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Abstract. The method of using the dimension of space-time as a complex parameter
introduced recently to regularize Feynman amplitudes is extended to an arbitrary Feynman
graph. The method has promise of being particularly well-suited to gauge theories. It is
shown how the renormalized amplitude, together with the Lagrangian counter-terms, may
be extracted directly, following the method of analytic renormalization.

I. Introduction

Of late, a number of authors suggested, independently, an approach
to the renormalization of the perturbation expansion in Lagrangian
quantum field theory which uses the dimension of space-time as a
complex parameter [1-3]. The most important feature of the method
is that the regularization procedure in general preserves the formal
structure necessary for the theory to satisfy Ward-Takahashi identities
appropriate to the gauge symmetries present. With exceptions, the
argument relies on the observation that the Ward-Takahashi identities
are formally independent of the space-time dimension1. The method
of extracting renormalized results is very close in spirit to the method
of analytic renormalization of Speer [4, 5], which, per se, does not
preserve gauge symmetries [6].

Now the attractive feature of analytic renormalization is that the
renormalized amplitude is defined non-recursively, but it is equivalent
to the additive, recursive definition of Bogolubov, Parasiuk, and Hepp
[7] (which is the most general treatment in Lagrangian quantum field
theory). Both approaches have been shown to yield the Lagrangian
counter-terms directly.

In Refs. [1-3], the method of regularization was only demonstrated
by example in lowest orders. It is our purpose here to give a general

1 The exceptions are, for example, when the theory contains an axial coupling; it is
then implicitly necessary that there be an odd number of space dimensions.
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construction valid for any Feynman amplitude, such that the renormalized
value may be extracted directly, as in analytic renormalization. This
involves formally introducing different space-time dimensions for a
certain set of subgraphs of the original Feynman graph, and then con-
tinuing the result in these dimensions. We feel this procedure is a com-
plementary regularization technique to that in Refs. [4, 5].

Our approach is to be compared with the philosophy of making
subtractions recursively, as advocated in Ref. [3], where it becomes
necessary to prove that the result is finite. The non-recursive definition
to be given is obviously finite. Incidentally, the approach we adopt here
is closely related to renormalizing an amplitude in Feynman parameter
space [8]. In fact, the construction of the amplitude is made in such a
representation, since there the dimensionality of the problem appears
explicitly and is not dependent on graph-topological structure.

Section II is devoted to the construction of the regularized amplitude,
and we state two theorems on the analytic structure of the amplitude as a
function of these many "complex dimensions".

Section III gives the recipe for extracting the renormalized result we
state that this renormalization corresponds to an additive renormaliza-
tion in the sense of Bogolubov-Parasiuk-Happ [7]. The construction
of the appropriate counter-terms is relegated to Appendix B, while
Appendix A contains a resume of the necessary terminology. Throughout
we shall be content with the mere statement of the theorems; it transpires
that the renormalization problem is virtually identical with that of
analytic renormalization in the sense of Speer. Proofs are fairly trivial
modifications to the combinatoric machinery and methods developed
extensively in Refs. [4, 5, 7].

A complete formal proof that the renormalized theory satisfies
Ward-Takahashi identities is beyond the scope of any approach to
renormalization based on individual terms in the perturbation expansion.

II. Construction of the Regularized Amplitude

Let G(F! ... Vm; j£?) be a connected Feynman graph. The amplitude
associated with G is formally

In p-space, this has the form (up to irrelevant constants)

(
m \ JV(G) L

Σ Pi ί Π <***( Π Z/(<Z<) (if - "t + iO) " ' (2 2)
i = l / i = l 1=1
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where ql is a linear combination of k and external momenta p

N(G) m

*/= Σ ankι+ Σ bnPi P.3)
ί=l i = l

Here L = # (3? (G)), and ΛΓ(G) is the number of independent circuits
("loops") of G.

In general (ΠZj) is an ordered polynomial (for example, with Dirac
y matrices).

The Feynman parametric form of (2.2) is given by the following
manipulations. We use the representation

i(q2-m2 + iϋ) = J daexpίa(q2 -m2 + /0). (2.4 a)

(2.4 b)

allowing the "loop" integral (Πrf/c) to be done in gaussian form by
repeated use of the formula

The details are standard and one arrives at the result [9]

where C = det 0f , D = det \j ] and we write

(2.5)

(i,j=l,...,N)9

1=1

L m

Φi= Σ Σ *ιaiίbijPj 0 '=1, . . . ,ΛO,
1=1 j = l

L m L

^ = Σ Σ *ιbijbikpj - Pk - Σ α*(m? - ί0)
Z = l j , k = l ί = l

The spin factor R is more complicated and given by [10]

N(G} d 8~

ί,j=l

with

/ = Σ fc/Λ - Σ fla-0i
7 = 1 i = l
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for /=!, 2, ...,L. Here p and s are four-vectors with scalar product
appropriate to Minkowski space M4.

It may be shown that the integral (2.5) is independent of the choice
of momenta k [9]. It depends only upon the topology of the graph G.

The original divergences of (2.2) are reflected in divergences of the
representation (2.5) at the lower limit of the α integrations, as C(α)
vanishes with certain subsets of α. We write ^J for the amplitude (2.5)
with the replacement

00 00

J d α ^ f d α , (i=l,...,L; r>0).
0 r

We are going to construct the analogue of (2.5) when a certain set of
subgraphs of G carry additional independent components of momenta.
How this works in the one- and two-loop case is demonstrated in Refs.
[1-3]. These components are initially taken space-like, and the result
continued in the number of dimensions which appear explicitly in the
Feynman parametric form.

The set of graphs is the following:

Definition. Let Jf (G) be the set of dominant irreducible subgraphs
G(U) of G as U runs over all generalized vertices of G (cf. definitions
A.2 and A.4). In general G itself is contained in Jf (G). We call Jf (G)
a divergence family, (d-family) for G. (The name simply reflects that every
vertex part in additive renormalization [7] is associated to an element of

Note that each H e Jf (G) contains at least one circuit (i.e. N(H) ^ 1).
To each He JΓ(G) associate a non-negative integer ωH. The scalar

product of two vectors x, y in RH = lRωfί will be denoted by — (x, y)H. We
shall construct the amplitude in Mω = M4 φ 1RH, i.e. the Minkowski

Heyίf

space with 3 + Σ ωH space-like dimensions. External four- vectors (pμ)
Heyir

will be embedded in Mω in the canonical way as (pμ, 0).
By choosing a set of circuits Cf . . . C$(H) for each H e Jf(G), we may

choose ωH dimensional momenta kH in the subspace 1RH C Mω associated
with each such graph, so that the "line" momenta ql occurring in (2.1)
become vectors in Mω; thus

/N(G) m \ N(H)

««= Σ ««*<+ Σ bnPι)+ Σ Σ <$*?• (2-7)
\ i = l ί=l / Hetf ί=l

The L(G) x N(H) matrix (a%) is defined by

afl=±ί if /eCf

= 0 otherwise ,
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the sign depending upon the orientation chosen for the circuits. We define
the matrix ΘH by

L
f\H V"1 .. „ „ /,• , ι \TfJJ\\ (1 Q\
"ij— / t ^i^H^ij \1>J — -*-j ? - ^ ' V"// v^ "/

1=1

and set CH = CH(α) = det ΘH.
Finally we change the differential in (2.2) to

/ΛΓ(G) \ /ΛT(G) \ / ΛΓ(H) \

Id4*, Π Π <*"**?• (2 9)

With the replacements (2.7) and (2.9), gaussian integration can again be
done, with the result

%" = const<S(Σp) f [ <te»C(αΓ2 exp i

(2-10)

Π Cfl(α) 2 R(α,p,ω)
\HeJf /

where

t/ o IV >3 Ffe ̂  \ i' ύ i V δ ΐ ΓHI J Π. t«Λ \ ί J / Π.

H(G) N(H) \

Σ . V"1 v~ι H H i i /Λ ι -i \flijsj+ L L αus? + & i2-11)
7=1 Hetf J = l / s=0

and ω is the set {ω#)#ejr of non-negative integers.
The integral in (2.10) has a complicated structure. We make the

following crucial points:

a) All operations in TlZl leading to scalar products of momenta are
to be performed before the operations implicit in (2.11) (e.g. all traces
should be evaluated). Scalar products are then reinterpreted as the
natural scalar product in Mω.

b) All external momenta and indices are to be kept fixed appropriate
to the canonical Minkowski space M4 C Mω, as above. This is implicit
in (2.10).

c) K(α, p, ω) is implicitly a function of ω through the action of the
differential operator in (2.11) subject to the remark a) above. It is at
most a polynomial in ω.

d) Although we have chosen a particular set of momenta fc, ̂ ω is in
fact independent of this choice, depending only upon the topology of G.

e) In the case ω = 0 we formally recover the integral (2.5).

The essential importance of remarks a)-c) was demonstrated in
Refs. [1-3]. We claim (2.10) is a natural generalization of the construc-
tion given there.
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We may now continue £Γ£ω in ω from the non-negative integers to
<CK(K= Φ(jίf(G))). The (unique) continuation is given by (2.10). This is
our definition of the regularized amplitude.

We now state some properties of ̂ ω . We omit the proofs which are
but trivial modifications of those already given by Speer [4, 5].

Theorem 2.1. ^G(ω} = lim^~£ω exists for ReωH sufficiently large and

and negative, and defines by analytic continuation a function meromorphic
in Cx.

The analytic structure of $~G(ω) may be made more precise by the
following.

Theorem 2.2. $~G(ω) admits the decomposition

,ί) (2.12)

the sum running over all s-families $ of G (cf. Definition A3)
has the property that

HeS

has an analytic extension to all of (Cx, where

\μ(H)
2

is the d-famίly of the dominant graph H for H in G: cf. Definition
AA.)

Note that Theorem 2.2 contains the conventional power-counting
theorem as a special case [9].

III. Renormalization

In Section II we have shown how to construct an amplitude 3~£ which
depends meromorphically on a set of parameters ω labelled by the
d-family Jf (G) of G. The essential observation is that the analytic structure
is virtually the same as in the analytic regularization of Speer [4, 5]
where there the role of JΓ(G) as an index set is played by the set of lines
cSf (G) of G. This allows us to lift bodily all the combinatoric apparatus
developed in Ref. [6].

The extraction of the finite part of the amplitude, together with the
counter-terms can be achieved by the use of an analytic evaluator, which is
a mapping of functions of the type described by Theorem 2.2 into func-
tions analytic around a given point ω = ω0 (= 0 here).
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An example of such an evaluator y is given by

Σ ί *μι... f d, f(μ (3.1)
—

where if 0<^1< <^<^) satisfy Σ Ri < Rp &i *s tne contour
i<j

z — ί\ = Ri oriented counter-clockwise and |ωf| < R1. The sum runs over
all permutations s of {1, 2, . . . , K}.

The freedom to choose an analytic evaluator (but which must satisfy
certain general requirements [6]) reflects itself in a finite change of the
renormalizations.

Thus, let ^G(O}) be constructed as in Section II and let i^ be an
analytic evaluator. The analytically renormalized amplitude is given by

. (3.2)

The result is obviously finite.
Our main result is

Theorem 3.1. &~ς is an additively renormalized amplitude.

The construction of the counter-terms is to be found in Appendix B.
The proof that these counter-terms (vertex parts) are indeed a set for the
additive renormalization of ?ΓG, in the sense of Definition A.7, is closely
modelled on that of Ref. [6].

As stated in the introduction, a complete proof that we are ultimately
led to gauge-invariant results is beyond the scope of our approach here.
However, the regularized integral of Section II was constructed so that
each graph in the d-family Jf (G) separately preserves structure. Now by
explicit calculation it has been demonstrated [1-3] that the counter-
term for the one-circuit graph is consistent with gauge-invariance
requirements. This, coupled with the fact that the vertex parts of Appen-
dix B satisfy a recursive structure, leads to the plausible conclusion that
the necessary structure is preserved. Of course, the same evaluator should
be used throughout the renormalization of the theory.

Acknowledgments. I am indebted to the participants of the Informal Conference on
Renormalization held at Marseille, June 1972, for stimulating discussions.

I also wish to thank Professor Abdus Salam, the International Atomic Energy Agency
and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

Appendix A

To make this paper notationally self-contained, we recall the follow-
ing terminology.



184 J. F. Ashmore:

Definition A.I. A Feynman graph G(FX ... Fm; jSf) (with vertices
{F! ... Fw} and a set of lines JSf = J£?(G)) is a graph associating to each
line / e JSf a propagator Δl e y (IR4) whose Fourier transform has the form

Zj is a polynomial of degree rh and wz >0 is the mass associated with
the line. The superficial divergence of G is

μ(G)= Σ^ + 2)-4(m-l).
ίeJS?

A subgraph H cGis again a Feynman graph in an obvious way. We may
take all vertices in G to be external.

Definition A.2. The graph G is one-particle irreducible (IPI), (one-
vertex irreducible (IVI)J, if it is connected and cannot be disconnected
by removal of one line (resp : vertex). Other wise G is called I PR (resp : IVR).
A graph which is both IPI and I VI is said to be irreducible.

Definition A3 '. A singularity family, (s-family), $ for G is a maximal
collection of irreducible subgraphs of G such that

a) If H, H' e δ, then # 3 #', #' 3 # or J§?(#)n JS?(#') = φ and

b) If Hι...Hk€<$ satisfy jS?(fίj)nJSf(fl/) = 0 for any ij then
H = H1v- vHkis not irreducible.

(Remark: An <? -family contains no "overlapping graphs".)

Definition A .4. A generalized vertex, 17, is a non-empty subset
{F| . . . F^} of the vertices of G. Given a generalized vertex (7, the dominant
subgraph G(U) of G is formed by including all lines in =£?(G) joining any
pair of vertices in 17; if H cG has vertices 17, we write H^G((7), the
dominant graph for ίί in G.

(Remark: In quantum electrodynamics, any irreducible graph is
automatically dominant.)

For additive renormalization we require additional terminology.
Given a Feynman graph G, the Feynman amplitude is the (formal) product
of distributions

whose ill-definition necessitates renormalization. Suppose we have
introduced a set of parameters ω in 2ΓG such that 3~G(ω) = TlAl(ω)(xlι — xlf)
e &"(R4m) for a suitably large set ω, depends meromorphically on ω,
and formally reduces to &~G as ω->0.

Definition A.5. Let C7 = {Fί . . . F^} be a generalized vertex in G and let
G' = G(LO A vertex part & for (7 is a distribution (with support at
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x'ί = '"= x'm) with the form

#(l7;ω) = l if m = l ,

= 0 if G' is IPR ,
/ m \

= δ Σ Pi) p(ω' Pι> - - > Pm) > otherwise .
\ i = l /

Here P is a polynomial in p' of degree at most μ(G').

Definition A.6. A distribution ^"e^'OR4"1) is an additίvely
renormalίzed Feynman amplitude for G(V^...V^ if there exist a set of
vertex parts X such that

Π 4M (*ι, - *ι,ή Π

where the sum is taken over all partitions P of {Vί...Vm} into k(P)
disjoint generalized vertices 17̂  ... Ul(P).

Here
k(P)

ί=l

Appendix B

Proof of Theorem 3.1 (sketch). We draw heavily on the methods and
results of Ref. [6] and refer the reader there for details.

Definition (Speer [6]):

For K>0, let Ω be the index set {1 ...K}. A family δ of non-empty
subset of Ω is called an s-family if

a) X ι ? Z 2 e ^ ^ χ 1 C χ 2 ? χ 2 C χ 1 or χ1nχ2 = φ and
b) for any χ e <?, χ φ (J χ'.

χ'e<?,χ'<j:χ

We let <?= y χ δ is discrete if all elements of <ί are pairwise disjoint.
*ε£

For χ e <?, we let <f (χ) be the subfamily of <f consisting of all sets which are
proper subsets of χ.

According to Ref. [6] Theorem 3.2, any analytic e valuator i^ may be
decomposed relative to an analytic decomposition of the type given by
Theorem 2.2 as

^β= Σ
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where <^(χ), the "singular part" associated with the variables in the set χ,
is defined on /= Σ/( , δ) by

= Σ Π(^-^))/( ̂ ) (B-2)

The sum is over all S such that, for some discrete Q) c $, & = χ. By con-
vention, £f(φ) and ̂  are the identity.

The applicability of these results is made possible by the remark that
if S is an s-family for G, then the family (JΓ(H) H e $} is an s-family
for Jf (G) in the sense of the above definition. We may thus use the
d-family Jf(G) as the index set Ω.

We shall be content with exhibiting the vertex parts (i.e. counterterms)
for a given analytic evaluator i^. The proof that 3Γ^ = (i^^Ό) (0) is an
additive renormalization follows as in Ref. 6 by reorganization of terms,
once we make the remark that in the case χcΩ = J^(G) contains an
overlapping pair of graphs H, H', then

(cf. Ref. [6], Remark 3. 19 a). (H and H' overlap if &(H)n&(Hf) φ φ but
neither H C H' nor H' C H.)

For each H e ^Γ(G), form subsets ^(H) C tf(H) of nested sequences
of graphs:

we allow JV(H) = {H}. SetyΓ(#)
We claim that if U = {V[...V^} is a generalized vertex for G, and

G' = G(V[ . . . FJ, then ̂  given by

, (B.3)

is a vertex part for U. The proof exactly parallels Ref. [6], Lemma 4.2.
Note that % = 0 if G is I PR, in fact, if not irreducible. (The empty sum

is 0 by convention.) This stronger condition on #" still gives rise to an
additive renormalization [11]. We remark, following Westwater [11],
that once the vertex parts have been defined, we may set all ω equal to
one complex parameter ω. This makes contact with the method in Ref. [3].

Note also that by Ref. [6], Lemma 3.6, we may also write

')) 2ΓG, . (B.4)

It may also be proved inductively that, for G' = G'(V[ ... V^) in the
d-family Jf (G), the vertex part SC(V[ ...V^ satisfies the recursive relation

fc(P)

X(V[ ... F- ω)= <^({G'}) Σ Π 4M Π Wί» (B.5)
P ϊeJSf" i = l
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where the sum runs over all partitions of {V[ ... V^} into disjoint gener-
alized vertices t/f . . . U%. Here

k(P)

Note thus that (B.5) is reminiscent of the recursive definition in Ref. [7]
of 9C with the operator ^({G'}) playing the role of taking the Taylor
series expansion of ̂ G, up to order μ(G'). Indeed it does [12].
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