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Abstract. The dynamical theory of a bidimensional model of hard squares with elastic
collisions is presented. The time evolution is shown to exist on a large class of infinite
configurations. Moreover, it is proved that any equilibrium state, that is any solution of
the equilibrium equations, is concentrated on this set of allowed initial configurations and
is invariant under the time evolution.

§ 1. Introduction

This paper is devoted to proving some results concerning the dy-
namical theory of a bidimensional system with infinitely many degrees
of freedom. Namely we consider infinite configurations of particles that
can be regarded as hard squares of a common size. As indicated in Fig. 1,
these squares are restricted to having their sides parallel to the x- and
y-axis. Their velocities are all equal to υ0 in absolute values and parallel
to any of the two bissectrix of (Ox, Oy\ so that there are only four
possible velocities for each particle. The elastic collisions between the
squares will be the only interactions considered.

Let us make some remarks to explain the motivation of the present
work. The equilibrium theory of systems with infinitely many degrees of
freedom has made many successes during the last decade, especially with
regard to the interpretation of phase-transitions. It is tempting then to
try to get some rigourous results in the domain of non-equilibrium
theory. We quote here some typical problems which should be investi-
gated on a rigourous basis:

1) Ergodic properties of thermodynamic equilibrium.
2) Existence of transport coefficients and their non-analytic be-

haviour at low density.
3) Irreversibility principle and if-theorem.
Unlike the third problem which lies in the field on non-equilibrium

theory, the first two concern only dynamical properties in thermo-
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dynamic equilibrium. For problem 1) this is obvious, and for problem 2)
this is suggested by Kubo's formula for transport coefficients.

In constructing the time evolution of configurations with infinitely
many particles one is faced with a basic difficulty. In fact it is easy to
see that for any realistic system some initial configurations can lead to
catastrophic situations. The following example is well known: take
a configuration of non interacting particles lying on the x-axis, with
positions qt and momenta pt satisfying the relation qt= —pt. It is clear
that at time one we shall have infinitely many particles at the origin,
which is an unphysical situation.

Precisely the problem can be schematically formulated as follows.
Let [X] be the space of infinite configurations and ρ a probability measure
on [X]. One has to find a subset [X] C [X] such that ρ\_X] = 1 and that
the time evolution is defined on [X], namely Tt([X])= [)C\. For such
a measure ρ, one can define ρι by the equation ρt(A) = ρ(T~tA) for any
measurable set Ac [X]. In particular if ρ is an equilibrium state (in a
sense to be precised) one expects that ρ is invariant under time evolution,
that is ρ* = ρ.

Such a programme has been carried out recently by Lanford [1,2],
in the case of one-dimensional systems with bounded and finite range
interactions. These results have been generalised to the case of a potential
with hard-core by Sinai [3]. Moreover in the particular case of hard
rods without any further interactions, Sinai has proved the ergodicity of
the equilibrium state with respect to time evolution [3]. For a simple
proof of this last property in the case of a semi-infinite system of hard
rods see Ref. [4].

Unfortunately it is well known that one-dimensional systems exhibit
properties which are often far from those of realistic systems. This is
particularly clear concerning phase transitions. As for the dynamical
properties, the validity of the one-dimensional Boltzmann equation, as
a kinetic equation for long time scale, is seriously in doubt. It is then
natural to extend the above results in higher dimensions. This extension
is far from being immediate: the system of hard discs or hard spheres
seems itself very intricate and remains an open problem. Here the diffi-
culty lies essentially in the impossibility of controlling the particle
velocities. This is the reason why we consider in this paper a rather
simpler model with discrete velocities, all equal in absolute values, as
described in the beginning of this introduction.

The main result of this paper can be stated in the following theorem:

Theorem. For any measure ρz on [X] satisfying the equilibrium
equations at activity z, there exists a Borel subset [X] z of [X] such that
QzV^Qz^^ a n d Tt[X]z = [X]z for any value of t. Moreover ρz is in-
variant under V.
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In § 2, we describe the space of infinite configurations [X] for the
model at hand and recall some known results about the equilibrium
equations. Section 3 is devoted to the construction of a family of Borel
subsets [X]° of [X] for which there exists a time evolution provided
|ί| < α is satisfied. In § 4 we develop a straightforward but tedious process
of simultaneous reduction of [X]° and iteration of time evolution to get
a family of Borel subsets [X]α of [X] such that V [X] α

= [X]α for any ί.
In Section 5, we prove that for any measure ρz satisfying the equilibrium
equations there exists an [X]α of measure one with respect to ρz, in
addition we show the invariance of ρz under time evolution. This will
complete the proof of the above theorem. We conclude with some
remarks on the conservation of entropy and a straightforward extension
of the results of this paper to a model of hard cubes in three dimensions.

§ 2. Preliminaries

In this section we define the space of infinite configurations for our
model and quote some typical results which will be used in the rest of
this paper. For more details the reader is referred to [2, 5, 6].

The position of each square like particle (see Fig. 1) is given by the
coordinates q1 and q2 of its center. The common mass and velocity are
taken to be equal to one. The momentum p of each particle is represented
by one of the four numbers {1,2,3,4} with the following convention:
the momentum j corresponds to the direction whose polar angle with
the x-axis is given by π/4 + (/ — 1) π/2.
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We call X the space of all finite or infinite sequences (qt, pf), ί e N, with:

Λ e { l , 2 , 3 , 4 } P
and

\q\-q)\^a or \qf-qf\Za if Z=K/\

(α is the common size of the squares).
We introduce the symmetry between the particles by the following

equivalence relation. We say that two labelled configurations X' and X"
are equivalent iff they differ only by a permutation of the indexing set.
IX] will denote the space of equivalence classes and will be the "phase-
space" for our model.

If A is a subset of JR2 and X e [X], we denote by XΛ the configuration
obtained from X by considering only the particles whose center lies
inside A. If A is bounded XΛ is necessarily a finite configuration.

The space [X] can be equipped with the following topology [2]. Let
ft1 be the space of all continuous mappings f :R2 xP^R, with compact
supports. To each / e f t 1 corresponds a mapping Sf: [X] ->R:

We give [X] the weakest topology making Sf continuous for every
/e f t 1 . We have the following property:

Proposition 2.1. [X] with the above topology is a compact Polish space.

We give here a convenient criterion for the convergence of a sequence

Proposition 2.2. The sequence Xn tends to X e [X] as n —• oo iff for
every bounded open AcR2 such that Xbd{Λ) = $> XΛ tends point by point
toXΛ.

We denote by U the set of all continuous mappings φ: [X] ->C, with
its natural structure of <C*-algebra. Then a state on tf is a positive Radon
measure on [X] of total mass one. A mapping φ: [X]-»C is said to be
measurable in A, for A C R2, iff φ(X) = φ(XA) for every X e [X]. If A is
a bounded open of R2, we set:

UΛ = {φ e U φ is measurable in /!}.

By the Stone-Weierstrass theorem we have:

Proposition 2.3. (J UΛ is dense in U.
A

Proposition 2.3 shows that every state on U is actually defined by its
values on (J UΛ. This suggests to represent a state ρ on U by a family
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of "local measures" ρΛ as follows [5]. If A C R2 is a bounded open and
non-empty set, we set:

[A^] can be identified with a subset of Σ (A x P)w where (A x P)n means

the symmetrized product of n copies of A x P. If one gives Σ (A x P)"

its natural topology, then the mapping:

is a Borel mapping. Then if ρ is a state on U, ρΛ = ΠΛ(ρ) will be a positive
Radon measure on Σ (AxPf of total mass one, with in addition

QΛ [XΛ] = I- It is easy to show that when A runs over the bounded open
subsets of R2 the family ρΛ defines ρ in a unique way, provided some
compatibility conditions are satisfied (see [5]). It is clear that if φ e UΛ

then:
)<PQ= ) Ψ\LXΛQΛ (2-1)

IX] ίXΔ

We conclude this section with a brief outline of the equilibrium

equations [6, 7]. We denote by dXΛ the measure on £ (Λ x Pf defined

by: "=°

g ; P p J dqi'~dq"f φdxΛ= Σ Σ
Σ (ΛxP) ή w^O p i , . . . , p n e P " :

Every configuration X e [X] can be separated into two parts XΛ and
XRi\Λ. We say that a state ρ on U satisfies the equilibrium equations at
given z ̂  0 iff for every bounded open A C R2 and φ 6 U:

f φ β = j ί / ^ W ^ ' J f(XΛ\YR*\Λ)φ(XΛ+YR2\ydQ(YR*SΛ) (2-2)

where ^(X^) is the number of particles of XΛ and

if XΛ + y ^ e [ X ]

otherwise

(the factor 4 comes out from the normalisation in momentum space).
It can be proved that for z sufficiently small, in particular for z < 1/ea2,

there is a unique state satisfying (2.2) and this state is obtained from the
grandcanonical ensemble by taking the thermodynamic limit. In view
of (2.1) and (2.2) we see that if a state ρ satisfies (2.2) its local measures
ρΛ are absolutely continuous with respect to dXΛ and:

Λ) (23)
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§ 3. Time Evolution of Infinite Configurations

In this section we shall exhibit a class of initial configurations for
which there exists a time evolution provided the amplitude of the time
interval is sufficiently small. First we will need some classical results on
the dynamics of finite configurations in boxes.

3.1. Time Evolution of Finite Configurations

In the rest of this paper A will denote any rectangular box with sides
parallel to the x- and y-axis, A + a will be the rectangular box obtained
from A by adding a to its sides and with the same center as A. Finally
Ax with / > 0 means the square box centered at the origine and whose
area is I1.

Take now a finite configuration Z e [XJ. We may consider X as
enclosed in the rectangular and rigid box Λ + a and take the time evolu-
tion as follows: we suppose that the squares suffer elastic collisions with
each other and with the boundary of the box Λ + a. In Fig. 2 we have
indicated the relative motion of two squares during each of the three
possibilities of collisions between them. We emphasize that the assump-
tion that all the particles have the same mass and velocity is essential
in order to preserve the discrete character of the momentum space during
a collision.

If we call Γj(X) the evolution at time t of the initial configuration
X e [X4], it appears that VA is not a one to one mapping on [ X J This
slight complication is always present when considering instantaneous
collisions. Let [XΛ~] ~ be the subset of configurations X e [XΛ~] such that
there is at least one particle of X which "enters" a collision with another

Fig. 2
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one or with the boundary of A + a. Clearly [XJ ~ is a closed and there-
fore Borel subset of [XJ. If w e disregard the configurations belonging
t° [̂ Ci]~ w e m aY s t a t e t n e following classical result:

Proposition 3.1. a) VA : R x [XJ -> [XJ \[XJ " : X-> VA(X) is a Borel
mapping.

b) TJί:Rx[XΛ~]\[_XΛ~]~'-+[XΛ~]\[XΛ~]~ is a one-parameter group of
Borel isomorphisms.

c) [_XΛ~\ ~ is a null set with respect to dXΛ and dXΛ is invariant under VA.

3.2. Thermodynamic Limit of T}

We may now precise what we mean by T*(X) when X is an infinite
configuration in [X]. For each rectangular box A we may consider
T[(XA) as a finite configuration in [X] and take the limit, on the net of
increasing boxes, of TA(XΛ) in the topology of [X]. If this limit exists we
define it to be T'pQ. We introduce the natural domain of definition of V:

Sf = Ut, X) e R x [X] lim T}(XΛ) = T(X) existsl

We shall use throughout this paper the following criterion for the
existence of V{X)\

Proposition 3.2. Let (t, X) e R x [X], if for every bounded open A' C R2

there exists a rectangular box A0 such that:

(TJL(XA))A' = (TMXΛO))Λ> VΛ D A0

then (ί, X) e 2 and {T{X))A. = (TJί(XΛ))Λ. MA D A0.

This proposition follows at once from Proposition 2.2. It means the
simple fact that if (ί, X) satisfies the conditions of the proposition, the
situation at time t in any bounded subset of R2 is given by the evolution
in a sufficiently large box. We denote by 2' the subset of 2 for which
the conditions of the above proposition are satisfied.

Before going further we introduce the following definition: let α>0,
Ia = (— α, + α) and A C [X], we say that V is a local one-parameter group
o n / α x i iff:

(Dl) IaxAc2'.
(D2) VXeΛW^ lίil + \t2\ < α: (r2, T'{X))e& and T^T^X))

= Tt2+tί(X).

3.3. A Class of Initial Configurations

The aim of this paragraph is the construction of a class of initial
configurations [X]° such that 7α x [X]° belongs to 2'. To this purpose
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we introduce the following notations: l e t α > 0 and X e\_X], {q^Pi}
a representative of X, we say that particles i and / of X are α-adjacent iff:

\ql-q}\<a + « \/2
and Γ-

\qj-qj\<a + X']/2.

A part X' of the configuration X is said an α-chain of X if there exists
a representative X ' = {&,£*} of X' such that particles i and f + 1 are
α-adjacent for every /. Let X' and X" be two disjoint parts of X, we say
that X' and X" are α-disconnected if there does not exist an α-chain of
X' + X" composed with particles from both X' and X". If X' is a finite
α-chain, the particle number of X' is called the "length" of X\

Consider now the square box Λι with / > 0 (see § 3.1). For X e [X], XΛι

is a finite configuration. We denote by \XΛι\a the length of the longest
α-chain of XΛι. We set:

lX]'a = \xelX]; sup J ^ < + * ) i (3.1)
{ ι>o L o g ; J

where Log+ / = Log(sup(/, e)). In the following it will be convenient to
consider the subsets of

sup J * ^ - £ χ l . (3.2)
ι>o Log+/ J

Finally, for the same reasons as in § 3.1, we are led to disregard the
subset of configurations having at least two particles "entering" a col-
lision:

(X G IX] there are at least two particles of XI

\ "entering" a collison J

We set:

. (3.3)

Proposition 3.3.

Proo/. First we show that [_X]~ is a Borel set. To this purpose we
choose an increasing sequence of square boxes. Λn with ne N WQ remark
that the subset of configurations of [λ^n] having at least two particles
"entering" a collision is closed in [λ^J, then the inverse image through
ΠΛn of this subset is a Borel set in [jf]. Therefore \_X]~ is a Borel set
as being a countable union of Borel sets.

It remains to prove that [X]'Λ is a Borel set. But it follows from
Proposition 2.2 that [X]ά,x ^s closed in [X]; then choose an increasing
sequenceKn^> + oo and the assertion is proved because [X]'a = (J
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3.4. An Existence Theorem

Here we prove the existence of a time evolution for initial configura-
tions in \_X]'a provided the amplitude of the time interval is sufficiently
small.

Proposition 3.4. a) Vα > 0, Jα x [X]ά C 3>'.
b) Vα > 0, MA C R2, bounded open, VX > 0,

, Vί, | ί | < α .

c) V : 4 x [X]'a-*[X]\[X\- is a Borel mapping.

d) V is a local one-parameter group on Jα x [Λχ;.

Proof, a) Is a consequence of b), hence we prove b). Knowing that
each particle has a velocity with modulus one, we see that the particles
which enter in A during the time interval (— α, -fα) are necessarily at
time zero in some square box Av, ΐ depending only on α and A. Let us
choose l0 such that if / > Zo then l — Γ> 2K(Log I) (a + α j/2). This implies
that XΛv is α-disconnected from XRi\Λ» for any I e [ X ] ^ and any
A" D Alo (see Fig. 3). That is, the motion of the particles of X initially in
Av is not perturbed by the particles of X initially outside Alo so that:

VΛ"DΛ/0, Vί, | ί | < α , V I

(Tί»(XΛ»))Λ = (73Iβ &ΛJ)Λ = (

To prove c) we note that if (ί, X) 6 7α x [X]^ then

where fΛz is the inclusion: [X]^j-^[X] which is a Borel mapping, VΛι is
a Borel mapping from Proposition 3.1 and ΠΛι is a Borel mapping so

Fig. 3
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that iΛι° TM°IlAι is a Borel mapping too. Therefore T(X) is a Borel
mapping as being the pointwise limit of a family of Borel mappings with
values in a metric space.

It remains to prove d). Let X e [X\'ά and tl9t2 such that \tx\ + \t2\ <α,
it is clear that Ttί(X)e \X\l-M so that (t2, Ttι(X))e&. On the other
hand, from b) we have for any bounded open A:

With the same argument as used in the proof of b), we have:

so that (Tt2+tί(X))Λ = (Tt2(Ttl(X)))Λ for any bounded open A. Hence the
assertion is proved.

In § 5 we shall need a slight modification of the preceding result for
proving the time invariance of the equilibrium states. We modify the
boundary of the box Aι+a in the following way: given a configuration
X e [X] and a box Λh we freeze all the particles of X whose center lies
in Λι + 2a\Λι and we consider the motion of the particles of XΛι taking
into account elastic collisions on both the boundary of Aι+a and the
frozen particles in Ax + 2a\Λt. This time evolution is denoted by 7^ (XAι + 2α)
(see Fig. 4). The same argument as used in the proof of Proposition 3.4b)
leads to the following result:

Proposition 3.5. Vα > 0, VΛ C R2 bounded open, VK > 0,

'atK9 Vί,

Λu2a

Fig. 4
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§ 4. Iteration of the Time Evolution

We proved in the preceding section the existence of a local time
evolution on a Borel set [XX of initial configurations. But we do not
have the time invariance of [X]α> t n a t i s : τ% [Xi!L * VQl i f M < α> s o t n a t

we cannot iterate directly the time evolution. The aim of this paragraph
is precisely to perform a simultaneous reduction of the initial class [X]£
and iteration of the time evolution to get a Borel set [X]α such that

First we consider: [X]α° = f] \_X]"β. As [X]^ C [X]£2 if βt > β2, it

is clear that [X]«C[X]°. On t o o t h e r hand, [X]° = f) ^ λ f o r

0<βn<a

any monotonically increasing sequence βn such that lim βn = α. This

implies, in particular, that [X]° is a Borel subset of [X]. (It can be noted
that [XX is a proper subset of [X]°.) It is clear also that the statements
a), c) and d) of Proposition 3.4 still apply on the class of initial configura-
tions [X]°. Now we reduce [X]° as follows: we consider the sequence:

ιxii= n
teQ

^ ! 2 (4.2)

| ί |<α/2

where Q means the set of rational numbers. From Proposition 3.4 it
follows that [X]" is a Borel set for every n, and:

(4.2)

Proposition 4.1. Ή is α /ocαί one-parameter group on Ina/2 x [X]".

First we prove the following lemma:

Lemma 4.1. If V is a local one-parameter group on ItQ x {X} and
^ for every telto, then T* is a one-parameter group on

Proof. First we prove that (t, X) e 2' when t0 ^ |ί| < t0 + α. We may
assume ί > 0 for example. Then there exist tί912 such that t = t1 + t2 and
0 < ίx < ί0, 0 < ί2 <α. We may choose some β such that t2<β<ot. From
the assumption of the lemma we get:

(tl9X)e2f and Tn(X)elX]f

β>κ for some K>0.

Now we consider a bounded open A CR2. The particles of TH(X) which
move in A during the time interval (ίx, ί] are necessarily in some square
box Ah at time tv As Tn(X)e [X]^ κ , there exists / 2 > 0 such that
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(Ttι(X))Λh is ̂ -disconnected from (Ttι(X))R2χΛh. Finally as
there exists /3 > 0 such that:

Therefore: V^4:(^(lA2H^(I))v (4.4)

l2) (4.4)

= (Tt2(Tί(X)))Λ because

(Ttχ{X))Alι is /^-disconnected from {Ttl(X))R2\Ah. Then we have proved
that (ί, X) G $)' if t0 S 1*1 < t0 + α with in addition:

T ί (X)=T ί 2 (T ί l (X)) if ί ^ + ί ; and | t 1 | < ί 0 , | ί 2 l < α . (4.5)

To get the local one-parameter group property we remark that if
t = t1+t2 with \t± I + \t2\ < tΌ + a it is always possible to write: t = t[ + ί? + ί2

with IίJΊ + \t2\ < t0, \t[\ < a. It suffices then to apply twice (4.5) to prove
the assertion.

We turn now to the prove of the proposition. For n = l we have
[̂ Gα C [^]α s o t n a t t n e property is a consequence of Proposition 3.4. By
induction we assume that the property holds for n — 1, and we consider
X G [ X ] " - We have M c M " 1 so that Tf is a local one-parameter
group on / ( n_ 1 ) α / 2 x {^} Moreover Tί(X)e[>Γ]α for every ί e β and
\t\ <(n- l)α/2. We show that this property still holds for teR. Indeed
let t e R with \t\ < (n — 1) α/2. We can choose a monotonically increasing
sequence of rational numbers tn such that lim tn = t. We have from the
assumption:

0<β<<x

we already know that V{X)e [X]\[X]~ by the very definition of T. To
prove that V{X) e f] [X]'a we remark that Tn(X) e [XK- ( ί- ί n ) for n

0<β<<x

sufficiently large, as a consequence of (4.6). Then Tt(X)e DX]ά-3(ί-tn)
for n sufficiently large, because all particles have a velocity with modulus
one. Therefore:

T(X)e Π C^-3((-,j= Π WJ

as lim (ί - tn) = 0. Hence we have V(X) e \_X\°a for every real t such that
«-* 00

| ί | < ( n — l)α ;2. We apply Lemma 4.2 to assert that V is a local one-
parameter group on InΛ/2 x {X} every X e [_X]n

a. This achieves the proof
of the proposition.

We set [X\a= f) [X]l, then we have the final result:
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Proposition 4.2. a) [ Z ] α is a Borel set of [X],

b) R x [ X ] β c Φ ' ,
c) V: R x [X]α-> [X]α ΪS α £ore/ mapping and forms a one parameter

group of Borel isomorphisms on ΓX]α

Proof a) Is obvious, b) follows immediately from Proposition 4.1.
For c), it sufficies to prove that T'[X]αC [X]α, then the rest will follow
from Proposition 4.1. Now the property V [X]α C [X]α is an easy conse-
quence of the following lemma :

Lemma 4.2. V[X]£ C [X1Γ1 if\t\< α/2.

Proo/. The property is true for t e g, |ί| < α/2 by the very definition
of [X]". We suppose now t e R and |ί| < α/2. We have to prove that for
any rational tx such that |ίx | < (n - 1) α/2 Γ^CΠX)) e [X]£ if-SΓ e
But from Proposition 4.1, we have:

Ttί(Tt(X))=Ttί + t{X) = Tt+tί{X)=T(Ttχ{X)) with Th(X)e

so that: Tf'(Γ ί ι(X)) e [X]α for every ί' e ρ, |ί'| < α/2. With the same argu-
ment as used in the proof of Proposition 4.1, we have: T^V^xyje^X^ for
every t e R, \t\\ < α/2. This proves the lemma and therefore the proposition.

Before applying the above results to statistical mechanics, we make
a remark concerning the commutativity of V with the group of natural
displacements acting on [X], In fact, if we call G the subgroup of dis-
placements of R2 composed with the translations and the rotations of
angle kπ/2 with keZ,G acts in a natural way on [X]. Then it is easy to
prove the following proposition:

Proposition 4.3. Vα>0, [X]α is invariant under G and:

§ 5. Time Evolution of States

The previous Proposition 4.2 ensures the existence of a class of con-
figurations for which we have a satisfactory time evolution. Consider
now a state ρ on U and suppose that for some α > 0, ρ[X]α = 1, then we
can define a state ρ* on [X] by:

\φρt= \(φoV)ρ for any φeU. (5.1)

Indeed it is easy to see that (5.1) defines a state on [X]. Hence for such
a state we have a time evolution.

Consequently, the usefulness of Proposition 4.2 will depend on
wether or not interesting states with respect to statistical mechanics are
concentrated on [X]α for someα>0. We shall be satisfied with proving
that any solution of the equilibrium equations (2.2) is a state concentrated
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on [X]α for some α sufficiently small. In addition we shall prove the time
invariance of such a state.

We give here an outline of the argument:
a) For z given in (2.2), we prove that there exists α(z) > 0 such that

any solution ρz of (2.2) is concentrated on \_X]'ά namely Qz\_X]l = h
Vα S Φ )

b) For such a ρz we can define ρz provided |ί| < α(z). Then we prove
that ρz = ρι if \t\ < α(z).

c) This will imply that ρz is concentrated on [X]α if α^α(z) and ρz

is invariant under V.
First we introduce some notations that will be used in the following.

Let p e N be a given integer, we consider the horizontals and verticals
of abscissas and ordinates ma/p with meZ, which separate the plane R2

into cells of area {a/p)2. The cell limited by the horizontals ma/p, (m + 1) a/p
and the verticals na/p, (n + 1) a/p will be denoted by the pair (m, ή). We
say that two cells (mi5 nt) and (mj9 n3) are p-adjacent iff:

\mt — m}\ = p and \nt — n \^p ore vice-versa.

As in § 3.3, a p-chain of cells will be a sequence (mh nt) such that (m,-, n,-)
and (mj + 1 , ftj+i) are p-adjacent for every j .

If X G [X] and C is a p-chain of cells, we say that C is occupied by
X if every cell of C is occupied by a particle of X. It will be convenient
to set

[C] = { I e [ X ] ; C is occupied by X].

Finally if Λ2jvfl/p is a square box, we denote by Cft>r the set of all p-chains
of cells, of length r, in the box Λ2Na/p. We now prove the first step:

Proposition 5.1. // ρz is a solution of (2.2) there exists α(z) swc/z that

Qz lK\ά = 1 for every a ̂  α(z).

Proo/.[X];' = ([X]\[X]-)n[X]; we first prove thatρ z ( [X]\[X]-)=l ,
that is ρz [X] = 0. We choose an encreasing sequence of square boxes
Λn with n G JV, we remark that the subset of configurations having at
least two particles "entering" a collision in Λn is a null set with respect
to dXΛn, therefore with respect to ρz, as {ρΣ)Λn is absolutely continuous
with respect to dXΛn (see 2.3). Then \_X] ~ is a null set, as being a countable
union of null sets. We now prove that ρz \_X~\'Λ = 1 for α sufficiently small.
This is contained in the following lemma:

Lemma 5.2. There exists α(z)>0 such that if ρz is a solution of (2.2):
limρz([X]\[X];iε) = 0,Vαgα(4

/£.-> 00

Proof As [X]'auKC [X]a2,κ if α2 < α i it sufficies to prove the existence
of an α(z) > 0 such that:
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Moreover we may seek an α(z) such that ot(z) ]/2 = a/p where p is an
integer. Therefore if we set:

Yp κ= \xe IX] sup ^nJa,Pyτ > J {52)
p' { neN Log+2na/p J

we have to prove that there exists p(z) such that lim ρΣ(YP(z),κ) = 0, when
K—• oo

ρz is a solution of (2.2).

Now let us introduce:

\ , L o g + 2 N φ

We have: oo

ρΛYp,κ)S Σ eΛYp,κ,N) (5-3)
Λ Γ = 1

so that we are led to seek an estimation of QZ(YP,K,Ή) TO this purpose
we remark that:

Yp,κ,N= U ( U [C]V (5-4)

Let CeC%j r and let us estimate ρ z [C] when ρz is a solution of (2.2).
We have:

ρ z[C] = {Probability, with respect to ρz, for C to be occupied.}

As each cell of C can be occupied by only one particle, we see that:

ί Probability of having exactly r particles)

[in the volume limited by C J '

Therefore it follows immediately from (2.3) that:

(za2/p2Y. (5.5)

(We indicate here that a larger bound, but sufficient for the rest of the
argument, can be obtained for states on U having their correlation
functions satisfying the bound ρn(qu ...,qn)^{z)n.) We remark that the
bound (5.5) is independent on the shape of C, so that:

(za2/p2Y Card (σN>r).

An easy calculation leads to: Card(Cft>r)S4N2(Sp)r. From (5.4) we get:

P, Σ
r>KLog+2Nα/p

Szα2

If we choose p sufficiently large such that μ(p, z) = < 1 we shall
have: p

N^ x L — .
l — μ[p9 z)
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Then from (5.4) we get:

QΛYP,K)S - j — V - T Σ N2(V(P' Z ) ) K L 0 8 + 2 N a l p •

The series in the right hand side is convergent for K sufficiently large,
provided μ(p, z) < 1, and its sum tends to 0 as K tends to infinity. This
proves the lemma and the proposition.

It results from the Propositions 3.4 and 5.1 that, if ρz is a solution
of (2.2), there exists α(z)>0 such that ρz is defined by (5.1) provided
|ί| < α(z). We now prove the time invariance of ρz during this time interval.

Proposition 5.3. For α(z) given by Proposition 5.1, we have: ρz = ρz,

Vί,|ί|«x(z).

Proof. In view of Proposition 2.3, it sufficies to prove that for any
bounded open A C R2 and any φ e UΛ we have:

T)QZ=I<PQX if | ί |<α(z) .

We set | |φ| | = sup |φ(X)|. From Lemma 5.2 we have:

sothat: Vε>° 3^ = β(M\M^<I

- f {φ°V)Q <ε/2. (5.7)

As φ is measurable in Λ9 we may write φ(Tt(X)) = φ(Tt(X))Λ and using
Proposition 3.5, we see that:

--(Tl(XΛι + J)Λ, VXelX]'Λix)tK9 Vί,
Hence:

3 / > 0 : j (φoTt)ρz= j {φo fAι{XΛι+2))φz, "it, \

We use (5.6) once more to get:

f (ω o f )/) - ((ω of* (X )) n < F/2 (5 8"!

Adding (5.7) and (5.8) we finally have:

Vε>0, 3l>0:\UφoT')ρz- \(φofl(XΛ^2)ρz <a. (5.9)

Now we remark that φ° ίt,(^CiM.2α) *s measurable in the box Λι + 2a, so
that we can apply the equilibrium equations (2.2) to get:

ί(φ° tiμ^j) Qz = ̂ J ^ ̂ / + 2 α x (z/4f<^+2J x φo τi(xΛι+j

χΛ'+2) f(XΛι + 2a

We note that dXΛι + 2a is invariant under fAι for two reasons: first the
particles lying inside Λι + 2a\Λι do not move, second for the particles
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lying inside Λι we can apply the Liouville's theorem. It is also clear that:

This leads to: J (φ„ f j ,(^ ί + 2 J ρz = J φ° Qz.

Therefore, combining this with (5.9):

Vε>0, | J ( φ o r ) ρ z - ί ^ ρ z | < β , Vί, |ί| <α(z).

This achieves the proof of the proposition.
It is now easy to achieve the programme mentionned at the beginning

of this section. Let ρz be a solution of (2.2), we can choose an α(z) such
that ρz[X]°{z) = 1 because DX]α(z)C [X]J(Z). From the above proposition

W e h a V C : QΛTXXt w ) = QΛl>Q?z)) = 1, Vί: |ί| < α(z).

Therefore ρ2[X]i(Z)= 1 and by induction on n, ρ z[X]α=l. The time
invariance of ρz during any time interval is a consequence of the group
property of V on [X]α. We have then proved the following theorem:

Theorem 5.4. For a given activity z, there exists a Borel set [X]α C [X]
such that:

a) ρz [X]α = 1 for every solution ρz of (2.2).
b) T f :J^x [X]a—• [̂ Ga is a B°rel mapping and a one-parameter group

of Borel isomorphisms on [X] a.
c) ρz is invariant under T*.

We conclude this section with some remarks concerning the con-
servation of entropy. If ρ is a state on U invariant under translation,
we can define the entropy of ρ along the same lines as in Ref. [2]. Never-
theless there are many simplifications being due to the fact that the
momentum space for each particle is compact in our case. In addition
the particle number and the kinetic energy per unit volume is bounded
in our case, so that following the argument developed in the proposi-
tions 7.1 and 7.2 of Ref. [2], it is easy to prove that any homogeneous
state concentrated on some [X]α has a constant entropy during the time
evolution.

§ 6. Remarks

First we emphasize a weakness of our Theorem 5.4. In fact, we do
not have a convenient criterion for a state to be concentrated on some
[X]α. The Radon-Nikodym theorem allows to assert that every state of
the form φρz where φeL1([X], ρz) and ρz is a solution of (2.2) is con-
centrated on some [X]α. Such states are essentially inhomogeneous
states and describe local perturbations from the equilibrium state ρz.
It remains to prove the existence of non trivial states, concentrated on
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some [X]α but which are non-equilibrium homogeneous states. A case
of interest is the state with the same correlations as ρz but with an
anisotropic distribution in the momentum space. If ρz is homogeneous
and ergodic with respect to translations (this is the case for small values
of z) the following proposition gives an answer:

Proposition 6.1. Let ρ be a homogeneous state, ergodic with respect to
translations, having correlation functions satisfying the bound ρn(qχ,..., qn)
rgz", then there exists α > 0 such that ρ[X~]a = 1.

Proof Following the same lines as in the proof of Lemma 5.2 it can
be shown that there exists φ) such that ρ [X]^ = 1 for any α ̂  φ). We
can choose φ) such that ρ [X]°(z) = 1. Let us show that ρ(V \_X]°a{z)) = 1,
Vί, |ί| ^ φ). In fact [X]°(z) is invariant under translations, so that the
same is valid for T ^ X ] ^ if |ί|<α(z). As ρ is ergodic with respect to
translations we have: ^ ( ^ [ X J ^ ^ O or 1. Now it is easy to show that
ρ(T [X]«(2)) is a continuous function of t if |ί| < φ). Thus ρ{V \_Xf^z)) = 1
for any jί|<α(z), and £?[X]i(z) = l. One then prove by induction that

The results of this paper are to be taken as a preliminary step
towards a study of the dynamical properties of the model. The main
question to investigate is whether or not the dynamical system ([X],
ρz, V) is a K-System (at least for small values of z). But the answer to
this question is a considerably more difficult problem.

Finally, we mention that there exists an analogue in three dimensions
of the model: namely a system of hard cubes with only six directions of
velocities. It is clear that all the results of this paper can be transposed
into this case. We have then two models which should be good can-
didates to investigate the question of existence or non existence of trans-
port coefficients with respect to the dimension of the system [8].
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