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Abstract. A general mathematical framework called a convex structure is introduced.
This framework generalizes the usual concept of a convex set in a real linear space. A metric
is constructed on a convex structure and it is shown that mappings which preserve the
structure are contractions. Convex structures which are isomomorphic to convex sets are
characterized and for such convex structures it is shown that the metric is induced by
a norm and that structure preserving mappings can be extended to bounded linear operators.

Convex structures are shown to give an axiomatization of the states of a physical system
and the metric is physically motivated. We demonstrate how convex structures give a
generalizing and unifying formalism for convex set and operational methods in axiomatic

quantum mechanics.

1. Introduction

Until recently the main axiomatic frameworks for quantum mechanics
have been the C*-algebra approach [6,14] and the "quantum logic"
approach [4, 7,15]. Recently a new and more general method of attack
has been discussed, which might be called the "convex set" or "operational"
approach. This method has been emphasized by Ludwig et al [13]
Gunson [5], Mielnik [9,10], Davies and Lewis [2] and others [3,11].
In this framework a basic role is played by the convex set of normalized
states S1 together with the geometric properties of the boundary of S1.
Although the particular terminology, physical interpretations, and
certain details of these investigations may differ, they all use convex
set methods.

In this paper we introduce a framework which is even more general but
which we feel forms a unification of the convex set or operational
approaches and at the same time provides a new and perhaps useful
mathematical tool for further investigations. In this framework the only
primitive axiomatic elements are the normalized states 5t of a physical
system and the only operation postulated on 5^ is that of forming
mixtures. In this way the convex structure of Sί is isolated and is, in
fact, the only structure of Sί.
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2. Convex Structures

Let S1 = { p 9 q 9 r 9 ...} be the set of normalized states for some physical
system. For generality we do not specify any particular form for these
states but take them to be undefined, primitive elements. In different
axiomatic models for quantum mechanics the states take various forms.
In the conventional model, for example, the states are positive trace-class
operators with trace one [7, 15]; in the quantum logic approach, the
states are probability measures on an orthomodular lattice [4,7,15];
in the algebraic approach, the states are positive, normal, linear functionals
on a C*-algebra [6,14]; in the operational approach, the states are
positive elements of an ordered Banach space [2, 10]. Although in these
models the normalized states form a convex subset of a vector space
we can formulate an axiomatic framework without any linear structure
whatsoever. Thus our theory not only generalizes the usual models
but leaves open the possibility of non-linear structures for quantum
mechanics [9, 10].

We now assume there is a notion of mixtures of states. Thus if
ΛΊ, λ2 ^ 0, A! + λ2 = 1, p, q e S1 we assume there is a state T2(λl9 p; /L2, q)
which may be interpreted as a mixture with λί parts p and λ2 parts q.
Depending upon ones interpretation T2(λί9p; λ2,q) may be looked
upon as a state in which the system is in state p with probability λλ

or state q with probability λ2\ or T2(λl9p;λ2.q) may describe a beam
of non-interacting particles of two types in proportion λ1 to λ2\ or some
other interpretation. In any case it is clear that T2 is a map
T2: {(λl9p',λ29q) :λl9λ2^.Q9 λί-\-λ2 = 1, p,qe S1}^S1 satisfying:

(1) T2(λl9p 9λ29q)=T2(λ29q 9 λ l 9 p ) 9

(2) T2(l9p;09q) = p.
Furthermore, we would like to form mixtures of three normalized states
so we assume the existence of a map

ί 3

T3 : 1 (λl9 p1 ;λ2 , p2 Λ 3 , p3)
 : λι ̂  °> Σ λi = ̂  Pι> P2 > Pi e

satisfying :

(3) T3(λh Piiλj, Pji λk, pk) = T3(λl9 p1 12, p2; A 3, p3)

whenever (z, /, fe) is a permutation of (1, 2, 3),
(4) if A! 4=1 then
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Condition (3) is clear, while condition (4) gives the connection between
T3 and T2 and follows from the fact that the right-hand side is a mixture
of λ1 parts pί and l — λ1 parts a state with λ2(i — λl)~l parts p2 and
A3(l — AJ"1 parts p3 so the resulting state has λl parts p l9 A2 parts p2

and A 3 parts p3.
A set S1 with two maps T2, T3 satisfying conditions (l)-(4) is called a

convex structure. Let us define the map T : [0, 1] x S1 x S1 -> ̂  by
T(A, p, g) = <A, p, q) = T2(l — A, p; /I, #). Of course, <A, p, g> represents a
mixture with 1 — λ parts p and A parts q. The reason for defining <A, p, g>
as T2(l — A, p /l, g) instead of T2(λ,p:)l — λ,q) is merely for the con-
venience of making our later formulas simpler and also to agree with the
standard notation in convex sets.

Theorem 2.1. // (S1? T2, T3) is a convex structure then T(λ,p,q)
= <λ, p, q) = T2(l — λ, p; A, g) satisfies:

(a) <A, p, g> = <1 — 1, q, p> (commutativity)
(b) <(0, p, g> = P (endpoint condition)
(c) <Λp > <μ,«,r»=<λμ,<λ(l-A ί )(l-AμΓ 1 ,p,9>,r> ( A μ Φ l )

(associativity) .
Conversely, let S1 = {p, g, r, ...} be α seί αn<i /eί T: [0, 1] x S{ x S1 ->Sl9

T(/ί, p, ^f) = </ί, p, g> satisfy (a), (b) am/ (c). // we

3

T3 : J(A1 ; P! A 2 , p2; /3, p3): λi ̂  0, ̂  λ{ = 1, p1? p2, p3 e 5̂
i

2,q) = (l-λ,p,qy and

ι/ A! Φ 1, = p i/ A! = 1, then (Sί9 T2, T3) is a convex structure.

Proof. (a)(λ9p,qy = T2(l-λ9p'9λ9q)=T2(λ,q;l-λ,p) =
(b) <0,p,^> = T2(l,p;0,^) = p.
(c) <A,p,<μ,^,r» =T2(l-λ,p;λ,<jU,^,r»

= T2(l - λ, p; A, Γ2(l -μ9q-9μ9 r))

= T3(l - A, p; (1 - μ) A, q; μλ9 r)
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= T2(λ29q;λl9p).
(2) T2(l,p,0,#) = <0,p,4> = p.
(3) T 3 (A 1 ,p 1 ;A 2 ,p 2 ;A 3 ,p 3 )= <1 - λί9pl9 <Λ,3(1 - A1)~1,p2,p3»

= 73(^3? Ps Ui, Pi ;A 2 ,p 2 )
and the other permutations are similar.

(4) λ1 Φ 1 then,

jT3(A l 9 P! A 2 , p2; A3, p3) = <1 - λl9 pl9 <A3(1 - ̂ )" \ p2, p3»

= T2(λl9 Pl (1 - U <A3(1 - ̂ )- \ P29 p3»

Thus an equivalent definition of a convex structure is a pair (5Ί, T)
where S1 is a set and T: [0, 1] xS1 x S1->S1 satisfies ' (a), (b) and (c).
Although our first definition is more physically motivated, the second
is more convenient mathematically so we will use the second in the
sequel. An example of a convex structure is a convex set S0 in a real
linear space where T: [0, 1] xS0 xS0-»S0 ^ T(λ,p,q) = (l — λ)p + λq.
However one can construct convex structures that are not of this form.
For instance, there are simple examples [1] of convex structures S1 with
finitely many elements and since a non-empty, non-singleton convex set S0

must have infinitely many elements, Sλ cannot be isomorphic to an S0.
Our next result will characterize those convex structures that are
isomorphic to a convex set.

A convex prestructure is a set S= {p, q, r, ...} together with a map
T : [0, 1] x S x S ̂ S denoted by T(λ9 p, q) = <λ, p, g>. Of course, any
set is a convex prestructure since we have placed no requirements on T.
If S1 , 52 are convex prestructures, a map A : S^ -> S2 is qffϊne \iA<λ,p,q)l

= (λ,Ap,Aq)2 for every A 6 [0,1], p, geSΊ. We say Sx and S2 are
isomorphic if there is an affine bijection from S{ to S2. If S0 is a convex
subset of a real vector space we always assume S0 is equipped with its
usual convex structure. An affine functional is an affine map / from a
convex prestructure S to the real line K; that is, /«A, p, g» = (1 — λ)f(p)
+ λf(q) for all λ e [0, 1], p9qeS. We let S* denote the set of all affine
functional on S and say that S* is total if for p Φ g e S there is an /e S*
such that /(p)Φ /(<?).

Theorem 2.2. ^4 convex prestructure S is isomorphic to a convex set if
and only if S* is total
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Proof. Suppose S0 is a convex set and F: S^> S0 is an isomorphism.
If S0 is a convex subset of the vector space F, it is well-known that
the algebraic dual F* is total over V. Restricting the elements of F* to
S0 we get a total set of affine functionals for S0. Now if /e F* then
/o F e S* so S* is total. Conversely, suppose S* is total. For p e S define
J(p):S*->R by J(p) / = /(p). Clearly S* is a vector space under pointwise
operations and J(p)eS** so that J(S)£S**. Now J(S) is a convex set
since for J(p\ J(q) e J(S) and λ e [0, 1] we have for /e 5*,

so (1 - A) J(p) + A J(g) - J«A, p, <?» e J(S). Now J:S-»S** is injective
if and only if S* is total. Indeed, if S* is total and pή=qeS then there is an
fe S* such that /(p) Φ /(g) so J(p) φ J(g) and conversely, if J is injective
and pή=qeS then J(p) Φ J(g) so there is an / e S* such that f(p) = J(p)f
Φ J(q)f>= f ( q ) It follows that J: S-> J(S) is an isomorphism.

We would now like to define a distance between normalized states
p, 4. The closeness of p to g can be measured by comparing mixtures
<A, p, pt>, <Λ, g, #!> of p and g with other normalizes states. If p and q
are very close one would expect to find a mixture containing mostly p
equal to a mixture containing mostly q; that is, </ί, p,pi> = </l, g, ̂ >
in which /L is very small. Conversely, if (λ, p, p^ = (λ, q, q^ and λ
is small one expects that p and g are close. Thus the parameters λ such that
<λ, p, P!> = </l, g, ̂ > give a measure of the closeness of p to g. We thus
define

σ(p, 4) - inf {0 ̂  1 ̂  1 : </l, p, Pi> = <1, ̂  ̂ >, p1? ̂  e Sx} ,

where 5̂  is a convex structure. Notice that since <2~ 1, p, ̂ > = <2~ \ ,̂ p>
we have 0 ̂  (T (p, g) ̂  .̂ It turns out to be more useful to make a change of
scale and define the distance between p and q to be ρ(p,q) = σ(p,q)
• [l-σCp,^)]'1 so that 0^ρ(p,g)gl. I am indebted to W. Cornette
for help with the following proof.

Theorem 2.3. On a convex structure Sl9 σ and ρ are semίmetrίcs.

Proof. It is clear that σ and ρ are non-negative and symmetric.
Since <0,p, q^ = <0, p, ̂  > for every p1 , ̂  e S^ wehaveσ(p,p) = ρ(p,p) = 0.
We now prove the triangle inequality. Clearly, σ(p, q) <Ξ σ(p, 5) + σ(s, q)
if p = 5 or q = s so we can exclude these cases. Suppose

A! 6 {0 < A < 1 : <λ, p, P!> = <A, s, st>, p l5 Si e S^

and λ2 e {0 < /I < 1 : </l, s, s2> = <λ, g, ̂ >, s2, ̂ t e SJ. Letting A3 = ̂  Φ A2

and
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Ao = A 3(l ~ λίλ2)~1 we have:

<A0, p> P2> = <A3(i - A! A2)~ S p, </ι2(i - A!) A3~ \ pl9 s2yy

- <A3(1 - A! A2)~ S q, q2y - <A0, q, q2y

so A0 e {0 < λ < 1 : </l, p, p2> = <A, g, g2>, £2* ^2 e ^ι) Now since
A ( 1 - A 0 ) " 1 - A 1 ( 1 - / 1 - 1 4 - A 2 ( 1 - A ) - 1 we have

ρ(p,q) = σ(p, g) [1 - σ(p, 4)] ~ * ̂  σ(p, 5) [1 - σ(p, 5)] ~ 1

+ σ(s, <?) [(1 - σ(s9 q}~] ~ 1 = ρ(p, 5) + ρ(s, q) .

The triangle inequality for σ follows in a similar way using the fact that
ΛQ —^ AI ~T~ /1 2

We call ρ the intrinsic semimetric for S1 . As an example, let p < q e R
and let us compute ρ(p, 4) relative to some bounded convex subset 50

of JR. Since the only convex subsets of R are intervals we may assume
that S0 is a closed interval [p0, g0], p0<q0, p,q£ [p0> #o] ^ is easy to
see that relative to S0, σ(p, q) = (p — q) [(p — q) + (po~ ^o)]"1 an(^
Q(P >q) = (p — q) (Po ~ ίo)~ 1 Thus ρ is a metric on [p0, ̂ 0] and is equiva-
lent to the Euclidean metric. Notice however, that if ρ is computed
relative to an unbounded convex set, then all distances are zero and ρ
is the trivial semimetric ρ = 0.

Lemma 2.4. A necessary and sufficient condition for σ, ρ to be metrics
is that whenever there are sequences A f e[0, 1], pi,qieS1 which satisfy
lim A; = 0, <A;, p, p f> = <A ί 5 q, qty then p = q.
i->oo

Proof. Clearly ρ is a metric if and only if σ is. Now if σ is a metric,
since σ(p, q)^λί for all / we have p = q. Conversely, if σ(p,q) = Q then
F= {O^A^ 1: <A,p,p 1> = ̂ q.q^.p^q^ e S^} either contains 0 or has 0
as a limit point. In the former case p = <0, p, Pι> = <0, q,q^ = q. In the
latter case there exist λi e V with lim A f = 0 so again p = q.

Corollary 2.5. Let S0 be a convex set in a real vector space X. If
there is a topology on X that makes X a Hausdorff topological vector
space in which S0 is bounded, then ρ is a metric.
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Proof. Suppose there are sequences /L f -G[0, 1], l i m A — O j ^ j ^ e S o
such that (1 — λt) p + λrfi = (1 — λt) q + λ^. Then p — q = λi(p — q)
+ λifai — pi). Let A be any neighborhood of 0. Then there is a neighborhood
WoΐO such that W+W+WQA. Now for / sufficiently large λt(p -q)eW.
Since S0 is bounded there is a μ > 0 such that λS0 Q W for \λ\ ̂  μ. Thus
for i sufficiently large λ^ — l/p^ e W+W. Hence for sufficiently large z,
p-qeW+W+WQA. Since X is Hausdorff, p-q = Q and p = g.

The converse of the above corollary holds for finite dimensional
spaces X. Indeed if S0 is unbounded in X then one can show there is
an infinite ray in 50 and hence any two points on this ray will have
distance zero. The converse of the corollary need not hold in infinite
dimensional spaces.

If Sl9 S2 are convex structures we denote the affine maps A: S1 -^S2

by Af(Sl9 S2). We use the notation Af(SJ for Af(S^ SJ and the group
of bijections in A f ( S 1 ) is denoted Autf^Ί).

Lemma 2.6. (1) // AeAf(Sl9S2) then A is a contraction (i.e.
ρ2(Ap,Aq)^ρ1(p,q)). (2) // AeAf(Si9S2) is bijective then A is an
isometry.

Proof. (1)

Since x(l — x)"1 is monotone increasing function we have ρ2(Ap,Aq)
^Qi(p9 q). (2) follows from (1).

It follows, of course, that any AeAf(S^S2) is continuous relative
to the intrinsic metrics. As an application, if f e S f and O^/^ 1 then

Let S1 be a convex structure. For applications it is important to
consider the set S = Sf = {(α,p):pe5'1,α^0}. We define (a,p) = (β,q)
if α = β φ o and p = q, and (0, p) = (0, q) = 0 for all p, q e S^ . For convenience
we write αp instead of (α, p). If S1 corresponds to the normalized states
of a physical system, then S corresponds to the states. For αp e 5 and
β ̂  0 we define /J(αp) = (/?α) p, and clearly β(ocp) = α(/?p). For αp, ̂ 8^ e 5,
λ 6 [0,1], we define </l, αp, β<?> = 0 if (1 -λ)α + λ)8 = 0 and otherwise

Lemma 2.7. (S, < , , •» is α convex structure.
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Proof, (a) Let y = (1 - λ) α + λβ. Then for γ Φ 0

If y = 0 the equality clearly holds, (b) <0, αp, βg> = α<0, p, q) = ocp.

(c)Lettmgξ = (l-μ)β + μδ,τ = (ί
+ j8λ(l - μ) (1 - λμ)~ 1 we have

- μ) (1 - λμΓ \ αp,

Thus all our results for convex structures can be applied to S. In
particular S has an intrinsic metric

Let 53 be a convex structure. We say S2 is a convex substructure of
S3 if S2 Q S3 and </l, p, #> e 52 for all A e [0, 1], p,qεS2.Iϊ we identify
elements of Sj with elements of 5^ of the form 1 - p, p^S1 then Sx is a
convex substructure of 5^ . We now show how to extend elements of Sf
to elements of S^*.

Lemma 2.8. (a) If g ε Sf * then 0(αp) = ag(p) + (1 - α) 0(0) /or all
α ̂  0, p e Sί. (b) 7//6 Sf and c e # ί/iβre exists a unique extension g ε S±*
of f satisfying 0(0) = c; in fact, 0(ap) = a/(p) + (1 - a) c.

Proof, (a) For any /I e [0, 1], β ̂  0, pe S{ we have </l, Op, )8p>
- Aj8< 1, p, p> - Aj8p and hence g(λβp) = (ί-λ) 0(0) + λg(βp). If 0 ̂  α g 1
let /?=! and λ = α to obtain the result. If α > l let j8 = α and λ = oί~1

to obtain 0(p) = (l — α~1)0(0) + α"1 0(αp) which again gives the result.
(b) Defining 0(αp) = α/(p) + (l — α) c we need only show 0eSj*~* since
clearly g is an extension of /, 0(0) = c and uniqueness follows from (a).
Now letting y = (1 - λ) α + λβ,

- α) c] +λ^βf(g} + (l-β] c]

= (l-λ)0(αp) + A0(/?0).
This completes the proof.
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If /! e Sf is defined by f^(p) = 1 for all peS^ its extension τ e
given by τ(αp) = α will be quite important in the applications.

3. The Induced Seminorm

We now investigate the intrinsic semimetric in the special case of
convex sets. In this section S0 will denote a convex set in a real vector
space V and ρ the intrinsic semimetric on S0. We first recall some
definitions. S0 is absorbing if for any xeV there is a <5(x)>0 such that
λx 6 S0 for any /I with \λ\ ̂  <5(x). S0 is balanced if λx E S0 for any x e S0,
|λ| g 1. S0 is rαdiα/ if xeS 0 implies λxeS 0 for any O ^ A ^ l . S0 is
normalized if x e S0 implies αx φ S0 for any α φ 1. If K = {αS0 : α ̂  0}
then K is wedge in 7, i.e., X + X £ K and αX £ K for any α ̂  0. We
let X - K - K g F be the subspace of F generated by K.

Let D = {cp — dq : 0 ̂  c, d ̂  1 p, q e S0}. Then D is a convex, balanced,
absorbing subset of X containing 0. Notice D = S0 — S0 if S0 is radial.
For x e X let |x| = inf {λ > 0: x e λD}. Then | | is the Minkowski functional
[12] for D in X. It is well-known that | | is a seminorm and we call it the
seminorm induced by the intrinsic semimetric ρ. The reason for this
terminology will become apparent from Theorem 3.2. We first give
another way of computing | | which is frequently more convenient.

Lemma 3.1. |x| = inf {max (c, d): x = cp — dq\ c, d^O p, qGS0}.

Proof. By definition,

|x| - inf [λ > 0: x - λcp - λdq 0 ̂  c, d g 1 p, q e S0} .

Now if x = λcp — λdq, Orgc, d^l, then x = (λc)p — (λd)^[ where
max(/lί:, A d ) ^ A so inf {max (c, d): x = cp — dq; c, d^O; p, ̂ eS0} rg |x|.
Conversely, if x = cp — dg, c, d > 0, p, g e SO then

x = max (c, d) [c max (c, d) ~ 1] p — max (c, d) [d max (c, d) ~ x] q

so the opposite inequality holds.

Theorem 3.2. If S0 is normalized or radial then \p — q\ = Q(p9q) far
all p9 q E S0, 1 I is a norm if and only if ρ is a metric.

Proof. Let us first assume S0 is normalized and p,qεS0. If
p-q = cp1-dqί, c,d^0, p^qleSQ then p + d^ =q + cpί so

Now since q2 = (1 + c)~~ 1 <? + c(l + c)~ 1 Pi e -S0 and (1 + c) (1 + d)"1 q2

 e^o
we must have (1 + c) (1 + d)~ x = 1 so c = d. Thus all the representations of

18 Commun. math Phys , Vol. 29
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p — q are of the form p — q = c(p1 — qj for c ̂  0, p1? #ι e S0.

= inf {φ + 1)- S c ̂  0: p - 4 = c(^ - pj, g l5 pj e SQ}

Hence ρ(p, q) = σ(p, q) [1 — σ(p, g)]"1 = |p — g|. Now let us assume that
SQ is radial. Then suppose p — q = cpί — dq1, p, q, Pι,#ιeS0 where
c>d. Then p — q = cp1—c(d/c)ql where (d/c)q1ES0. Thus for any
representation of the form p — q = cp1 — dq1 we have another represen-
tation p — q = b(p2 — q2) where ft = max (c, d), p2 , g2 e S0 . We then obtain
|p — q\ = inf {c ̂  0: p — g = c(p1 — ^), p1? ̂  e SQ} and just as in the nor-
malized case we obtain ρ(p, #) = |p — #|. Now it is clear that if | | is a norm
then Q is a metric. Conversely, suppose ρ is a metric, x, y e X and
|x — j| = 0. First assume that S0 is radial. Since |x — y\ = 0 there exist
p, g e 50, 0 ̂  c, d ̂  1 such that x — y = cp — dq = pl — ql where p1? q1eS0.
Then ρ(pι,#ι) = |pι — #ι l=0 so p1=q1 and hence x = j;. Next assume
that 50 is normalized. We first show that in this case |p| = 1 for all p e S0.
Indeed, ifp = cpx - dg1? p1? ̂  e S0, c, J ̂  0, then (1 + J)" 1 p + d(l + d}~1 q1

= c(l + d)"1 P! and hence c = 1 + d. Since d ̂  0, c ̂  1 and hence

|p| = inf{max(c, d):p = cp1 — dq1,c,d^:0,p1,qί eS0} ^ 1 .

But p = p — Og so |p| = 1. Now suppose x — y = cp — dq, c, d ̂  0, p, q e 50.
Then

0 = |x - y| = cp - dq\ ̂  \\cp\ - \dq\\ = \c\p\ - d\q\\= c - d\ ,

so c = d. Hence 0 = |x — j;| = c\p — q\ = cρ(p, q), if c Φ 0, then ρ(p, q) = 0,

giving p = q and x = y, if c = 0 then again x = JΛ
In most examples 50 is taken to be a positive convex set; that is if

p e 50 then αp ̂  S0 for all α < 0. Notice if S0 is normalized, it is positive.
Positivity has the advantage of making K a cone. Indeed if αp = — βpl9

u,β^Q, p, P! e 50 then if α > 0 we have p = — (/?/α) P! so pj e S0 and
— (jS/α) P! e 50 which is a contradiction. Hence α = 0 and Kn ( — K) = {0}.
The relation between positivity and normalized is given in the following:

Corollary 3.3. 50 is normalized if and only if it is positive and \p\ = 1
for all pe SQ.

Proof. Necessity has been proved in the previous theorem. Conversely
suppose 50 is positive and |p| = 1 for all p e 50. Then if p e S0 and αp e SO
we have 1 = |αp| = |α| so α = ± 1. Now α Φ — 1 by positivity.
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We now consider linear extensions of affine maps from S0 to X.
If S0 is radial and T : S0 -» 50 we say that T is homogeneous if T(λp) = λTp
for all p e S0 and 0 < λ < 1.

Theorem 3.4. Lei S0 foe a normalized or a positive and radial convex set
in a real vector space V and let \-\ be the induced seminorm on the subspace
X = K — K Q V. If S0 is normalized (positive radial) and T : S0 -> S0 is an
affine (and homogeneous) map then T has a unique linear extension T
to X and \\f\\<,l (i.e., \Tx\^ x for all xeX). If furthermore T is a
bίjectίon then T is an isometry on X (i.e., \Tx\ = \x\ for all xe X).

Proof. Any xeX admits a representation x = cp — dq, c,d^ΰ,
p,qeS0. Define Tx = cTp — dTq. To show T is well-defined suppose
also that x = cίpί—d1qί, c1,d1^0, pl,q1ES0. First suppose S0 is
normalized and T is affine. Then since cp — dq = c1p1 — dίq1 we have
(notice c1+d,c + d1>0) c(c + d^~l p + dγ (c + JJ"1 q1 = (q + d) (c + d^'1

' (cι(cι + d)~l pk + d(cv + d)~l q) so cί + d = c + d1 and hence

It follows that cTp = dTq = c1 Tp1 — d1 Tq1 . Next suppose S0 is positive,
radial and T is affine and homogeneous. By positivity we have c1 + d,
c + d1>0. Now either cί+d^c + d1 or c1 + d ̂  c + d. For concreteness
assume the former and apply the facts that 50 is radial and T is affine,
homogeneous to obtain

c + dJ-1 Tq1

Again it follows that cTp-dTq = c1 Tp1 - dT^.Thus f is well-defined
and it is easy to show that T is a linear operator on X. To show T is a
contraction we have for x e X

\fx\ = inf{max(c, d): fx = cp — dq, c, d^O, p, ge 50}

rginf{max(c, d ) : x = cp — dq, c, d^O, p, qe S0} = \x\ .

Corollary 3.5. Let S0,X,\ be as in the previous theorem. If T
is a linear operator on X that leaves 50 invariant then T is a contraction
(i.e., \Tx\ ^ \x\ for all x e X). If furthermore T restricted to S0 is a bisection
then T is an isometry (i.e., \Tx\ = x\ for all x E X.)

Theorem 3.6. Let S0 be a normalized or radial convex set in a real
vector space V and let X be the generated subspace. Let ρ be the intrinsic
semi-metric on S0 and \ - \ the induced seminorm on X. If (S0, ρ) is complete
then so is (X, \ - 1).
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Proof. First note that for peS0, since p=lp we have |p| ̂  1.
Assuming (S0, ρ) is complete, let xn be a Cauchy sequence in X. We may
assume that |xπ + 1 — xn\ < 2~n for w = l , 2, .... Now we can write
*«+ 1 - xn =

 cnPn ~ dnqn where 0 ̂  cπ, dn < 2~", /?„, ̂  e S0. We can assume
c ? > 0 . L e t

Now

and

«.= !«. *.= Σ 4
ί=l ι = l

Σ ^ l ciPi> ϊ = l,2,..

are Cauchy sequences in 50. Indeed, it is clear that {αn} is a Cauchy
sequence and we have

Σ anlkCiPi, Σ flπ ^i

i=n+l

n + k
^ ( — 1 —1 \ V i —1 V<^_ 1/7 -•- a \ 7 C —\~ a 7 c •
— V n n + U Z-< i n + k L^ i

i=l i=n+l

= 1 - ana~^k(an+k - an) = 2(1 - ana~ϊk),

where the last term approaches zero as n, fc-> °°. Thus there are elements
n n

p,qeS0 such that Σ anlciPi~*P and Σ b^diq^q. Suppose an^a

and bn-*b;we claim that xn-+ x1 + ap — bq. Indeed,

|xn+1 -xί-ap + bq\ = \xn+ί -xn + xn- xn_^

<\a\
n

Σ a~lciPi-

. μ = ι

\b\

\b\ _
i = l

V^ — i

i = l

1 = 1

Σ _ i
n iii

ΐ = l

>Q as n-> °°.
We next consider the geometry of K relative to |.
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Lemma 3.7. Let SQ be a normalized or radial convex set in V, X the
generated subspace and | | the induced seminorm on X. (1) Ifx.yeX and
x — yeK, then \x\ Ξ> \y\. (2) Let y > 1. For every xeX there exists x1? x2eK
such that x = x1 — x2 and \xt\^y |x|, i = 1, 2.

Proof. (1) Since x — y e K there is a c0^0 and p 0

e^o sucrι tnat

x — y^Co/V We may assume c0>0. If y = cp — dq, c, dΞ^O, p,qeS0

then x = y + c0p0 = (c0 + c) [c0(c + c0)~ 1 p0 + c(c + c0)~ * p] - dq and
hence |x| ̂  |j;|. (2) For xeJf, by definition of |x| there exist c,d^γ\x\,
p, q E S0 such that x = cp — dq. Letting x0 = cp, x2 — dq we have
x l 5x 2 e K, x = x1 — x2 and |xj = \cp\ ^c^y\x\ and |x2 |^y|x|.

If K is a cone (e. g. if S0 is positive) it follows from Lemma 3.7 that K
is a normal strict fc-cone in X [12].

Another norm on Jf that appears in the literature (we consider this
norm in the next section) is the natural seminorm

|x|i =mΐ{c + d'.x = cp-dq;c,d^Q,p, qeS0} .

It is clear that |x| rg |x|: ^2|x|. The natural seminorm reduces to the
natural semimetric ρ1(p,q) which is twice the intrinsic semimetric.
Indeed from the proof of Theorem 3.2 we have for p,qeS0

Qι(P> <?) = IP - ίli = inf [c + d\p-q = cp^- dqί9 c, d ̂  0, p l9 qt e S0}

= inf {2c :p-q = c(pί - q±\ c ̂  0, pί9 q1 6 S0}

Let us now compare our theory with the usual Hubert space theory.
In this case the normalized states 2 are the convex set of density oper-
ators; that is, the set of positive trace class operators with trace one. ̂  is a
base for the cone K of positive trace class operators which forms the
set of states and K generates the real vector space X = K — K of gener-
alized states consisting of the self-adjoint trace class operators. In their
latest study of scattering theory, Jauch, Misra and Gibson [8] use the
trace norm | h on X that is, for x e X, |xh = Σ \λt\ where λt are the repeated
eigenvalues of x. Now | ^ reduces to the trace metric QI on 2. We now
compare the intrinsic metric ρ and the induced norm | | to ρ1 and l - ^
respectively.

Lemma 3.8. Let xeX and let {/ΰ,{ — μj be the repeated positive
eigenvalues and negative eigenvalues respectively of x. Then x = x1 — x2,
where xlyx2E K,trxί=Σλί,trx2 = Σμi and if x — y1 — y2,y\,y2 eK
then try± ^ trxl9 try2 ^ trx2.

Proof. Let/ + (/l) - λ for λ ̂  0 and/+(Λ) - Ofor λ ̂  0. Let/~μ) = -λ
for λ ̂  0 and f~(λ) = 0 for λ ̂  0. Then by the spectral theorem

x = \λPx(dλ)= J λPx(dλ}+ I
μ>θ} μ<θ}_

= Xi — "2
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It is clear that the spectra σ(x1) = { λ i } 9 σ ( x 2 ) = {μj. Now suppose
x = ̂ i = ̂ 2 5 ̂ i j ^2 e ̂  If Φ is an eigenvector of x corresponding to a
positive eigenvalue then

If φ is an eigenvector of x corresponding to a negative eigenvalue then
<>>! φ,φy^Q = <Xi φ, φy. Computing the traces using the eigenvectors of x
we have tr yί ^ trx1 and similarly try2 ^ trx2.

Corollary 3.9. IfxeX then

|x|i =mϊ{c + d: x = cpl —dql9 c,d^0,pΐ,q1 e &}.

Proof. Applying Lemma 3.8,

x = x^ — χ2 = (trxx) [(trXi)"1 XjJ — (trx2) [(trx2)~1 x2]
so

x|x = trx! + trx2 = inf{c + d: x = cpl — dq1, c, d^Q, pί9 q1e ̂ } .

This completes the proof.
It follows from Lemma 3.8 that |x| = maxdx^, \x2\ι) = max(Σ/ίl , Σμt ).

Applying Corollary 3.9 we see that | |x is the natural norm considered in
the previous section. It follows from the work of that section that
|x| = Mi =2|x| so | | and \ \ί are equivalent and that Qι(p,q} = ^Q(p,q)
for all p,qe@. In particular if {AJ and {— μj are the repeated positive
and negative eigenvalues of p — q we have Σλt + Σμί = 2max(Σ/l ί,Σμ ί).
Thus Σλi = Σμi which can also be easily derived from other means.

Jauch, Misra and Gibson [8] have shown that if p, q e ® are pure
states corresponding to unit vectors φ9 ψ then ρί(p9q) = 2(ί — |<φ,ιp)|2)1/2

It follows that ρ(p, q)2 = 1 - \(φ9 φ>|2.

4. Operational Quantum Mechanics

Returning to our general convex structure of states S, suppose there
are enough observables to distinguish between states or equivalently
that 5* is total. It then follows from Theorem 2.2 that S^ is isomorphic
to a convex set in a real linear space V. Then S is a cone with base S1

and X = S — S is a subspace of V generated by S. Let us make the reason-
able assumption that the intrinsic semimetric ρ is a metric and form the
completion S^ of S^ Then S^ is a base for a cone S which generates the
linear space X = S — S. If | | is the intrinsic norm on X then S^ is normalized
and hence by Theorem 3.6 (X9 |) is a Banach space with closed generating
cone S. Defining τ as above we see that τ(x) = |x| for every x e S and the
triple (X9 S9 τ) becomes a complete base normed space (or state space),
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the basic framework for the operational quantum mechanics of Davies
and Lewis. The norm | | is equivalent to the natural norm | l used by
Davies and Lewis and applying Theorem 3.4 one can give definitions of
observables, instruments, joint distributions, etc. on S which reduce
to theirs. We thus see that in the case of a separating set of observables
our framework reduces to that of Davies and Lewis and hence gives a
simple, axiomatic motivation for their theory.

Mielnik gives convincing arguments for describing quantal situations
in terms of a basic mathematical structure called a quantum system
(e, D, T, B). In this structure, D is a linear subspace of the algebraic
dual X* of a real linear space X. Elements of D are called detectors.
We give X the topology induced by D and assuming D separates points
of X this makes X into a Hausdorff locally convex space. B is a generating
closed cone for X whose elements are called beams. Denoting the set of
continuous linear operators on X by &(X\ T is a positive algebra in
&(X) such that T(B) £ B. That is, Γis closed under composition, addition,
and multiplication by nonnegative scalars. T is called the algebra of
transmitters. Finally e e D is a distinguished detector called the standard
quantum detector or quantum scale and satisfies (1) ex^Q for all xeB,
(2) if x e B and ex = 0 then x = 0. The set S = {x e B: ex = 1} is the figure
of states or the statistical figure. Although the Mielnik formalism is
similar to that of Davies and Lewis, the former stresses convex set
methods while the latter stresses the operational methods of probability
theory.

It is clear that a Mielnik quantum system is a special case of our
convex structure. Conversely, if (S1?< , , •» is a convex structure then
S1 gives the statistical figure, S = {aS1: α ̂  0} is the set of beams, a
subspace DQS* gives the set of detectors, Af(S) the set of transmitters,
and τ the quantum scale. If it is assumed that S* (or as Mielnik assumes, D)
is total over S then applying Theorems 2.2 and 3.4 our structure reduces
to a Mielnik quantum system. However, if 5* is not total over S then we
get a non-linear generalization of Mielnik's theory.

References

1. Cornette,W., Ph.D.: Dissertation, University of Denver (in preparation).
2. Davies, E. B., Lewis, J. T.: An operational approach to quantum probability. Commun.

math. Phys. 17, 239—260 (1970).
3. Edwards, C.M.: Classes of operations in quantum theory. Commun. math. Phys. 20,

26—56 (1971).
4. Gudder,S.: Axiomatic quantum mechanics and generalized probability theory in

A. Bharucha-Reid (editor), Probabilistic Methods in Applied Mathematics, Vol. II.
New York: Academic Press 1970.



264 S. Gudder: Convex Structures

5. Gunson.J.: Structure of quantum mechanics. Commun. math. Phys. 6, 262—285
(1967).

6. Haag,R., Kastler,D.: An algebraic approach to quantum field theory. J. Math. Phys.
5, 848—861 (1964).

7. Jauch, J.: Foundations of quantum mechanics. Reading, Mass.: Addison-Wesley 1968.
8. Jauch,J., Misra,B., Gibson,A.: On the asymptotic condition of scattering theory.

Helv. Phys. Acta 41, 513—527 (1968).
9. Mielnik,B.: Geometry of quantum states. Commun. math. Phys. 9, 55—80 (1968).

10. Mielnik, B.: Theory of filters. Commun. math. Phys. 15, 1—46 (1969).
11. Neumann, H.: Classical systems and observables in quantum mechanics. Commun.

math. Phys. 23, 100—116 (1971).
12. Peressini, A.: Ordered Topological Vector Spaces. New York: Harper and Row 1967.
13. Stolz,P.: Attempt of an axiomatic foundation of quantum mechanics and more

general theories, VI. Commun. math. Phys. 23, 117—126 (1971).
14. Segal, I.: Mathematical problems of relativistic physics. American Math. Soc. Lectures

in Applied Mathematics. Providence, R.I. (1963).
15. Varadarajan, V.: Geometry of Quantum Theory, Vol. I. Princeton, N. J.: Van Nostrand

1968.

S. Gudder
Department of Mathematics
University of Denver
Denver Colorado 80210, USA

Erratum

Non-Existence of Axially Symmetric Massive
Scalar Fields

A. R. Roy and J. R. Rao
Commun. math. Phys. 27, 162—166 (1972)

Page 165: 4th line onwards from the top reads as follows:

Which in view of (3.4) implies

glίg44(Fί4)
2-g22g*3(F23)

2 = Q. (3.5)

Since 011, g22, g33 are all negative and g44 is positive, (3.5) will hold iff

μ = 0, F14 = 0, F 2 3 =0. (3.6)

Hence, there cannot exist any solution for the coupled electromagnetic and massive scalar
fields for the metric (2.1).

The rest of the calculations are unnecessary and may, therefore, be ignored.




