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Abstract. It is shown that the infinite volume limit of the equilibrium reduced density
matrices, shown by Ginibre to exist at low densities, satisfy the quantum time independent
BBGKY hierarchy of equations. This extends analogous results for classical systems due
to Gallavotti.

Introduction

Gallavotti [1] has shown rigorously that the infinite volume equi-
librium correlation functions for a classical system satisfy the time
independent BBGKY hierarchy of equations for a large class of potentials
whenever the activity is small enough. For this purpose he made use of
results due to Groeneveld, Penrose and Ruelle (see Chapter 4 in [2])
relating to the existence of the correlation functions in the thermodynamic
limit. We made use of the corresponding results due to Ginibre [3,4]
relating to the existence of the quantum counterparts of the correlation
functions, namely the reduced density matrices (RDM), and a method
suggested by Gallavotti to prove that the time independent form of the
quantum version of the BBGKY are satisfied by the infinite volume RDM.
We treat the two cases of classical Boltzmann Statistics (C.S.) and
Quantum Statistics (Q.S.), both Bose and Fermi, separately.

We are in general interested in a grand ensemble of systems of
identical particles, not necessarily in equilibrium, enclosed in a finite
box Λ9 and interaction via two-bόdy forces so that the Hamiltonian of the
system with N particles in A has the form

HN=- Σ vl+ Σ φ(*i-*j) (i-i)

d
where 2m = ft=l, x . e A CRV, Vx = — — and v is the dimensionality

, ι dxi

of space.
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In the coordinate representation the nonequilibrium RDM can be
defined by oo

QA(xn;yn,t)= Σ PNQnΛxn;yn,t) (1.2)

with PN the time independent probability for the system to have N
particles where x" = (x1, ...,xπ), the superscript A makes it explicit that
the system is enclosed in a finite box, ρ^A(xn\ yn, i) are RDM suitable for
an ensemble of similar systems of fixed N and are obtained from a density
matrix ρNtΛ(xN\ yN, t) via the relation

ρ^(x»; f, t) = j^^γ τ^N^ρN'Λ(xN; yN, t)

with ΊτiN)ρN'Λ(xN; yN, t) = 1. Of course given a set of ρ^Λ{xn; y\ t) Eq. (1.2)
will not in general exist even for finite Λ. We suppose this not to be the
case, i.e. coefficients PN and the ρ^'Λ are such that (1.2) makes sense. Then
the BBGKY equations satisfied by ρΛ(xn;yn, t) are easily obtained from
those satisfied by ρ^Λ{xn\yn, t\ the latter being obtained via successive
trace taking on the Liouville equation satisfied by ρNtΛ(xN',yN,t) (see
Bogoliubov [5] for a derivation of this). The result is

x"; / , ί)

[_l^i<j^n

(1.3)

+ J dxn +1 [Σ Φ(xt - xn+ί) - Φ{yt - xn+ί)] ρΛ(xn, xn+1 / , xn+l91).

In the Q.S. case this equation is more readily obtained in a second
quantized formalism using the equivalent definition of in terms of creation
and annihilation operators:

ρΛ(xn; y", t) = (a+ {y\ t) a(x\ ί)> Thermal Average

where a+ (yn) = a+ (yx)... a+ (yn), α(x") = a(xn)... α(xx) and a+(x) and α(x)
satisfy the well known commutation and anticommutation relations for
Bose-Einstein and Fermi-Dirac statistics respectively. Then using the
equations of motion

one obtains directly the Eq. (1.3) above.

At the present time very little is known about the existence of solutions
to Eq. (1.3) in the infinite volume limit. If however, we restrict ourselves
to the question of stationary solutions we can show that the infinite



BBGKY Hierarchy 13

volume limit of the equilibrium RDM in fact satisfy the above equation,
within the left side equal to zero and this is what is done in the following
pages. The stationary BBGKY are given by

°=- Σ (^-^V(*n;/)
+ Γ Σ Φix^Xjj-Φiy.-yjήρ^x- f) (1.4)

We will show that every term in Eq. (1.4) makes sense in the infinite
volume limit and furthermore that the equality in Eq. (1.4) persists when
Λ -• °°. The sense in which the limit A. -> °° is to be understood is that the
coordinates, (xn) and (yn) stay within an arbitrary compact set. We make
essential use of the result, obtained by Ginibre [3] and the formalism
developed by him for the quantum RDM. He shows that ρ(xn',yn), the
infinite volume limits of the equilibrium RDM, exist, are bounded and
ρΛ(xn\ yn)-j>ρ{xn\yn) uniformly on compact sets, provided one is restricted
to the class of potentials such that

a) Φ(x, y) Ξ Φ(x — y) is continuous

b) J \Φ(x)\ dx<°° (integrability)
all space

c) Σ Φ(xt - xj) ̂  - nB (stability)
1 ^ i < j <; n

and furthermore one is restricted to a region in the complex activity plane
whose radius is determined by the potential Φ(x) and the temperature 1/β.
Working always within this restricted domain we shall see that we need
to impose further conditions on the potentials Φ(x) so that Eq. (1.4) will
hold in the thermodynamic limit.

With the above in mind it is easy to see that the last two terms in
Eq. (1.4) exist in the A -> °° limit and that they are the uniform limits of
the corresponding terms for finite A. For the last term we use the fact
(see Ginibre [3]) that

| ρ ^ " + 1 ; / + 1 )^J^Γrl |ρ | |^ ξ>0 (1.6)

for Boltzmann statistics and

\ρHχ"+ι;yn+1)\ύij^lgvl2(ξ)Y+1\\Qh> 0 < ξ < l (1.7)

for Quantum statistics, where λ = ]/nβ is the thermal wavelength, and
\g\\ξ is the norm of a sequence of functions {ρ(ωn)} regarded as a vector
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belonging to a suitable Banach space. The nature of ρ(ωn) and its relation-
ship to ρ{xn; yn) will be clearer later on (also see Ginibre [6]). We see now
that in the infinite volume limit the integral

exists due to the bounds (1.6) or (1.7) and the integrability condition (1.5b).
Furthermore the corresponding term for finite A approaches to the
above uniformly in (xπ, yn).

The main problem is to show that the infinite volume RDM have
derivatives with respect to their arguments. From here on we will treat
the two cases of classical and quantum statistics separately, the latter
being algebraically more involved. We are allowed to consider classical
(Boltzmann) statistics in a quantum formalism because there is no
"correct" statistics that is logically imposed by the theory within the
nonrelativistic domain.

Classical Statistics:

We make use of a representation of the RDM as a Wiener integral of
a functional ρ(ωn). In the case of C.S. this representation has the form

β(ωB) (2.1)

(see Ginibre [6], Kac [7]), where

xn = (x1, ...,xn) and XjERv

ωn= {ω1,...,ωn) and ω^ is a map

in fact a Brownian trajectory. P^nyn{dωn) is the conditional Wiener
measure defined on the space of such trajectories. The exact form of
ρ(ωn) is immaterial for our purposes (see [6]). Equation (2.1) can also be
written as

- Σ (χj-yj)2l.

e J^ί

- Jr
(2.2)

where the factor in brackets is a normalization and equals j P^ny

and Eβ

χnyn{dωn) is now the normalized conditional Wiener measure.

If we try to differentiate Eq. (2.2) with respect to some xα we get
involved in differentiating the Wiener measure which depends on the end
points of ωα. We can avoid this by a change of variables over which we
integrate. Every trajectory ω that starts at x and ends at j ; can be uniquely
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obtained by adding to the fixed straight line path from x to y a trajectory
ω' that starts and ends at the origin. That is,

ω(t)==ω'(t) + μ(t) for all O g ί ^ β
with (2.3)

the fixed straight line path in Rv. Then we have

(2.4)

Now differentiation is easy:

dρ(xn;yn) d

dxn

λnv

(2.5)

dμa(0)

where we have denoted functional differentiation of ρ(ω) with partial
derivative symbols. So the problem comes down to showing that ρ(ωn)
are functionally differentiable [the above argument is due to
H. P. McKean]. (Private communication via Gallavotti). The set of
Mayer-Montroll equations or the set of Kirkwood-Salzburg equation
(or rather the quantum analogue of these equations) can be used equally
well for this purpose in the C.S. case. However in the Q.S. case the
required differentiability can be shown to be true only for repulsive
potentials if we use the M.M. equations. The K.S. equations on the other
hand give the required result with no more restrictions on Φ(X) in the
Q.S. case than are necessary in the C.S. case (I thank Dr. Ginibre for
bringing this to my attention). So that we proceed to work with the
K.S. equations. It is the following unsymmetrized form of the K.S. equa-
tions (see [6]) which is useful for our purposes:

= ze~Wiω«>ωn'} £ — j P£mtUm(dωm)dumK(ωa,ω
m)ρ(ωn\ωm) (2.6)

W(ωa,ω
n)= X φ(ω α -ω J )

where

= Π {

φ(ω)= j Φ[ω(ί)] at
o
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Eq. (2.6) holds in the infinite volume limit and we can differentiate it to
study the infinite volume derivatives. Denoting the functional derivatives

δ δ d
——-— or ———— by the ordinary partial derivative symbols — —
δωa(0) δωa(β) dωa

we have

dQ(ωn)
=z (_ f

Z £Ί dωa

Σ ^ T ί P^,uΛdΰm) dumK(ω^ ωm) ρ(ωn\ ωm)

dωn

with
dK(ωa,ω"

= Σ
J = l

nu — φ{ωa,~ωι) 1}

Equation (2.7) makes sense whenever the right hand side converges
uniformly and we see that the first term already requires that the potential
be differentiable with continuous derivative; continuity is required for
later bounds.

Now consider

Σ -
i=ί

]- 1} ρ(ωn\ωm)

using \ρ(ωn\ ωm)\ ̂ ξm + n * ||ρ\\.

Eq. (2.8) is

UiPu,u,(dωddui\K{ωa,ωd

(2.8)

lPuu(dω)du\K(ω,ω)\SC(β)
and since

where

and Φ±(x) = max(±Φ(x),0) (see [6]).

Eq. (2.8) is

S ξm + " " J ||Q|| m[_C(β)T~ι ί Puu(dω) du
dωn

(2.9)
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Now

J du f Puu(dω)
a>« — ω ' — u)

(where a simple translation in ω has been made).

ύ S U P
CO, C ΰ '

1 de -βΦ(x)

dx

We see that the required convergence will come about when we restrict
the class of admissible potentials further by the following condition:

dx
< + 0 0 . (2.10)

Then the second series in (2.7) uniformly converges since we have

1 _ ,
Σ=o ml

D(j8)expKC(j?)]

with the above and the fact that

ge-W(ωa,ω"')

dωa

which comes about because (ωn) are to lie within a compact set ΛRCΛ
dΦ(x) I-

and we have assumed the continuity of — (Φ is a uniform bound

for —— in ΛR . Then
ox )

dx

dρ(ωn) . „ pnJn-l)βb\ ρ\\D(β)explξC(β)-]

and referring back to Eq. (2.5) we see that — - or —^ exist

in the A -> °° limit.

To show the same result about the second derivatives which are
relevant for Eq. (1.4) we demand similarly that the second order functional
derivatives exist. This involves

72— = Σdω

+ Σ Σ

. { _m,.

9 - <p (ω« - cok)- 1 }
k=ί
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which leads similarly to the additional condition on the class of admissible
potentials, namely that

fl2e-βΦ{x)

dx2 < +0°.

The fact that the finite volume derivatives approach the infinite
volume ones whose existence was established above follows from the
uniform boundedness in A of the integrands appearing in Eq. (2.7) by
integrable functions and that the integrands approach their infinite
volume limits point-wise.

Thus the equality in Eq. (1.4) persists as A -> °°.

Quantum Statistics:

In this case ρ(xnι yn) is again given by a Wiener Integral of a functional
ρ(ώn) but now the set of trajectories over which one has to integrate do
not have the fixed length β (length referes to the range of the parameter t)
as before but are composed of several elementary trajectories of length β;
furthermore a trajectory starting at xt may not end at yt as before but
at some yk, /cφz. And finally one has to sum over all such possible
trajectories to obtain ρ(xn; yn) as follows:

Q(xn-yn)= Σ επ Σ '•• Σ s^^P^π{yn)(dώn)ρ(ώn) (3.1)

where μ{ is the number of elementary trajectories of which the composite
n

trajectory ώt is composed, q = £ μh π ranges over the elements of Sn,
i — 1

the group of permutations of n objects, ε = — 1 for Fermi-Dirac and
c = + 1 for Bose-Einstein Statistics. επ gives the signature of a given
permutation πeSn (see [6]).

The same argument of McKean holds in this case also but here we
need to make two different changes of variables depending upon whether
differentiability with respect to the initial point or the end point of a
composite trajectory is required. Let xa be the initial point of the com-
posite trajectory ώa(t) of length μaβ, and let yk be its end point, i.e.
yk = ώa(μaβ). To establish differentiability with respect to xa we single
out the first elementary trajectory ωa(ή starting at xa and ending at
ώa(β) = ua, the first intermediate point on ώΛ(t). Now a change of variables
ωα(ί)-*coi(£) defined by

ωα(ί) = ω'Λ{t) + (\ - jj (xΛ - yk) (3.2)
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frees the Wiener measure in (3.1) from its xα dependence as in the C.S.
case above and the argument there goes through so that we have again:

dρ(xn;yn)
it is necessary that ρ(ώn) be functionally differentiable for - 1

dxa

to exist. But one has to be more careful in this case since given the

existence and boundedness of——, the infinite summations required to
dωa

obtain may still not converge. It turns out in the following
oxa

that this convergence actually occurs without any extra restrictions on
the class of admissible potentials. This is the main advantage of using
K.S. equations instead of the M.M. equations.

The K.S. equations have the following form ([6]):

(3.3)

• J P^um{dωm) dumK(ωa, ωm) ρ(ώn\ ωm) {(ώn) = (ώn)\ωa)

where ωα is the singled-out elementary trajectory discussed above,

_ Σ $ [ o c ( ) k ( β)]

K(ω,,ωm)= Π {e-φ(ω«-m><)-\}= \\ {e "° — 1}(3.4)
k=l k=l

and n μk-i β
W(ωx,oY)= Σ Σ ]Φlωa{t)-ώk(t

fc=l 1=0 0

ZcΦα

Differentiation gives

dρ(ώn) 1 l ^ \
Σ -zrr Σ \—t ••• Σ

a, ω
m) ρ(ώ"\ ωm)

Σ V " Σ ΓΓΊ (15)

j ! = l V ./l / jm=ί \ Jm J

where means . - and nί — ( 1 , . . . , k— 1, fe+ 1,..., m).
dω ^ ω ( 0 )
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Eq. (3.5) converges uniformly as required since (see [6])

Σ
Jm

) dum K(ωa, ω
m) ρ(ώn\ ωm)

is

1 Π Σ (~\\P>lL(dωk)duk\K{ωa,ω
m)\

m r cc
1 Π Σ

tj

- - , — . v/2 . i v

k=l h k = i \./k / Λ

β b\jk

•ί7 v / 2(ξ)ίΦ + (x)rfx}

and so the first series in (3.5) is bounded by the following convergent series

llellξ*"1 Σ \ίC(β,ξ)T=\\Q\\ξq~ιexp[_C(β,ξn. (3.6)
m = 0 m !

Similarly each term in the second series in (3.5) is bounded by

m / m co
/\ξ"

Σ

Now,

m\ t -Σ Π Σ

m!

ί^ω^

sup I ^

(3.7)

9 - φ (ωα ~ co) Γf e (

j - l 5 - JΦlωα(ί)-c5(ί+i/3)]dί 7 - 1 - JΦ[ω α ( ί)-ω(ί + Γjβ)Jdί
= y e o Γί ^ °4 ^ ( 0 ) Λ'
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u{dω)du

sup
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β
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1 = 0
β

δωJO)

\du
be °

δωτ(O)

then (3.7) is bounded by

(3.8)

= \\Q\\ ξq~ m , ξ)T~' D(β) gjξe?*)

furthermore

so that (3.5) converges uniformly.
oo oo

It remains to show that £ ••• £ \E^(dώn)
dρ(ώ")

is con-

vergent. Using (3.5) and (3.8) we see that

δρ(ώn]

and

dωa(0)

^(q-^Φξ'WρW+zξ^'WρWe^-^^^plCiβ^ξ^g^iξe^Diβ)

δρ(ώn)
X \E^{dώn)

n oo

Σ ( Π Σ 4ϊτλ

n oo zμ

LI L v/2iv
= 1 μ k = l H-k Ak=ί μ

This establishes the existence ofc
dρ(x";yn)
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Similar steps show the existence of second derivatives whenever

dx < -f co .
dx2
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