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Abstract. A general criterion is derived which assures the uniqueness of the state of a
classical statistical mechanical system in terms of a given system of correlation functions.
The criterion is Yd(m{+J)~llk = ao for all / and all bounded sets A, where

k

mί = ( k \ ) - ί ^ ' ' ^ ρ k ( x u . . . i x h ) d x 1 . . . d x k .

ί. Introduction

In the older literature of classical statistical mechanics it was taken
for granted, although not explicitly stated, that the sequence of correlation
functions ρn, n— 1, 2, 3,..., in their totality uniquely characterize the
(statistical) state of the system to which they refer. That this is not the
case in general was pointed out by Ruelle1. Thus, the problem arises
of supplying criteria under which the uniqueness of the state is guaranteed.
Such a criterion was already given in Ruelle's book, namely the existence
of a positive constant c such that \ρn(x1,x2,...,xn)\^cn for all n and
almost all values of the variables. Nevertheless, the question is interesting
enough to merit more detailed investigation; the present paper is
devoted to this task.

Before one can attack the problem it is necessary to specify precisely
the mathematical set-up in whose context the question is posed. In a
quite general manner, we do this as follows. We consider a space X
(the analogue of Gibbs's phase space) whose points ξ are infinite "particle
configurations" in a space E (the "one particle space"). A natural measure
theoretical structure is defined in X. A state of the system is taken to
mean a probability measure μ over X. Since the correlation functions ρn
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are densities with respect to the natural measure in E, a precise definition

must be given for the quantities ρ{H) = J j Qndx1 ...dxn where H is
H

some measurable set in En. We do this by showing that

l (1.1)

where, for each H, NH(ξ) is a measurable function over X whose meaning
can be specified by a certain combinational property of the configuration
ξ with respect to the set H. Our question is then: under what conditions
on ρ is it guaranteed that (1) can have no more than one solution μ?

The result of the investigation is a criterion stated in terms of quantities

m£ = —- ρ(Λk) where A is a bounded measurable set in E. We find that

if the series

Σ K+/~* (1-2)

diverges for each A and each integer j then uniqueness for μ is assured.
This criterion is much weaker than the one quoted above due to Ruelle;
indeed, it is already satisfied when |ρn(x l 3..., xn)| ^cnn2n. The proof
of our criterion depends on a remarkable theorem of Carleman [2]
dealing with analytic functions.

2. Mathematical Preliminaries

To construct our mathematical set-up in the appropriate generality
we start from a space E which plays the role of the one-particle phase
space (in practice E = 1R3 or 1R6, etc.). It is assumed to be a measurable
space, and in addition the concept of boundedness is defined in it. The
bounded sets in E are a distinguished hereditary2 family of subsets
closed under finite union formation. (If £ is a topological space,
boundedness means having compact closure.) We assume that the class
of measurable sets in E is generated by the class of bounded measurable
sets.

A configuration is defined to mean a finite or countably infinite system
of points in £, considered without regard to order, and repetitions
permitted. Thus a configuration is neither a set (whose elements are
distinct, by definition), nor a sequence (where order matters). Configu-
rations are generally denoted by the symbol ξ. The notation ξA is used
to denote the sub-configuration of ξ consisting of the points of ξ which
are contained in the set A Q E. We shall be concerned exclusively with
locally finite configurations, i.e., with ξ such that # ξA < oo for every

We use the measure theoretical terminology of Halmos [3].
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bounded A ( # stands for "cardinal number of). The set X of all locally
finite configurations plays the role of Gibbs's phase space. We now describe
the construction which makes X a measurable space: Let A be any
bounded measurable set in E and n any non-negative integer. Let
C*={ξeX: φξA = n}. We define the class of measurable sets in X
as the smallest σ-algebra2 which contains all sets of the form C*. A
probability measure μ over X is said to define a state of the system.

Among the measurable sets in X there is a family of particular
importance for us. Let Aί,A2,...,Ar be disjoint bounded measurable
sets in £, let N be any set of r-tuples (n l5 n 2 , . . . , nX a n d l e t

The identity

U .Π
( « i , . . . , n r ) ε J V j = l

displays their measurability. It is easily verified that these sets ("cylinder
sets") form an algebra, although not in general a σ-algebra. It is important
that the restriction of a probability measure μ to these cylinder sets
already guarantees the uniqueness of μ3. In other words, there can be at
most one probability measure μ with a given system of numbers

piί\::;lr = μ{ξεX' ΦξΛι = nl9...9#ξΛr = nr}, (2.2)

where the Aj are arbitrary disjoint bounded measurable sets and the n }

arbitrary non-negative integers.
Besides the space of configurations X, we also need the space K

of finite sequences of points in E. K also contains the empty sequence.
00

It is a disjoint union K = (J En (where E° is the set containing only the
« = o

empty sequence, and En = Ex Ex XJE with n factors), and as such it is a
measurable space in the natural manner. Any subset HQK may be

00

decomposed as a disjoint union H = (J Hn with Hn Q En. If Hn is bounded
n = 0

for all n and Hn = θ for all sufficiently large n, we say that H is bounded.
Let ξeX and HQK. Suppose we enumerate the points of ξ in some

manner, say (x 1,x 2,x 3,. . .). For any finite sequence (i l5 i2,..., ik) of
positive integers, the sequence (xfl, x ί2,..., xίk) is a point of K. It may or
may not belong to H. We denote by NH(ξ) the number of sequences
(i l 5 i 2,..., ϊfe), with k arbitrary and the is distinct, such that (x ί l ? x i 2 , . . . ,x i k ) e H.

Note that the definition depends only on ξ and not on the particular
enumeration of its points, as is indicated by the notation. Note also that,

3 Halmos[3],§13, Theorem A.
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by definition, the empty sequence must also be considered in the counting
the defines NH(ξ).

The number NH(ξ) may be viewed two ways. First, for fixed ξ e X
it may be regarded as a set function H-^NH(ξ) defined for subsets
HQK. Second, for fixed HQK it may be regarded as a non-negative
integer (including -f GO) valued function over the configuration space X.

From the first point of view the important fact is that NH(ξ) is
completely additive, i.e., if {Hj} is any family of disjoint subsets of X, then
ΣNHj(ζ) = NuHj(ζ)' T n u s > f o r e v e r y ξeX,H-+HN(ξ) is a measure.

It follows4 that if HίQH2Q..., then SupNHj(ξ) = N^Hj{ξ), and if

H,2H22... with NHl(ξ) < GO, then Inf NHj(ξ) = N?Hj(ξ).

From the other point of view, the significant fact is that, roughly
speaking, the nicer the set H is, the nicer the function ξ-+NH(ξ). For
instance, if H = A\ι Ak

2 ... Akr with disjoint Ap then we have the explicit
formula.

N { 0 ( 1 3 )

as one verifies directly from the definition. The general regularity
property of ξ-+NH(ξ) is stated in the following proposition.

Theorem 1. If HQK is a bounded measurable set, then the function
ξ^NH(ξ) is finite valued and measurable.

Proof. Since H is bounded, we have H =\J Hn where the union is
n

finite and Hn Q An for some bounded A Q E. We have thenn Q

NH(ξ) = Σ NHn(ξ) g Σ NAO = Σ -PA-nV < M

n n n yπζA — n)1

This shows the finite valuedness. To prove that ξ-+NH(ξ) is measurable
we proceed in steps. This is obvious in case H is of special form
H = A\ιAk

2

2 ... Ak/ as displayed by (2.3), and of course also when H is a
finite union of such "rectangles". These finite unions form a ring of
sets5, say M. Now let JF be the class of those subsets HQK for which
ξ->NH{ξ) is measurable, thus 01Q3F. We now show that J^ is a monotone
class, i.e., that if H1 QH2Q ... with H}e^ then ( J ^ e i ^ , and also if

Hι 2 H2 2 . with Hj e ^ then f) Hj e &. Take the first case. We have
3

seen that NuH.(ζ) = Sup NH.(ξ). But a pointwise increasing limit of

4 Halmos [3], § 9, Theorems D and E.
5 Halmos [3], §4.
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measurable functions is measurable; thus {jHjeέF. The case of a
j

decreasing sequence follows by the analogous reasoning. Now, it is a
fact of general measure theory that if a monotone class $F contains a
ring M then it also contains the σ-ring generated by the ring6. But the
σ-ring generated by ^ in our case is, by definition, the class of all
measurable subsets of K. Q.E.D.

3. Correlation Functions and the Measure ρ

Let μ be the probability measure over X defining a state of the system.
For every bounded measurable H Q K we write

ρ(H)=$NH(ξ)dμ. (3.1)
x

According to Theorem 1 this definition makes sense, and ρ(H) ̂  0.
It can, of course, happen that ρ(H) = oo. If ρ(H)<oo for all bounded
measurable H, we say that μ possesses finite correlations. In the following
this condition will always be assumed, even if not mentioned explicitly.
The set function H-^ρ(H) is a measure, for it is clearly finitely additive
with respect to H, and σ-additivity follows easily from the bounded
convergence theorem7. We call it the correlation measure associated
with the given state μ.

This terminology is justified by the relation ρ bears to the socalled
correlation functions in classical statistical mechanics. Recall that in the
conventional situation (where E is ordinary Euclidean space Rv) the
correlation function ρn is defined by the statement that ρπ(xl5 x2, ••-, xn)
dxλdx2 ... dxn is the probability for finding particles in each of the n
volume elements dxj (simultaneously)8. From the strict mathematical
point of view, ρn is therefore not a function but must be regarded as a
measure, and instead of the above "definition" one should rather specify
the meaning of the set function obtained by integrating the correlation
"functions" over arbitrary measurable sets. We claim that the proper
definition is as follows: For every bounded measurable H = (J Hn,HnQ En,

n

Q(m=ΣI-Sendχί...dxa. (3.2)
n Hn

To justify this statement let us proceed formally and assume that for
every bounded measurable set A ξ= E the probability that there are
precisely n particles (i.e., points of the configuration ξ) in A and they

6 Halmos [3], § 6, Theorem B.
7 Halmos [3], § 26, Theorem D.
8 Ruelle[4],§4.1.1.
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are in the volume elements dx1,...,dxn is πjf(x l5 . . . , * „ ) ^ x i ••• dxn.
The correlation functions are then given, for arguments in A, by the
formula

00 i

15 * 5 k) LJ I J J fc + sV 1> •> k> ^ 1 5 •> J s / / I Js \ ' )
s = 0 A A

the factor (si)'1 accounting for the fact that the points of a configuration
are unlabelled. Noting that the probability for finding m particles in A is

μ(Ci)=—r\' ^π^(xu...,xm)dxί...dxm, (3.4)
ro! A A

we obtain from (3.3)

J ••• J ρk(xu...,xk)dx1 . . . d x k = 2, (m_k)} M O

This verifies the equality (3.2) for the special case H = Ak. It is just as easy
to verify if for H = A\x Aψ ... Ak/ where the Aj are disjoint bounded
measurable subsets of E. By additivity (3.2) is thus seen to hold for the
class of subsets HQK which are finite unions of such rectangles (i.e., the
ring 01, cf. above, end of Section 2). But this establishes (3.2) generally
because of the uniqueness3 of the extension of a measure from 01 to the
σ-ring of all measurable sets in K.

In the following we make no use of (3.2), nor even assume the existence
of the densities ρΠ, but regard it only as a heuristic justification for
dealing with the measure ρ which is defined by (3.1).

But (3.1) may also be viewed from another point of view, namely,
as an equation for the unknown μ, ρ being given. If so viewed, it gives
rise to two fundamental problems. First, under what conditions on ρ
does there exist any solution? Second, under what conditions on ρ can
there be no more than one solution? The two problems of existence and
uniqueness have very different mathematical character. Here we shall
be concerned only with the second of these problems which is the exact
formulation of the question raised in the Introduction. The author
hopes to come back to the existence problem in a later publication.

Our Eq. (3.1) somewhat resembles a classical problem in Analysis,
namely the Stieltjes Moment Problem. There a measure σ is sought, say
on the positive real line, such that

00

ck=\tkdσ(t) (3.6)
o
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where the ck(k = 0,1,2,...) are given numbers9. The resemblance
between our problem and the Moment Problem is shown more explicitly
if we change the latter slightly. First, instead of the functions tk we

i Γ (t\ t(t — 1)... ( ί - f c + 1)
consider the functions I = — , second, we restrict

\fe/ fc!
attention to measures σ which are concentrated on the integers. Thus,
instead of (3.6), we consider the similar problem

where the mk(k = 0,1, 2,...) are given numbers, and pn = σ({n}) form
components of the unknown probability vector. The analogy with (3.1)
is brought out if we consider special sets H, namely rectangles
H — A^A^ ...Akr, where the Aj are disjoint bounded measurable sets
in E. Using (2.3) and the notation (2.2) we have

,Ar
λkr\

- A r )kx\k2\...kr\
(3.8)

nAi,Az,... ,Ar

^tn, n2, ...,nr

which is quite analogous to (3.7). Because we are interested in the question
of uniqueness for μ we emphasize that, as has already been remarked
in Section 2, a unique determination of the family of numbers p ^ Γ̂
implies a unique μ. Thus we are concerned with a uniqueness criterion
for the system of equations (3.8).

Our principal result is the following

Theorem 2. // for all bounded measurable AQE, and all nonnegative
00 _ J ^

integers /, ]Γ (mk+J)
 k diverges, then μ is uniquely determined by ρ.

k = 0

Before proving the theorem, let us make a few remarks.

From the formula mk = J , Λ \dμ it is evident that mk is a non-
\ k I

decreasing function of the set A. Therefore, the series occurring in our
theorem certainly diverges for some A if it diverges for some A 2 A.
Thus the theorem deals in effect only with the asymptotic behavior of
mk for large A. Of course, it also deals only with the behavior of mk as

See for instance Akhiezer [1].
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Here are a few simple corollaries of the theorem. If

Sup - ^ - <oo (3.9)

0 ^ k < oo ^

for every bounded A, then the condition of the theorem is satisfied. This is

easily checked: If m^^(cAkf, then (m^+7 )
 k^[_c{

A

+j}~] \ and for

constant

the divergence of the series.
If ρ is representable in terms of correlation functions ρn by the formula

(3.2), we may convert our criterion into a simple condition on the ρn.
Writing | | ρ j for the essential supremum of \ρn(x1,x2, ...,xn)\ for
xu x2,..., xn 6 £, the condition reads

\\Qn\\ύ(cn2r, (3.10)

(vΛ)
k (cvA)

k

where c is a constant. For this implies m^ ^—fr-\\ρk\\ ^———k ,

where vA = J dx, and so Sup — (m^) k ^ ecvA.
A k

It may be worth pointing out that there is a much stronger condition
than the one given in the theorem, a condition that is, however, particularly
easy to apply in concrete instances. This condition is that the power series

00

Σ mkzk have a positive radius of convergence for every bounded A.
k = 0

Indeed, this is equivalent to Lim Inf (m£) k = Lim Inf(m^+ 7 )
 k > 0

thus, the series occurring in the theorem has terms positively bounded
away from zero in this case.

4. Proof of Theorem 2

Omitting the indices, we denote by p and p two solutions of the system
of Eqs. (3.8). Assuming that they are not identical, we have bounded
measurable sets Aί9 ...,ArQE such that p ^ Γ̂ and p^1;;;;;^ are not
equal as functions of the integers nx,..., nr. Let us introduce generating
functions

rh — V \nΛ (ns\7ns,i nrnAu...,Ar (Λ 1 \

nu...,nr \Kl) \Ks)

associated with solutions p of (3.8). These are analytic for |z s + 1 | , . . . , |z,| < 1.
We have then for s = 0,1, 2,..., r two such functions φs and φs associated
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with the two solutions p and p. We note that, by hypothesis,
on the other hand, φr = (j)r since for s = r the right hand side of (4.1) is
just the given quantity in (3.8). We now fix s as the smallest number
so that φs = φs but Φs- iΦ^s- i Let ψ = φs_1—φs_ι; we view it as a
function of the complex variable z = zs, with the other variables so fixed
that ψ φ 0.

We need an elementary estimate that follows from the identity

(Λ ί Λ f dt. (4.2)

Denote the last term by RΛtk(z). If |l + z | < l and O ^ ί ^ l , then also

|i-Kz|:gl. Therefore

and so

fcjίi-t/^α + fzy1-

> (4.3)

whenever |ί + z | < l . In the identity (4.2) we replace 1 + z by z, and
substitute it into the power series for ψ(z), choosing k = ks an arbitrary
integer. One now observes that the first k terms of (4.2) yield zero, since

ΣPni U
is identical to the corresponding sum with p replaced by p, by our choice
of s. From the estimate (4.3) one obtains then

= 2 < \ ::;;ί ι;|z-l| t .

(Here we used the identity

y DAu...,Ar== Alt...,As
/ J Fnι,...,nr Fnι,...,ns

« 5 + i , . . . , « r

which follows from the definition (2.2).) Let kγ -\ h fes_1 = j . Use the
obvious inequality

as well as the identity

ΌAu. .,As=z A
Fni, ...,ns Fn •
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where A = Aλ\j-• \jAs. From (4.4) it follows then that

\ψ(z)\^2mf+k\z-l\k. (4.5)

Here z is subject only to \z\ < 1, and k is any non-negative integer. Our
hypothesis about the two not identical solutions p and £ has resulted
in an analytic function ψ, not identically zero, and satisfying the infinite
system of inequalities (4.5).

The following beautiful proposition becomes now relevant.

Theorem (Carleman [2]J. Letf(z)be analytic for \z\ < 1, and let it
satisfy inequalities of the form \f(z)\ ^(βk\z — l|)Ak, fc=l, 2,..., where

0<λί<λ2< -+ao,0<βuβ2,..., and f λ]i~ k - 1 - diverges. Then f
fc = l A c

is identically zero10.

We let f = ψ,λk = k and βk = (2mf+k)
1/k. The inequalities in the

statement of the theorem are just (4.5). Thus ψ vanishes identically.
Therefore p=g, the solution of (3.8) is unique, and so is the state μ.

Q.E.D.
It may be of methodological interest that the above proof is patterned

closely after the uniqueness proof of Carleman11 concerning the
Stieltjes Moment Problem which yields a criterion very similar to the
one in our Theorem 2.
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