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Abstract. We show that at low temperature an Ising spin system with antiferromagnetic
interaction in a small enough external magnetic field has only one translationally invariant
state.

Introduction

We consider an Ising antiferromagnet with nearest neighbour
interaction in a finite box A on a two-dimensional lattice Έ2 i.e. at each
point xt of the lattice there is a spin σx. = ± 1. The conditional probability
of a spin-configuration {σ} in A for a given boundary configuration τ
is proportional e~βHΛ{~] where

HΛ(σ) = J Σ (°i°j + 1 ) " h Σ °i + J Σ (Wj + !) (O 1 )

iΦj leΛ

JΦΛ

Xj belongs to the first external layer, J is pair interaction, h is an external
magnetic field, β is the reciprocal temperature. A boundary condition
for the system in the box A is specified by giving a probability distribution
PΛ(τ) for the boundary configuration τ.

An (equilibrium) state of the infinite system is defined to be a family
of correlation functions <σ s>M, for the finite subset S of Z 2, obtained as
suitable thermodynamical limit of

= ( Π σχ\ w i t h S£Λ a n d

\ e S / Λ,h,β,PΛ

= Σ PΛ(I) (σS>S>Λ,β,h,τ

i.e. of spin-correlation functions for a sequence of finite boxes with some
boundary condition PΛ.

* Permanent address: Francesco di Liberto Istituto di Fisica Teorica dell'Universita
Mostra d'Oltremare pad. 19 - Napoli - Italy.
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The study of the limiting properties of (σs}Λ,h,β,PΛ f° r ferromagnetic
interaction has been done so far using Griffith's inequalities as an
essential tool. In the antiferromagnetic case such inequalities (or their
generalizations [1]) do not seem useful to us.

Our method will be rather different and will consist in expressing
the spin correlation functions in terms of 'outer contours correlation
functions'.

In Sec. I we will use only 'closed' boundary conditions: PΛ{τ) = Σ1

defined by putting τ = + 1 ( - 1) for all spin in even (odd) sites; Σ2 the
reversed condition.

For any given spin configuration {σ} in A we draw all the unit
segments which separate nearest neighbours with equal spin; we find
then a set of compatible1 self-avoiding lines, i.e. closed contours2

Among the contours associated to {σ} we call 'outer' those which
can be connected to the boundary of A by a broken line without crossing
other contours.

Then we define equations for outer contours correlation functions in
an external magnetic field, for antiferromagnetic interaction. The
equations are similar to the ones used by Minlos and Sinai [3] in the
ferromagnetic case with non-zero field, but they are different in some
essential aspect, in such a way that an argument of Dobruschin [6]
for the existence of the antiferromagnetic phases can be used to estimate
the magnitude of the kernel of the equations.

In Sec. 2 we prove the uniqueness of the translation invariant state
for β large enough and h fixed and small.

The proof follows the outline of [2] but in a different context.

Section 1: Outer Contours Correlation Functions Equations
for the Ising Antiferromagnet in an External Field

Let Λ be a rectangular box in a two dimensional lattice Έ2 with
closed condition Σί or Σ2. By (0.1) the energy of the configuration {σ}
to which is associated a set of closed contours {γ} is

HA(σ) = 2JΣ\Ύ\-h(N+-N-) (1.1)
y

where
\y\ = length of γ

N± = number of spins + in {σ} .
1 Two different contours are compatible if they have in common at most corners.
2 For a much more extended discussion of this point see [5].
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Fig. 1

Moreover, if {σ} in A has X = {Γl9Γ2 ... Γn) as a set of outer contours,
(1.1) can be written:

HΛ(σ) = \y\-h(N+-N~) (1.2)
ΓeX Σ

ΓeXγcΓ

where γCΓ means that the enclosed regions θ(y),θ(Γ) are such that
θ(γ)Cθ(Γ) (see Figure)

Using the equivalence relation between "lattice gas" and spin system
(cfr. [8]) we are able to find the geometrical identity:

(1.3)
ΓeX Σ Σ

ΓeXycΓwhere

\ΓΛ\ = length of the boundary ΓΛ

\ΓΛ\
+ number of spins τ = + 1 along ΓΛ

I | + = length of the subset of segments of the contour (•)
which separate pairs of positive nearest neighbours.

The last term in (1.3) is a constant which depends only on the region A.
So inserting (1.3) in (1,2) we find:

HΛ(σ) =

where

Σ \\Γ\(2J-hη(Γ))+ Σ M (2J-My))] + const. (Λ) (1.4)
ΓeXi ycΓ J

M+ 1 1
η<y)=Ίή~~~ϊ a n d " T
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Notice that η(y) depends also on Γ and on the number of contours
which contain y. We will always take into account this dependence
only implicitly, in order not to burden the notation.

We shall now write down explicit expressions for outer contour
correlation functions and then, derive the equations for such functions
by a slight (but, for our purposes, crucial) modification of the method
of Minlos and Sinai.

Let &*A(X) be the probability for a spin configuration in A for which
the outer contours are Γ1,Γ2 ... Γn.

We can write:

- ^ " ' Z(Λ) ~ Z(A)

where Z(Λ)= £exp (-0 Σ |Γ| (2 J - hη{Γ))\ ζ(θ(X)) is the partition
X \ ΓeX J

function for A and

ζ(θ(X))= Π Σ exp Γ->β Σ \γ\(2J-hη(γ))-\ (1.6)

:θ(γ)Cθ(Γi)

γe{γ} J

The correlation function for the set X is precisely by definition:

QΛ(X) = Σ ^77^ == Σ ^ΓA\ (using 1,4) (1.7)
Y Z(Λ) Ϋ Z(A)

where the sum is over the set Y of outer contours such that X u Y is a
collection of outer compatible contours.

Definition. Let $A(X) be the collection of spin configurations in A
such that X = {Γ1,Γ2 ... Γn) is a subset of the set of contours.

The set {Γ2 ... ΓJ will be denoted by Xω and J^(X ( 1 ) ) will be the
subset of elements of &Λ(X) such that X{1) is a subset of outer and that
no outer contour "intersects" or embraces3 the curve Γί.

We say that Γ is "intersecting the curve /\" when Γ crosses Γ1 or,
when ΓnΓj Φ 0 and 0000 0(7^) = φ.

Notice that our set SfA^{X{χy) differs from the corresponding one in
Ref. [3] which does not include the configurations containing contours
which intersect the curve Γx and lie inside 0(7\).

This point will make our result different from that of Minlos and
Sinai. Let now

Among the embracing contours there is Γ1 itself.
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where Y is just the same as above and ζ°(Θ(Γι)) is given by the contribution
of all the spin-configurations in 0(/\) for which no outer contour
coincide with the curve Γ1.

In addition since X = ΓX u l ( 1 ) , (1.7) can be written:

y

Comparing (1.8) and (1.9) we obtain:

ρΛ(X) = v(Γί)ρΓ/(X^) (1.10)
where

W)

Now we shall write down (following Minlos and Sinai [3]) the equations
for the outer contours correlation functions.

Let X" = set of outer contours 'intersecting' the curve J\ and
such that θ(X") C A

X' = set of outer contours embracing the curve Γx and
such that θ(Xf) C A .

From the previous definition it follows:

")- (J @Λ(x(1)κjχf) (1.12)
x"eX" x'eX'

Then, since the elements of X" are not mutually incompatible, for
the related probabilities we have:

ΰΓ

Λ>(xw)=QΛ(xw)+ Σ Σ (-tfeΛ^'υT)- Σ
k = l T:N(T)=k x'eX'

TcX"

This relation together with (1.10) gives

Σ Σ (- l
* = 1 T:N(T) = k

L Γ c X " (1.14)

We will write for an infinite box:

where now X, X\ X" are in an infinite box.

21 Commun. math Phys , Vol. 29

Σ (-:
x'eX'

(1.15)

fc = l T:N(T) = k x'eX'
TCX"
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Relation (1.15) can be written as an integral equation

ρ = oc + Aρ (1.16)

in a Banach space SDΪ whose elements are infinite sequences:

/ = {/, (Λ), / 2 ( Λ r2)... fk(ru Γ2...rk)...}

with the following norm:

ιi/iι = sup ζJξί)m

where ζ denote a constant greater then 1 and t = 2J——.

In (1.16)
α(X) = 0 if N(X) > 1

= v(Γ1) if N(X)=1 and X={Γλ}

and A acts in the following manner on the generic element /

fc = l T:N(T) = k

(1.17)
1 i i v'\ 4

Observe that in the kernel of (1.16) the term v{Γγ) is slightly different
from the corresponding one in the equations of Minlos and Sinai [3].

Moreover in their case (J < 0 and ft Φ 0) it is rather hard to construct
an upper bound for the kernel.

In Appendix I we will show that in our case (J > 0 and ft Φ 0) for our
modified kernel the use of the X transformation (introduced by
Dobruschin [6]) gives us quite easily a good estimate, which then
ensures, in a standard way, the right convergence properties for the
solutions of (1.16).

Section 2: Uniqueness of the Translationally Invariant State

Here we prove our main result.
First let us give a basic result due to Lanford and Ruelle [7].

Proposition I. If <σXl ... σXs}βJι = (σsyβth is a translation invariant
state, then one can find a suitable sequence of PΛ(τ) such that

4 If X = {Γ]} the term X' = φ and T — φis missing in the sum because it is included in α.
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where
<σS>PΛ,β,h = Σ PΛ(Z) <°S>τ,β,h

and

(σs}τ,β,h= TJΓ Σ < σ * i + α ••• σxs + a>τ,β,h ( 2 2)
\Λ\ aeΈ2

:S + aCΛ

We are now ready to formulate the theorem:

Theorem: Let <σ s>| ί Λ be an arbitrary translatίonally invariant state
on Έ2 and P*(τ) a sequence of boundary conditions such that

<°s>β,h= lim ζσ7>p*Λtβ%h
A—*• oo

then if h is fixed and β is large enough, the following relation holds:

<ϊs>p*Λ,β,h = *(PΪ, β, h) <σs>Σi,β,h + (1 - OL{PX, β, h)) <σsyΣlιβtk

+ μ(A,β,h,P*)

where μ(Λ, β,h,P*) decreases to zero as A goes to infinity and

limα(P;,/ϊ,Λ) = i
Λ-+ oo

Proof. Observe first that for any fixed τ, each spin-configuration {σ}
in A will be associated to a set of closed contours {γ} and a set of lines
(open contours): (λuλ2, ...,>U which begin and end on the boundary,
dividing the box A into disjoint regions θ1 ... θp;{p^k-\-ΐ) each with
closed boundary condition Σx or Σ2

The energy for {σ} will now be

HΛ(σ) = Σ b\ ( 2 J - hη(y)) + Σ 1̂1 ( 2 / - hη(λ)) + const. (2.3)
y λ

Notice that η(λ) depends only on λ and on the boundary condition
τ whereas η(y) depends also on the boundary condition r f ( i = l , 2)
relative to θg (g e (1 ... p)) to which y belongs, and on the number of
countours which contain y.

As in Sec. 1 we will always take into account this dependence only
implicitly.

Moreover a simple algebraic calculation based on the defining relation

<\σs}τ,β,h= Σ Σ
λ i . . . λ k y i . . . y n

(σ5) exp [- β % \λt\ (2J- hη (λ,)) - β % \7j\ (2 J-

ZJΛ)

(where Zτ_(A)= Σ Σ

exp ϊ-βΣ W {23- hη (A,-)) -β£ \7j\ (2J- hη(yj)j\
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is the partition function for the box A with boundary condition τ)
and relations (2.1) and (2.2), provides the following expression:

1 p

<°S>P*Λ,β,h= Σ P * ( 1 ) T 7 Γ Σ Σ PΛΨl .. λk) Π <σSnet + a>θιtΣitβth
τ \Λ\ aeΈ2 λi. .λk i=l

P

where [j {Snθi) = S;Σί = Σ1 or Σ2 \A\ = volume of A and

exp \-βΣ \λ,\ (2J- hη(λd) -βΣ \7j\ (2-/-

PA&U= Σ -J—J l l

Our proof needs some preliminary statements:

Lemma 1. Given a boundary condition τ on the box A with volume
\A\= L2 the probability of having a set of open contours λ1 λ2 ... λk such that
ΣlΛ l^ωZ, with β and h such that β ( 2 J - f ) ^ l n 7 and ω>12S + 2Ίhβ

ί

is less than ε(L) where ε(L) decreases to zero as L goes to infinity,
i.e.

Lemma 2. For an arbitrary simply connected region D with closed
boundary condition Σ1 or Σ2, and for β large enough the following relation
holds

\<°s>D,zuβ,H - <σs>Σί.β.k\ =? f(S, 1/ίDΪ, β, h)

where f(S,]/\D\, β, h) is translationally invariant and decreases to zero as
]/\D\ goes to infinity.

Proofs of Lemma 1 and Lemma 2 are given in Appendix II.
Using Lemma 1 the relation (2.6) can be written

^ ' i 41 La I—i

A :Σ

P

Π

aeΈ2 λι...λk

S + aCΛ :Σ\λι\<ωL rχ 8)

where cx is a constant.
Let Aλl^λk be the set of points at distance not exceeding ^

from the set of contours λx ... λk.
ωL 4 / 3

The fraction of points in Aλι λk is not larger than ^— if Σ |A£| < ωL.
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So the fraction of translations which bring some point of the set S

in Aλl _ λ k is less or equal to ^—

Furthermore if L is big enough, the remaining translations (i.e. such
that (S + a)nAλι_Λfc = <£) will bring the entire set S in the interior of
one of the regions θt (i = 1 ... p).

Let Έf be the set of translations which take S into the region θh

we shall have therefore:

1 1 p

:S + acΛ :S + aCθι

S + anAΛl...λ.tc=φ

Observe now that for L big enough we can write

Σ <\σS + ayβί,Σι,β,h= Σ (<\σS + ayθι,Σι,β,h+ < σ S + a + e)ei,IiJ,h) (2-9)
aeΈf ae(Έf)even

where (Z?)e v e n is the subset of even translations in Έf and e is a unit
translation.

Relation (2.8) can now be written

Σ n() Σ P(* - h) Σ
i = l

(2.10)

r4/3

αe(Zf) e v e n ^

Also by Lemma 2 and the relation (All, 19) of Appendix II we have
^S + α/Θ.Σ^^ "+" ^ S + α + g^,I,,/?,/ι = (σS + α)Σuβ,h + (σS + α)Σ2,β,h

α,β,h,θd

Finally using the translation invariance of <σ s>Σ l βih + (,^s)Σ2,β,h
of / (5, /?, /z, θ) together with

limε(L)= ljm f(S,β,h,θ) = 0

and Σ ^ί( l ) = 1 f° r every finite box A, we have:

Acknowledgements. I am greatly indebted to G. Gallavotti for having proposed the
problem and for heipfuί suggestions. Useful discussions with D. Capocaccia, M. Cassandro
and G. Ciccotti are also acknowledged.
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Appendix I

We give now an upper bound for

and for the kernel of (1.16). We then show how these imply in a standard
way the right convergence properties for the solutions of the equations
for outer contours correlation functions.

Let Λx be the union of 0(ΓΊ) and its first external layer. Let XA^
be defined as the set of spin-configurations in Λί such that Γί is an outer
contour.

If A G CtCA^ using (1.4), we can write:

HΛi(A)= \Γ,\ (2J-hη(Γ1))+ Σ \7\ QJ
ye/

Let also / = XAlAi.e. {σ} = XΛί {σ} where the Dobruschin transformation
%Aι [6] is defined by

a) σ^σ, if iφθ{Γγ)

b) 'σi = σji if ieθlΓJ and heβ^) where jt

is the neighbour of i from below

c) °i = -<th if ieθiΓJ and Jt

Since XΛl deletes the contour Γ1 and rises upward by one step the inner
contours we have:

HAl{Λ) = \ΓXI (2J - hηiΓJ) + HΛί(XΛίA) (AL4)

Remark now that XΛi is a one-to-one mapping between JfΛl and a
subset of the configurations contributing to ζ°(θ(Γ1)). Replacing in
(All) ζ°(0(Γ1)) by a smaller number we have for v(J\) the following
upper bound:

and since 2 y 4 l is one-to-one

( j | 1 | ( 7 ( A ) ) p ( ) | 1 | )
where (AI.6)

ί = 2 J - A .

Inequality (AI.6) gives us a good estimate for the norm of A in (1.16).
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In fact let us equip 9JI with the following norm

where ζ denotes a constant greater than 1.
Then by standard methods (cfr. [4]) one obtains that ||^4|| < 1 for

C^f 2 1 / 4 and 3έΓ' f ^ i 2 1 / 4 . (AI.8)

These conditions assure that the series which gives the iterated solutions
of (1.16) i.e.

ρ{X)=(fj Aka)(X) (AI.9)
\ /

is convergent and satisfies the inequality

| ^ const. .(ζe~βt)W (AI.10)

(which is obvious for finite volume correlation functions). Similar
properties hold for the kernel of the finite volume equation:

(ALII)

where χΛ is such that

(XA/)(X) = 0 for X<tΛ

= f(X) for XCΛ.

Finally, we now give a sketch of how inequality (AI.6) can be used to
prove the following result (cfr. [4]).

Theorem: Let A be an arbitrary region on the lattice Έ2, then, for an
arbitrary collection of outer contours X enclosed in A, the hypotheses
(AI.8) assure that

\δ(X)\ = \χΛρ(X) - ρΛ(X)\ S const. (ζe~^ (3ζe^Tx^ (AI.12)

where τ(X, ΓΛ) = min. d(Γh ΓΛ) and d(Γh ΓΛ) = distance from the boundary
Γ j ε X

ΓΛ of the outer contour Γf.

In fact acting with χΛ on (1.16) and inserting the terms ±χΛAχΛρ
one has:

XΛQ = XΛU + XΛ^XΛQ + XΛMQ ~ XΛQ) (AI.13)

then subtracting relation (ALII) from the last one, we have:

δ = ξ + χAAδ
kA (AI.14)

where δ = χΛρ - ρΛ and ξ = χΛA(ρ - χΛρ).
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It is a matter of standard manipulation to show (cfr. [4]) how inequality
(AI.8) implies that

\ξ(X)\ ̂  c(ζe~βψι (ίζe-βt)τ(X>ΓΛ) (AI.15)

where c is a constant which is the same for all components of ξ. The
final results follows if one shows that the series δ = YJA

kξ converges
k

and that the vector δ satisfies the relation (AI.12). But this is an immediate
consequence of the following Lemma (cfr. [4]).

Lemma. Let A be some set of lattice points and let the vector ξ e 3DΪ
satisfy the condition (AI.15) for each set of outer contours X.

Then the vector ξ' = Aξ for ζ and β which satisfy conditions (AI.8),
is such that

\ξ'(X)\ = \(Aξ) (X)\ S Bc(ζe~βψι (3ζe-βt)τ{x ΓΛ)

for any set X, where B = const. < 1.

This concludes the sketch.

Appendix II

Here we prove Lemma 1 and Lemma 2.
Let us begin with the proof of Lemma 1.
Observe first that since the open contours λuλ2...λk divide the

box A into disjoint regions θ1 ... θp(p^k+ 1) with closed boundary
conditions, we can write

PΛ(τ,ωL)= Σ Σ
λi...λfc {Γh...{Γ}P

λt\ { 2 3 - hη{λM • ft ~ζ(θ(Γlq))... ζ(θ(Γnq))1 Π
J 4 = 1

Σ Y Z,\Aγ . . . Ak\l ϊi . . . \1 ] ) / A T T I \

2 , ry , A, — (AII.l)
i . . .λ k {Γ)i.. {Γ)p Z l l y i )

Z(λ,...λk)
Lu 7 ( λ\
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where {Γ}q is a set of outer contours in θq(q = 1 ... p) associated with a
spin-configuration {σ} in A. ζ(θ(Γiq)) is defined as in the (1.5) and (1.6)
for the region θ(Γiq).

This relation defines Z(λγ ... λk9 {Γ}1 ... {Γ}p) and Z(λλ ...λk\ Zτ(Λ)
(previously defined in (2.5)), is the partition function for the region A
with boundary condition τ.

A clear physical picture of what is behind the following formal proof
can be obtained by observing that our goal is to give an upper bound to

— 1 ''* for every fixed set λ1 ... λk such that Σ\λt\^ωL. One way
Zτ_(A)

to do so is by taking as denominator of

in place ofZ^Λ) the term Z(λl9λ2 ._.. λk, {Γ}Λ ... {Γ}p) to which contributes
only one set of open contours λί9λ2 ...λk, lying along the boundary,
and of closed ones {Γ}1 ... {Γ}p equal to those present at the numerator.

Obviously Zfa ...λk, {Γ}, ... {Γ}p)^Zτ(Λ).
If we apply Dobruschin's transformation (AI.3) to {σ}θgΣι (i.e.

restriction to θg of the spin-configuration contributing to Z{λγ ...λk9

{Γ}1 ... {Γ}p) for each region θg (1 ̂  g ^ p) which has boundary condition
Σί9 we bring the open contours λί9 λ2 ... λk to λί9 λ2 ... \ and shift by one
step in a suitable lattice direction (for ex. upward) the closed ones {Γ}g

(and {γ}g inside {Γ}β).
This procedure will be meaningful provided the shifted positions of

{Γ}g are compatible with λl9λ2 ... Γk.
But this is not always the case, so we need a preliminary step. We

must take away from {σ} contributing to Z(λx ... λk,Γ1 ... Γ sΓ s

r

+ 1 ... Γ^)
the closed contours {Γ'} that touch the inner layer surrounding the
boundary of A and then give an upper bound f(Γ's + ι ... Γβ for their
contribution.

After that we shall write:

Z(λx ...λk9Γx ...ΓSΓS + 1 ...θSf(Γ's+1 ...O Ziλ, ...λk,{Γ}) (AII.2)

where now Z depends on the closed outer contours {Γ} = (Γί ... Γs

and other new ones not reaching the inner layer).
Then

γ... λk) ^ f(Γs+1... oz(λx... λk9

<

Z(λt ... λk9{Π)

exp I"-jB Σ \λt\ ( 2 J -
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putting η(λι) = — \ and Σ |Xf| = ε4L with 0 < ε < 1 we have

Let us now perform the preliminary step.
Let Ao be the region A subtracted from the inner layer along the

boundary ΓΛ and Lo the length of ΓΛo. Obviously L0<4L.
We call {Γ'} the set of closed outer contour intersecting ΓΛo

5. From
the defining relation (AII.l) we can write the {Γ} dependence of

z{λγ.., λk, r,... rsr;+,... o as iφw)... ξ(θ(ra)) ξ(θ(r;+1))...

Let us also define on the spin-configurations ^Q{ΓΊ contributing to
ζ(θ(Γ')) a suitable Dobruschin transformation %' (for ex. to the right)
which deletes contour Γ' and shifts by one step (to the right) any contour
inside Γ'.

Then using the relations (AI.4) we obtain

;-j8|Γ| {2J-hη{Γ))] Σ

We must remark that it may happen that some new outer contour Γ"
contributing to £ exp[ — βHθ{ΓΊ(Z^J] can intersect ΓΛo. In such

£eyίTθ(Γ')

a case we can apply again a suitable %" to the configurations {%'#}.
It is clear that in this manner we take away from the spin-configura-

tions contributing to ζ(θ(Γ')) all the unwanted contours. So we must
replace inequality (AII.6) with the much more general

ζ(θ(Γ)) S exp [-j8|Γ| (2J- hη(Γ')) - β\Γ"\ ( 2 J - hη(Γ"))]

V ίβH{T'Zfi)-\

Such procedure will be repeated for all ζ(θ(Γf)) each time with the
proper Dobruschin transformations.

So we have
f(Γ's + 1 ...O

where Γ" are contours which in the primitive configuration where
inside Γ.

This is the end of the preliminary step.
Inserting result (AII.8) into the relation (AII.4) we-have:

ZX(Λ) Qxp{-β4L(t + h)) i n + i.WΊ)
(AII.9)

Intersection, since ΓAo does not have inner vertex, cannot take place in corner points.
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Observe that we have

g ( L ) £ e - " i i ' Ί ' ( A I L 1 0 )

(Γ's+ί Γ'n,{Γ"}) r = 0

which together with the fact that the number of contours of length s
passing through a fixed point does not exceed 3 s and that β ί > l n 3
gives:

right side of (AIL 10)^ Σ Γ ° ) ( Σ (3

I \4L

l - 3 e " ^ ;

and for βt ^ In 4 gives: right side of (AIL 10) ^ e*βtL . (AIL 11)

Inserting (AIL 11) and (AII.9) in (AII.l) we have

λχ...λκ \ i )

Remember that the number of ways of choosing k end points among the
(2k\

2/c which are possible for λuλ2 ... λk is ^ 22k. So it follows:

Put /x + /2 + + lk = s then

right side of (AIL 13) ^ 2 2 f e f (3e-βt)s(S~ j) ^ 2 2 / c f (3^~^)S2S

Finally if βt ^ In 7 and ω ^ 128 + 27^/z since 2fc < 4L we will find:

pΛ(τ, coL) S ce-vL = ε(L) (AIL 14)

where φ > 0 for every τ and c is a constant. Now we prove Lemma 2.
First remember the defining relation:

]
<σs>D,Σuβ,h= Σ L ' (Λ,

 l (AIL15)

Now using, as in Sec. I, capital and small letters Γ, γ for outer and inner
contours, by simple calculations one finds:6

<^S>DtΣltβfh= Σ Σ Σ QR (X) Π <σ>5,>β(Γί),Zi,Λf/?(σΆ1

s\R (AUΛ6)

6 We omit the β, h dependence in outer contour correlation functions in order not
to burden the notation.
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where X={Γί... Γn} with 0(Γf) C D St = Sn 0(Γ£); R = S\[jSi

l= parts of S; pim^N(S\R); (σR)Σl= Π *, ( where σXι is the
JC,eΛ

spin value in xf when it is outside every contour and I\ is the boundary
condition, and

Σ Σ (-
fc = l T:N(T) = k

TcX'

where femax^N(R) and Γ = { Γ : θ ( Γ ) n ^ Φ ^ 9 ( Γ ) c D } . Observe that
in (AIL 17) as # = S then X ={</>} and ρD(</>)=l so (AIL 17) becomes:

foW=l+ Σ Σ (-l)fcί?z>W>uT).
D fc = l T:N(T) = k

TCX'

In similar way for an infinite box we can write:

<°S>Σuβ.H= Σ Σ Σ βRfflΠ^W^Wl, (AΠ.18)
Λe^(S)p = l X:iV(Z)=p Σi r{eX

θ(X)nS = S\R

where now the sets X, T are not restricted to any finite region.
From now on we will call X, Tthe sets of contours extending outside D.
It is easy to recognize by inspection of (AIL 18) that the following

relation holds:

O s + e>Σuβ,h = <σs>Σ2,β,h

where e is the unit translation.
Assume now that the right side of (AIL 16) and of (AIL 18) are absolu-

tely convergent series7, then we can write:

Kfls)^!/?* —<σs>2?i/?ftl= Σ Σ Σ
Re0>(S)p = l X:N(X)=p

θ(X)nS = S\R

'\QR (X) Π i<Js)θ(<Γi),Σι,β,h(σR)Σ,
DΣι Γ ι 6 X (AII.20)

-QR(X) 11 ^SiyβiΓihΣ^^^l
Σt ΓteX

+ Σ Σ Σ K n . ^ i w k
Re&(S) p = l XjN(X)=p Σί ΓteX

θ(X)nS = S\R

Since the factor f\ <σ S ι > 0 ( Γ . ) I ι / S Λ (σ Λ ) i ; 1 is equal in (AIL 16) and (AIL 18)
rίeχ

for the finite region D, it can be factorized in (AII.20), in any case its

7 The following proof is an indirect test for this assumption.
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upper bound is 1, so we can omit it from (AII.20). Splitting the second
term in the right-side of (AII.20) for contours X, T and X, T by (AIL 17)
one has:

^ Σ Σ Σ Σ Σ \QDΣi(XvT)-QΣι(xυT)\
Re0>(S) p = l X:N(X)~p k = 0 T:N(T) = k

θ(X)nS = S\R TcX'

+ Σ Σ Σ Σ Σ \QΣί(xvτ)\ (Aii.21)
Re&(S) p = l X:N{X)=p k = 0 Γ:iV(T) = fc

θ(X)r\S = S\R TcX'

Pmax kmax

+ Σ Σ Σ Σ Σ fa&un
Re0>(S) p = l X:N(X)~p k = OT:N(T) = k

t/ \Λ ) Γ) ϊj — o> \-ίv I C Λ U Λ

Observe that from (All8) and related hypotheses

\QΣί(Xv T) - ρDΣl(XuT)\ ^ const(Ce-^)W + J r | (3ζe-βt)τiXuT Γ'>>

where τ ( I u Γ , ΓD) = min τ(Γh ΓD) and also by (AI.10) that:
Γt e X u T

| ρ Σ i ( I u T ) | g const. ( ζ e ~ ^ ) | x | + | τ |

Notice finally that the following inequality is true:
Pmax ^ m a , N(S)

Σ Σ Σ Σ Σ ^NiS> Σ Σ (Aπ.22)
Ue^(S)p = l X:N(X)=p k = 0 T:N(T) = k k = lY:N(Y) = k

θ(X)r\S — S\R TcX'

where Y ={Γ\ θ(Γ)nSΦφ}. We are now ready to obtain the following
bound -to (AII.21)

N(S)

^/\ii.zij ^ z > 2_j const, yί,e y v ̂ s?^ )
k = ί Y:N(Y) = k

YcD (AII.23)

= 1 y:jv(y>=*

In order to perform an explicit calculation of the right-hand side
of (AII.29) let D be so big that the square box A — I1 containing S and
centered at the center of mass of S, can lie in D at a distance / from ΓD.

If this is the case, / increases to infinity together with ]/\D\. Some
more remarks:

I) VxjeS Σ (Ce-βVsΣΣ We""')' (AΠ.24)
Γ:θ(Γ)3Xj q r^2q

where q is the distance, on a straight line starting at xp of an arbitrary
point Q from Xj itself.
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II) if Γj crosses ΓD then in (AII.24) q ^ /
III) if Γj is at distance less or equal to \ from ΓD then q^\.
Now we split up the first sum in the right-hand side of (AII.23) in

two terms: one relative to Γ s.t. τ(Γ, ΓD)Ξ> { and the other to Γ s.t.
τ(Γ,ΓD)<^ (in the latter one τ(Γ,ΓD)cz0). Moreover since the number

of ways of choosing k points among N(S) is I we have:
\ k j

N(S) /ΛT/c\\

Σ : )
k = l \ K I

N(S) (\\

[ )k(Σ Σ
V -liΎ=0• Σ X (3ζe-i"Y(3ζe

Now using again hypothesis (AI.8) we obtain:

K^s>D,Σuβ,h-<^s>Σίβh\Sc12
N{S)(3ζe-βt)ιl2 + c12

NiS)N(S)(3ζe-βt)1

+ 2N{S)+ίN{S)cί(3ζe-βt)21 (AII.26)
where

/ 1 \JV(S)

q = 1 + (l -

The right-hand side of (AII.26) decreases to zero as ]/\D\ goes to infinity.
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