf) is a minimal right ideal being
linearly order isomorphic to B.

(ii) &P:= {VP®Y\YeB'} = @(Bf)Tp is a minimal left ideal being
linearly isomorphic to B''.

Provided G is irreducible we gather from the Remarks 4 and 5 in
[2] that M{B') is generated by the orthomodular filter lattice
^Γ{G) = {TE\Ee G}. Thus it is plausible that the operation * is determined
on the whole of @(Bf) by the way it operates on (J 3Γ(G)m with

3Γ(G)m= {TEι TEi ... TE ITEι eF(G) and keNJ for any meN.
Suppose 'that the relation *: (J ^(G) m -> [j ^{Gf defined by

meN meN

{TEιι TEIΊ ... TEim_iTEιJ* = TEirnTEim_r.. TEi2TEiχ is a mapping. Then this

mapping has all the multiplicative properties of an involution on $(Bf)
and every filter TEe&~(G), being idempotent, remains fixed under*.
To guarantee a unique linear bijective extension of * to the whole of
&{B') we additionally assume the validity of:

"For every Γe (J ^ ( G ) m : Γ* = 0 implies T = 0."
meN

(This extension condition holds always for (J A^Γ(G)m\ cf. [2],
Theorem 18). meN

* to be separating can be equivalently substituted by "For every

For, if this equivalence is valid, then the right ideal 9t\ = {T\ Te J'(B')
and Γ*Γ = 0} oϊ$(B') is even two-sided. Simplicity of &I(B') then implies
01 = (0), hence * is separating. The reverse direction of the equivalence
asserted is trivial.

Theorem 6. Suppose that G is irreducible. Then
(i) modularity of G implies the existence of a separating involution *

on SS(B')\
(ii) every filter TE is a fixed element under this involution;

(iii) for all P, QeA(G): * preserves the L-norm of VP(g)Qe ££P.

Proof, (i) Corollary 2 of Theorem 4 states that B' becomes a real
Hubert space. Hence @l(B') becomes a C*-algebra (Rickarf s terminology,
cf. [7]).
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(ii) is the statement of Theorem 15 in [3].
(iii) For every P e Λ(G) there holds VP = P (cf. [2]). Therefore,

and ( P ® β ) * = β ® P imply | | β ® P\\L = sup{| |(β® P ) F | | | F ε L} = 1

= \\P®Q\\L. D
The converse will be verified by two steps.

Lemma 4. // 3S(Bf) possesses a separating involution * such that
every TPe A3~(G) is afixpoint of *, then there exists a linear isomorphism
JP: B

f -^B being positive in both directions.

Proof. Every TP belongs to ^Pr\StP = SS{Bf) TPnTP@{B') and, being
a fixpoint of *, there holds Jίfp* = 0lP and 0t% = ifP. Hence * induces a
canonical linear isomorphism JP:B'—*B defined by F P ® Y\-+JPY(g)P
= (F P ® Y)*. From TP being a fixpoint of * we conclude that for every
Pe Λ(G): JPP = VP. JP will be shown to be positive in both directions:
From the Theorems 4.10.3 and 4.10.7 of [7] there follows that
< | ) P : F χ β ' - > / ? is an inner product on B' which is defined by
(Y1\Y2)PTP = (VP®Y2)*oVP(g)Yί = (JPY2,YiyTP. We infer from its
symmetry that JP equals the transposed isomorphism JP because B
is finite-dimensional. Thus for all YuY2eB'\ <YX | Y2)P = <JPY2, ^i>
= OpYnW- Since (F P ®1) 2 = <FP, 1> VP®1 = FP(χ)l, so (F P ®1) 2 *
= ( J P 1 ® P ) 2 - < J P 1 , P > J P 1 ® P = J P 1 ® P , whence <JP1,P> = 1. Hence
for all P , ρ e y l ( G ) : Γ β o j p l ® l o Γ p ^
< JP1, P> F P ® Q = VP ® β and therefore

To ensure < J P β , l > e Λ * we observe that 0 < < β | β > P = <J P β, β> and
( J P β ® P) β - </ P β, β> P = <J P β, 1> P. Thus for all

Since all VQ generate B+ and all β generate #+> JP

ι is also positive. •

Lemma 5. In addition to Lemma 4, suppose G to be irreducible. Then
for every P e A(G) the positive isomorphism JP is unique up to a positive
multiplicative constant.

Proof. For all P,βε.4(G) and all YuY2eBf: there exists a strictly
positive (self-adjoint) linear operator A on (B\ <• | >P) such that < Yλ | Y2>Q

= {Y1\AY2}P. This is a well-known fact from Hubert space theory.
Utilizing Lemma 4, we obtain for all
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and so JPAR = JQR = (JQί, R> VR. This implies AR = <JQ1, Ry JP

ι VR

= > ? V P \ R = β(Q,P)Rmth β(Q,P):= ^rT^ΓeR*' T h u s e v e r y

\Jpi, iv/ \JP1, JK/

i ^ e i ( G ) is a proper vector of A and ̂  commutes with every atomic
filter TR. G being irreducible, we may apply Theorem 20 of [1] to obtain
that A is a scalar operator. Therefore, JPAR = JQR implies β(Q, P) JP = JQ,
the desired result. []

Lemma 6. Given the hypothesis of Lemma 5 and, additionally, JPΐ=JQl
for all P,Qe A(G). Then the symmetry condition (VP, Q> = (VQ, P> holds.

Proof. JPί=JQl implies β(Q, P ) = l , thus JP = JQ. Then, using
JpQ = VQ9 we have (VP, ρ> VQ®P = TPTQ = (ΓQΓP)* = (VQ, P> (VP® β)*
= <FG,P>F ρ(g)P. D

Corollary. For α/Z P e i ( G ) , J P ê fwαZs the canonical order iso-
morphism J of [3].

Proof. [3], Theorem 5 and its corollary. []

Theorem 7. Suppose G to be irreducible and 3${B') to have a separating
involution * such that for all P e A(G): ΓP* = TP. Then, for all P,Qe A(G),
these propositions are equivalent:

(i) ll^®Glli=II.M2®P||ί.
(ii) jPί=jQί.

(iii) (VP, 6> = <F e ,P>.

Proof. (i)=>(ii): By Lemma 3 of [2] there holds

Using (i) and Lemma 5, we obtain \\JPQ®P\\L = β(Q, P)'1. \\JQQ®P\\L

= j8(β,P)-1o || VQ®P\\L = β{Q,Pyι = l; hence for all ReA(G):(JPUR}
= < J Q 1 , R}, whence JP\ = J Q 1 .

(ii) => (iii): Lemma 6.
(iii)=>(i): By the corollary to Lemma 6 there holds for all P e A(G)

j p = j . This implies JPQ = JQ = VQ and so we arrive at \\VP®Q\\L= 1

= \WQ®P\\L. D

Corollary 1. If any of the equivalent propositions of Theorem 7 holds,
then G is modular.

Proof. Theorem 14 of [3]. Q
Although, unless G Boolean, no filter of ^~(G) can be additively

decomposed into atomic filters, we can state the

Corollary 2. Every filter TEe.T(G) is a fixpoίnt of the involution
provided any proposition of Theorem 7 is valid.
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Proof. From Theorem 4.10.7 and the Corollary 4.10.8 in [7] we
gather that every T* e ^(B1) is the adjoint operator relative to the inner
product < | )p on Bf which was defined in the proof of Lemma 4. By
Theorem 7, this inner product coincides with that which is induced on Bf

by the symmetry condition (cf. [3], Theorems 6 and 7). The assertion
then follows from Theorem 15 in [3]. Q

Lemma 7. A separating involution * on $(B') such that for all
P,QeA(G):T? = TP and | | F P ® β | | L = | | J P β ® P | | L is unique.

Proof. Since JP = J, the adjoint operator of any TeSS(B') relative
to the inner product on B' by J equals T* for every involution satisfying
the hypothesis. []

Remark 4. At this stage of our deduction we think some motivating
remarks on the preceding lemmata and theorems to be necessary. As
represented in Rickart's monograph [7], for instance, (and already
utilized extensively) a separating involution on &(Bf) having minimal
idempotents induces a Hubert space structure on Bf. Of course, this
property then induces a canonical isomorphism between B' and B.
However, it is not obvious that this isomorphism preserves order in both
directions (not even in one). This is the reason why we additionally
postulated A3r{G) to be a fixpoint subset of the separating involution
given. As to the postulate concerning the L-norm we conjecture that
thfere exists a separating involution on &(B') leaving fixed every atomic
filter but not possessing the L-norm property of Theorem 7. In fact,
a perusal of the proof of self-adjointness of TE reveals no restriction
of JP except for its positivity already ensured by the TF-postulate.
Therefore, only to require all filters of 2Γ{G) to be fixpoints of a separating
involution seems to impose no additional structure on the filter lattice
&~(G). We conjecture, but failed to verify that such an involution would
necessarily pertain to a non-modular filter lattice.

A concluding theorem will summarize this paper and [3]:

Theorem 8. For an irreducible lattice G of all physical decision
effects, the following postulates are equivalent:

i) The physical probability function μ satisfies the symmetry condition:
for all atomic decision effects P, Q:

μ(VP,Q) = μ(VQ,P).

(ii) The filter algebra $(B') has a (unique) separating involution
leaving fixed every atomic filter TP and preserving the L-norm of VP®Q
for all PyQeA(G).

(iii) G is modular.

Proof. (i)=>(ii): Theorem 15 of [3], Theorems 6 and 7 and Lemma 7.
(ii)=>(iii): Corollary 1 of Theorem 7. (iii)=>(i): Theorem 5. Q
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