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Abstract. We examine field theories with a compact group ^ of exact internal gauge
symmetries so that the superselection sectors are labelled by the inequivalent irreducible
representations of ^ . A particle in one of these sectors obeys a parastatistics of order d if
and only if the corresponding representation of ^ is ^/-dimensional. The correspondence
between representations of the observable algebra and representations of ^ extends to a
mapping of the intertwining operators for these representations preserving linearity,
tensor products and conjugation. Although we assume no explicit commutation property
between fields, the commutation relations of fields of the same irreducible tensor character
under ^ at spacelike separations are largely determined by the statistics parameter of the
corresponding sector. For fields of conjugate irreducible tensor character the observable
part of the commutator (anticommutator) vanishes at spacelike separations if the corre-
sponding sector has para-Bose (para-Fermi) statistics.

1. Introduction

In studying the superselection structure of elementary particle
physics one may distinguish the class of simple sectors. A simple sector
is a superselection sector whose statistics is ordinary Bose or Fermi
statistics. The set of simple sectors has the structure of a discrete Abelian
group Φ and one knows [1] that one can describe the sectors in a manner
familiar from field theory by introducing unobservable quantities.
Thus there is a field algebra g made up of Bose and Fermi fields and a
gauge group ^, the dual group of Φ, which allows us to recover the
observable algebra as the gauge-invariant part of g.

We recall that $ is generated by the observable algebra together
with a certain group of unitaries from g called the field group. It was
thus enough to construct a field group as a abstract group and this
turned out to be equivalent to a standard problem in the theory of group
extensions.

If we now consider, more generally, the set of finite sectors defined in
[2] and therefore seek to include the sectors with parastatistics there is
every reason to believe that a similar result should hold. Indeed, we
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know [2] that the set of finite sectors has the same structure as the
spectrum1 of a compact group because we have a product of sectors,
a conjugation of sectors and a statistical dimension for sectors.

Constructing a field algebra in this case is a much more difficult
problem and the main aim of this paper is to pose the problem correctly.
To do this we shall return to the setting of [3] and suppose that we have
been given a field algebra on a Hubert space Jf and a gauge group
from which the observable algebra is derived by the principle of gauge
invariance. As further input we require fields commuting with the obser-
vables for spacelike separations, positivity of the energy in the form of the
Reeh-Schlieder property of analytic vectors and duality for the observables
in the vacuum sector. We shall state precisely only those assumptions
which are actually used. For the general setting we refer to assumptions 1
to 6 of [3] and assumption 7 in the strengthened form of [3; Eq. (1.23)]2.

We know that under these assumptions states given by vectors in
Jf are asymptotically indistinguishable from the vacuum for obser-
vations in far away regions of space. In other words the field algebra
gives us a set of sectors satisfying criterion 1.1 of [2]. Consequently we
may apply to these sectors the intrinsic notion of statistics described
in [2]: they obey para-Bose or para-Fermi statistics of a certain order.
We show here that this order is related to the gauge group. In the
correspondence [3] between these sectors and the elements of the
spectrum <# of the gauge group ^, the order of the parastatistics is just
the dimension of the corresponding group representation.

We may describe the sectors given by g in terms of localized morphisms
[2] and are therefore led to consider a certain subset A' of localized
morphisms3. As the field group in [1] consisted of the unitary operators
inducing localized automorphisms of 91 we introduce the set H(ρ) of
strictly local elements ψ of g which induce a localized morphism ρ e Δ\
in the sense that Λ , A, , Ω r ίΛ iλ

ψA ρ(A), AEM. (1.1)

Every element ψ of H(ρ) is a multiple of an isometry and its adjoint
ψ* acting on the vacuum creates a strictly localized state of 91,

1 The term spectrum is used to denote the set of equivalence classes of irreducible
representations. The structure referred to in the text is of course the tensor product and
complex conjugation of representations and the dimension of a representation.

2 It should be emphasized that these assumptions are fulfilled in models derived
by taking a tensor product of copies of the free field algebra with a gauge group acting on the
internal degrees of freedom thus introduced into the theory.

3 There might be other superselection quantum numbers besides those carried by
field operators from $•
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The set H(Δ')= \J H{ρ) is the analogue of the field group and we
ρe A'

show in particular that H(Δf) generates g.

We are now able to be more explicit about how the representations
of 21 are linked to representations of the gauge group. The gauge
automorphisms induce a unitary representation D(ρ) of ^ on H(ρ).
Furthermore an intertwiner T from ρί to ρ2 induces a linear mapping
D(T) from i/fe) to H(ρ2) which interwines the representations Dfe)
and D(ρ2). The correspondence D provides the link between the repre-
sentations of 21 and those of ^ it is linear and preserves adjoints, direct
sums and tensor products. Furthermore the dimension of D(ρ) is just
the statistical dimension of the localized morphism ρ. In fact constructing
such a correspondence D is the key to the problem of constructing a
field algebra and is the analogue of the group extension problem solved
in [1].

We remind the reader that we do not assume any explicit commutation
relations between charged fields at spacelike separations. In Sections IV
and V we study to what extent these properties are determined by the sta-
tistics of the corresponding superselection sectors. In the first place, there
is a direct connexion between the "observable part" of a commutator or
anticommutator and the para-Bose or para-Fermi character of the
sector involved. To get a non-zero "observable part" we must combine a
field operator Fγ of irreducible tensor character σ with a field operator
F2 of tensor character σ. We find (Theorem 4.2) that

$ocg(F1F2TF2Fί)dμ(g) = 0 (1.3)

if Fx and F2 are spacelike separated, where the — or + sign is taken
according to whether the sector corresponding to σ has para-Bose or
para-Fermi statistics.

Another connexion between statistics and commutation properties
is found by studying the effect of "wave function permutations" on
products of ψj e H(Qj) where the ρj are mutually spacelike and lead to the
same sector. If the ψj commute or anticommute with each other according
to whether the sector obeys para-Bose or para-Fermi statistics, wave
function permutations and permutations of the gauge indices differ
only by a sign. This is the case of normal commutation relations. In
the general case we show that these two representations of the permutation
group may differ in addition by a unitary equivalence. We leave open
the problem of whether this unitary equivalence can be removed by a
Klein transformation.
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2. Creation Operators for Strictly Localized States

We recall briefly our notation. The algebra 91 of quasilocal observables
consists of the gauge-invariant elements of the irreducible C*-algebra g
of quasilocal fields:

g is the uniform closure of the union of von Neumann algebras
of field operators belonging to the double cone 0 e Jf5 in space-time,
and the local algebras of observables

generate 91 in the same way. In fact 91 is the image of g under the normal
projection map m of ^(Jf) onto %(&)' given by

(2.1)

where μ is the normalized Haar measure on the compact gauge group ^
consequently, 9Γ = Φ(0)" (see [3; Section III]).

The following two assumptions are central to this section: first a
"duality" relation [1; Eq. (1.23)]

a) m(δ(0)O = » ( β T , 0 e j r ,
where 2t(0') is the C*-algebra generated by the 9I(0λ), where Θλ e X
is spacelike to Θ. The second property follows from the Reeh-Schlieder
theorem: vectors analytic for the energy are cyclic and separating for
each $((9). Specializing to the vacuum state vector Ω we assume

b) g(0) Ω and g(0)' Ω are dense in jf.
Note that a) is a strong form of the requirement that fields should
commute locally with observables. It also implies the basic duality
property of observables in the vacuum sector:

(2.2)

where π 0 is the irreducible subrepresentation of 91 acting on the subspace
J^o of ^-invariant vectors [3; Section IV]. π 0 is generated by the vacuum
state ω 0 : ωo(A) = (Ω, AΩ\ A e 91.

As mentioned in the Introduction, if π is an irreducible representation
of 91 appearing in the decomposition of the defining representation of 91
on Jf there is a localized morphism6 ρ such that π and π 0 ° ρ are unitarily

4 SP denotes the commutant of a set &* of bounded operators and Sf its weak closure.
5 Θ e Jf if Θ is the intersection of a closed forward and a closed backward light cone

having an interior point in common. Θ' denotes the open set of points spacelike to v 0.
6 A morphism ρ of the C*-algebra 2Ϊ into itself is said to be localized in Θ e Jf if

ρ(A) = Aΐoτ A
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equivalent7. If ρ is such a morphism, there are vectors Φ e J f such that

AeM. (2.3)

These are precisely the unit vectors in a subspace EρJ^, where Eρ is a
minimal projection in 2Γ = %(<£)'.

2.1. Proposition. Let ρ be an irreducible morphism localized in Θ.
For each Φ e Eρffl there is afield operator ψ e %(Θ) such that

ψ*Ω = Φ (2.4)

ψA = ρ(A)ψ, AeM. (2.5)

Proof. From Eq. (2.3) we have

(Φ,AΦ) = (Ω,AΩ), AeM(0T -

For each F e *$(&)' we have by assumption a) and (2.3)

Eρm(F*F) Eρ = ω0om(F*F)Eρ = \\FΩ\\2 Eρ.

Hence
| | F Φ | | 2 ^ ΊΐEρF*FEρ = TrEρm(F*F) Eρ = d\\FΩ\\2

where d is the (finite) dimension of Eρ. As %(Θ)f Ω is a dense linear subset
of Jf, there is a unique bounded operator ψ* on J f such that

Clearly \\ψ\\ ^]/d and ψe %{Θ)" = %(Θ). By (2.3) we can also define on
J^Q an isometric map taking ρ(A) Ω to A Φ, A e 21. Since this map agrees
with ψ* on the set 21(0') Ω dense in Jf0, it agrees with ψ* everywhere
on JF0, i.e.

ψ*ρ(A)Ω = Aψ*Ω, AeSΆ.

IΪA is a local observable we deduce from assumption b) that ψ*ρ(A) = Aψ*.
Hence by norm continuity this holds for any A e 21 and taking adjoints
we get (2.5).

The properties of field operators fulfilling (2.5) will be studied in the
next section. Here we only note that the operator m(ψψ*) belongs to
2ί(0) and commutes with ρ(2I) by (2.5); consequently it is a multiple of
the identity. Since (Ω,m(y)ψ*)Ω)= | |y?*Ω||2= | | Φ | | 2 we have for a unit
vector Φ,

m(ψψ*) = I. (2.6)

7 This follows from [3; Theorem 6.1] and [2; Proposition 1.2]. The former result
requires that every subspace stable under 21 contains a cyclic and separating vector for
%(Θ). This is of course a consequence of the Reeh-Schlieder Theorem.
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2.2. Proposition. If F e $(Θ) is an irreducible tensor under the gauge
group, then

F = Bψ (2.7)

where B e 21(0) and ψe%(Θ) fulfills (2.5) for some ρ.

Proof. The vector F*Ω belongs to an irreducible subspace under 21.
Since the corresponding subrepresentation of 21 is equivalent to π 0 ° ρ
where ρ is a morphism localized in 0, there is a vector ΦeJ^0 such that

(F*Ω, AF*Ω) = (Φ, ρ(4) Φ), Λ e 21, (2.8)

Since ||^4Φ|| = ||F*AΩ|| for A e 21(0'), we can define a bounded operator

T on Jf0 by
TAΩ = AΦ, ,4 e 2I(0')

Since T commutes with 21(0') on «9f0 we see from (2.2) that Γ is the
restriction to Jf0 of an operator £* 6 21(0), so

Further by Proposition 2.1 there is a field operator ψ satisfying (2.5)
and (2.6) and leading from Jf0 to 2ΪF*Ω. The vectors F*Ω and ψ*B*Ω
belong to the same irreducible subspace under 21 and induce the same
state on 21 since, using (2.5), (2.6) and (2.8),

(φ*£*Ω, Aψ*B*Ω) = (B*Ω, ρ{A) ψψ*5*Ω) = (Φ, ρ(A) m(ψψ*) Φ)

= (Φ,ρ{A)Φ) = (F*Ω,AF*Ω).

Modifying B by a phase if needed, we conclude that

and by assumption b) we deduce (2.7).
Remark 1. Irreducible tensors Fσ e g(0) are obtained from any

Fe%(Θ) by averaging ocg(F) = %(g)F<%(g)~1 with a coefficient (φl9uσ(g)φ2)
of the irreducible representation σ:

Fσ = J (φ1? Mσ(gf) φ2) <χg(F) dμ(g)

where the integral converges in the weak topology. It follows that the
linear span of irreducible tensors in g(0) is weakly dense in g(0). To
see this recall that the finite linear combinations of coefficients of
irreducible representations of a compact group ^ form a subspace if
uniformly dense in the space # ( ^ ) of all continuous functions on ^.
Hence we may approximate the Dirac measure at the identity weakly by
functions from f. In other words there is a net of functions h^ei^ such
that

f{e) = lim f ha(g) f{g) dμ(g), feVW . (2.9)
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Taking / to be the continuous function (ψl9 ag(F) Ψ2) with Ψl9 Ψ2 e Jί?9

F E %(Θ), we get
F = weak lim Fa

α

where

is a finite linear combination of irreducible tensors under <&.

Remark 2. Since 9t(ί?) is a C*-algebra with identity, the operator B
of Proposition 2.2 is a linear combination of four unitaries Uj e 91(0),
j = 1,..., 4; setting ψy = t/ji/? we see that

ψjA = Qj(A)ψj9 ΛeSΆ (2.5)

where ρj=σu.ρ, i.e. g/(./4) = £//{?t<4) ί//1, is again a morphism localized
in Θ. Hence F is a linear combination of four field operators each
satisfying (2.5).

Combining the last statements we get

2.3. Theorem. The linear span of the field operators satisfying (2.5)
where ρ varies in Δ(Θ\ the set of morphisms localized in Θ, is weakly dense
in the von Neumann algebra

3. Intertwiners and the Gauge Group

For a localized morphism ρ we write

J (3.1)

From Proposition 2.1 we know that if no°ρ is an irreducible sub-
representation of the defining representation of 91 on &? then H(ρ) φ {0}.
On the other hand the converse is also true since 0 φ ψ e H(ρ) implies
0 φ φ*Ω e Eρ J f by the remarks following Proposition 2.1. The properties
of the subspace H(ρ) motivate the following definition:

3.1. Definition. A subspace Hc&ffl) is called a subspace of iso-
metries if every element of H is a multiple of an isometry.

If H is a subspace of isometries then the norm on H is induced by a
scalar product ( , ) and we have

ΨΪΨ2 = (Ψi>Ψ2)I> Ψi,ψ2εH. (3.2)

If H1 and H2 are subspace of ^(Jf7) we denote by HίH2 their inner
tensor product, i.e. the linear subspace of ^ ( J f ) generated by xp^2,
ψίeH1,ψ2eH2. If H1 and H2 are subspaces of isometries then H1H2

is a subspace of isometries. Further H1 H$ may be naturally identified
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with the set of finite rank operators from H2 to Hί9 since given ψ1

and ψ2,ψ e H2 we have

( 3 3 )

We call the support of a subspace of isometries H, the smallest projection
in J p f ) such that Exp = ψ, for all tp e H. It is clear that E = Σ ψtψf

i

where ψt runs over a maximal orthonormal set of H. Further Tψ = 0
if and only if TE = 0. Note that E is also the smallest projection majorizing
the projections of HH*. If / e HH* then H is finite dimensional with
support / and is also a maximal subspace of isometries.

3.2. Proposition. Let ρ be a localized morphism then H(ρ) is a subspace
of isometries of & (Jf).

Proof. If ψuψ2eH(ρ) then ψ?ψ2eW = <%(%)" by [3; Eq. (3.3)].
Hence ψfψ2Ω = λΩ and by assumption b), ψfψ2 = λl showing that H(ρ)
is a subspace of isometries.

We are not interested in all localized morphisms on 91 here but only
in an appropriate subset which could be used instead of the field algebra
to describe the structure of sectors contained in the defining representation
of 91 on jf. It will turn out that this is just the subset Δ' defined by

Δ' = {ρeA'.IeH{ρ)H{ρ)*}. (3.4)

3.3. Proposition. // ρl9ρ2eΔ' then ρίρ2^Δf and H(ρίρ2) = H(ρ1)H(ρ2).
Further ρ e A' if and only if ρ is a finite direct sum of irreducibles from A'.

Proof We have trivially Hiρ^H(ρ2)QH(ρ1ρ2). If ρuρ2eΔ' then
IsH(ρύH(ρύ*J=U2- Hence I e H{ργ) H{ρ2) H{ρ2)* H{ρx)* showing
that H(ρ1)H(ρ2) is a maximal subspace of isometries. Thus H(ρ1)H(ρ2)
= H(ρiρ2)

 a n d £ i £ 2 ^ ' . Now if Γ = (ρ 1 |Γ |ρ 2 ) 8 and ψeH(ρ2) then

TψA=Tρ2(A)ψ = ρ1(A)Tψ, AeSΆ (3.5)

thus Tψ e H(#i). Letting έ7~(ρ2, ρj denote the set of intertwiners from ρ2

to ρ1 we have

TH(ρ2)QH(Qί), Ter(ρ29Ql)9 (3.6)

, Qi) H(ρ2) H(ρ2r ^{ρ2, Ql)* £ H(Qί) H(Ql)* . (3.7)

Eq. (3.7) shows that A' is closed under finite direct sums and also under
subrepresentations. From (3.6) we deduce

TH(ρ)QH(ρ), Te^(ρ,ρ). (3.8)

8 We recall from [2;§IV] that this notation means that T is an intertwiner from
ρ2 to Qi i.e. that Tρ2{A) - ρx {A) T for A e ^ί.
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But if ρ E Δ\ H(ρ) has support / and is finite dimensional so ^ ( ρ , ρ) is
also finite dimensional and ρ is a finite direct sum of irreducibles. This
completes the proof.

We now specify the irreducibles of A' by using the gauge group.

3.4. Proposition. // if(ρ)Φ{0} then g^><xg(ψ) defines a continuous
unitary representation D(ρ) of ^ on H(ρ). Further if ρ is irreducible then
ρ e Δ' and D(ρ) is irreducible.

Proof. lϊψe Jf(ρ) and A e 21 then

otg(ψ) A = ocg(ψA) = ctg(ρ(A) ψ) = ρ(A) ocg(ψ)

hence ag(ψ) e H(ρ). Furthermore if ψ1,ψ2

e H(ρ) then

Thus ψ-+otg(ψ) defines a unitary representation D(ρ) of ̂  on H(ρ) which
is clearly continuous since

Now the action of ^ respects the identification of H(ρ) H(ρ)* with the
finite rank operators on H{ρ\ since ag is an automorphism. Thus the
projection onto a subspace of H(ρ) on which D(ρ) acts irreducibly must
correspond to a projection in H(ρ) H(ρ)* n 21. However H{ρ) H(ρ)* £ ρ(2iy
and if ρ is irreducible the only projections in 2Xnρ(2ϊ)' are 0 and /.
Hence, if ρ is irreducible, I e #(ρ)H(ρ)*, ρ e Δf and D(ρ) is irreducible.

3.5. Proposition. Let ρ1,ρ2eΔf then under the canonical isomorphism
of H{ρ2)H(ρ1f with the linear mappings from Hiρ^ to H(ρ2), $~{ρuQi)
is mapped onto the set of intertwining operators from D^) to D(ρ2)

Proof. Eq. (3.6) shows that iΓ(ρ l 5 ρ2) QH(ρ2) Hfa)*. Also

TθLg(ψ) = κg(Tψ), Te r(ρl9 ρ 2 ), ψe H(Ql), g e %

sothatD(Γ), the image of Γunder the canonical isomorphism, interwines
and D(ρ2). Conversely suppose Se H(ρ2)H(ρ1)* and that

ψeH(ρi),
then

, ψeH(Ql).
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Since Hfe) has support /, we deduce that

(3.11)

(3.12)

thus Se&~(ρί9ρ2) completing the proof.
From the last two results we see how the representations of 21 are

linked to those of &. A localized morphism ρezΓ provides on the one
side a representation πo°ρ and on the other a continuous unitary
representation D(ρ) of ^. In the same way an intertwiner T = (ρ2\T\ρί)
provides an intertwiner πo(T) between the representations %Q°Q1

and π o °ρ 2 and also an intertwiner D(T) between D(ρx) and D(ρ2).
The most potent way of expressing the properties of this correspondence
D is to draw on notions from category theory.

Let U(^) denote the category of finite dimensional continuous
unitary representations of the compact group ^. Thus the objects of
U(^) are the finite dimensional continuous unitary representations of ^
and the morphisms of U(^) are the intertwining operators between
these representations. The set of intertwining operators between two
representations has the structure of a complex linear space and the
adjoint operation is a conjugate linear contravariant involution leaving
the objects invariant. U (^) is furthermore a symmetric monoidal category9

with respect to the tensor product of representations. We let 2Γ' denote
the category whose objects are localized morphisms from Δ' and whose
morphisms are the intertwiners between these localized morphisms.
We know from [2] that 5~' has the same formal structure as U(^) with
the cross product playing the role of a tensor product.

3.6. Theorem. D : 3~' —>U(<^) is an equivalence of categories preserving
the linear structure, adjoίnts and tensor products.

Proof. D is clearly linear; further if T= Tx ° T2thmD(T) = D(T1)D{T2)
hence D is a functor. Also D(Γ)* = D(T*) so D preserves adjoints. Given
ψi e Ufa) and 2J = {ρ[ \ 7]| ρx) for i = 1,2 we have

Recalling the definition of the cross product of intertwiners [2; Eq. (4.5)]

and D preserves tensor products. Now from Proposition 3.5 the functor
D is full and faithful, hence to show that D is an equivalence it suffices
to show [4; Theorem IV 4.1] that every representation of U(^) is

9 The reader unfamiliar with category theory can consult for example Mac Lane [4]
for the basic definitions used here.
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unitarily equivalent to some representation from D(3Γ'). Combining
the remarks at the beginning of this section with Proposition 3.4 and
[3; Theorem 3.6] we see that D(3Γr) contains sufficient irreducibles.
However 3Γ' has direct sums by Proposition 3.3 and as D is a functor
preserving adjoints, D(3Γ') also has direct sums. As every object of

is a finite direct sum of irreducibles this completes the proof.

4. Statistics, Gauge Covariance and Commutation Properties

From the analysis in [2] we know that a simple sector, i.e. one
obeying Bose or Fermi statistics corresponds to a sector satisfying
duality. On the other hand it was shown in [3] that, in the presence
of a field algebra and gauge group, duality is characteristic of sectors
corresponding to one-dimensional representations of the gauge group.
This suggests a connexion between the statistics of a sector and the
dimension of the corresponding representation of the gauge group.

4.1. Theorem. The sector corresponding to σe<3 obeys parastatistίcs
of order dimσ.

Proof. Let ρ be an irreducible morphism from A'. Our aim will be to
compute the statistics parameter [2; Theorem 3.7] of ρ in terms of
d = dimD(ρ). This computation involves the conjugate sector so let
ρeΛ' be such that D(ρ) is a representation conjugate to D(ρ). Then we
have an antiunitary map ψeH(ρ)^>ψ e#(ρ), say, intertwining D(ρ)
and D(ρ). Take xpi9 ί = 1,2,... d to be an orthonormal basis in H(ρ)
and define

Σ
1 = 1

so that by the orthonormality of the ψt we have

R*R = dI. (4.2)

Using the orthogonality relations for the coefficients of irreducible
representations of 0, it is easily checked that

{ ' ) R ' H { ) (4.3)

Now R clearly intertwines i and ρρ and since it is also gauge invariant
it is an element of έ7~(ρρ, i). In fact because the identity representation
of ^ appears with multiplicity one in D(ρ)(χ).D(ρ), Theorem 3.6 implies
that the vacuum sector appears in the decomposition of ρρ precisely
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once. Hence every element of &~(ρρ, ι) is a multiple of R. Similarly

R*R = dI, (4.2')

m{\p'ψ) = — (ψ, ψ') R, ψ,ψre H(Q) . (4.30

Since ψ e H(ρ) we have

__ d d d

R*ρ(R)= £ ψfRψi= Σ (Ψi>Ψj)ψjΨ*= Σ
i l

d

Now Σ Ψiψf=h the support of H(ρ\ hence
ί = l

R*ρ(R) = I (4.4)

and similarly _
R*ρ(R) = I (4.40

Rewriting (4.4) using the intertwiners ε introduced in [2; Theorem 4.2]
will give us the information we need. In fact since ^{ρρ, ϊ) is one di-
mensional R = με(ρ, ρ) R where the complex number μ has modulus one
by (4.2) and (4.20. Also by [2; Theorem 4.3] ρ(R) = ε(ρρ, ρ) JR SO in place
of (4.4) we may write

R*ε{ρ,ρ)ε(ρρ,ρ)R = μI.

However ε(ρ, ρ) ε(ρρ, ρ) = ρ(ερ); this is a consequence of [2; Theorem 4.2]
but can also be seen by specializing to the case that ρ and ρ are spacelike.
Consequently

R*ρ(ερ)R = μI.

Comparing with [2; Eqs. (3.13) and (3.16)] we see that the statistics
parameter of our sector is given by

In other words our sector obeys parastatistics of order d=dimD(ρ)
completing the proof of the theorem.

In the course of the proof we have shown that μ = + 1 if ρ is a para-Bose
sector and μ = — 1 if ρ is a para-Fermi sector. Consequently

R = ±ε(ρ,ρ)R (4.5)

where the sign is just the sign of the statistics parameter.
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We remark that the statistical dimension d(ρ) of a localized morphism
ρezΓ defined in [2;§ VI] is just the dimension of D{ρ) because d(ρ)
and dim D(ρ) agree on irreducibles by Theorem 4.1 and both are additive
on direct sums.

We now examine the commutation properties at spacelike separations
of fields of irreducible tensor character under the gauge group to try
and uncover any intrinsic features determined by the statistics of the
sectors involved. It is known for example that if Fί9 F} e $ are spacelike
separated and lead to a simple sector, then

F1F2TF2F1=0 (4.6)

according to whether the sector obeys Bose or Fermi statistics. This
intrinsic commutation relation has the special feature that the left
hand side of (4.6) is anyway gauge invariant and hence in 9ί. In this
sense (4.6) may be generalized to arbitrary sectors:

4.2. Theorem. Let F1e%(Θί) and F2e%(Θ2) be irreducible tensors
of type σ and σ respectively, σ e <3. If Θ1 and Θ2 are spacelike separated
double cones we have

\aβ(F1F2+F2F1)dμ(g)^0 (4.7)

where the — or + sign is to be taken according to whether the sector
corresponding to σ obeys para-Bose or para-Fermi statistics.

Proof. Choose morphisms ρ and ρ localized in 01 and Θ2 respectively
and such that D(ρ) and D(ρ) are of class σ and σ respectively. Let
ψeH(ρ)->ψeH((ϊ) be an antiunitary map interwining D(ρ) and D(ρ).
By Proposition 2.2 we can choose 2^6 91(0;), i = l , 2 and \p,\p'eH{ρ)
such that

Fί=Bίψ', F2 = B2ψ.

By our choice of ρ and ρ and by locality we have ρ(B2) = B2,
and BίB2 = B2Bί. Hence using (4.3) and (4.3') as well, we get

Applying (4.5) and noting that by [2; Theorem 4.2], ε(ρ, ρ) = 1 if ρ and ρ
are spacelike separated the theorem follows.

Note that if J ^ e S is an irreducible tensor of type σι , i = l , 2 the
expression (4.7) vanishes identically unless σ1(x)σ2 contains the identity
representation, i.e. unless σ2 = σ1.
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5. Wave Function Permutations

Let g-+uσ(g) be a unitary representation of ^ in the class σ e l
acting on the d-dimensional Hubert space Jί?σ. Given QEΔ' with D(ρ)
of class σ we can define a unitary map ψ of Jfσ onto H(ρ)c gf which
interwines uσ and D(ρ):

ψ:ve ^σ-+ψ{v) e ί f (ρ) , <*β(ψ(υ)) = v>Kfo) *>) C5-1)

We can regard ρ e z Γ and veJ^σ as the generalized wave function and
"isospin" data of the state vector ψ(v) Ω.

Now let {?!,...,{?„ be morphisms in class ρ localized in mutually
spacelike double cones, and UJESΆ a unitary intertwining operator
between ρ and ρ ;

(5.2)

We define the unitary mapping ψj of J^σ onto H(ρj) intertwining uσ

and Dfaj) by
i l . (5.1')

By Proposition 3.3 the space J«fσ (x) g) J^σ (n factors) is mapped unitarily
onto H(ρ1... ρn) by the tensor product m a p

Vp:v1®...®vn-+ψ^ί\v1)...ψ^(vn) (5.3)

where p E P(n\ the permutation group of n objects with identity e.
We say that ψp is obtained from ψe by a wave function permutation.

The full permutation involving the gauge group indices as well is given by

where p -> w(p) denotes the unitary representation of P(n) on J^σ

such that w(p) ^ (x) <g) ϋπ = ϋ p - 1 ( 1 ) ® ®vp- i(π). If g w e r e made up of
Bose and Fermi fields with normal commutation relations we would have

Ψpiί)(vp(ί))... Ψp{n)(vp(n))=±ψ1(vί)... ψn(υn)

where we have a positive sign for a para-Bose sector and sign (ρ) for a
para-Fermi sector. Equivalently

Wp = We° ux(p) (normal case) (5.4)

where uλ(p) = u(p) if λ = λ(ρ)>0 and t/A(p) = sign(p) w(p) if λ = λ(ρ)<0.

5.1. Theorem. 77ze wave function permutations are induced by a
unitary representation V of P(n) on Jfσ (g)
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The representation V depends only on the sector ρ and is unitarily equivalent
to uλ. Further Vcommutes with the representation of^on J^σ® •

Proof. One sees directly that ψp(vί®--®vn) = U(p~ί)ψ(v1)...ψ(vn)
where Uip'1) = Up{ί)ρ(Up(2)) ... ρ " " ^ ^ ) . Therefore setting η(p)

1 h

Comparing with the representation ε(

ρ

n) of P{n) in the rc-fold product of the
sector ρ,ε(

ρ"
)(p)= U{pf U{e) [2; (4.11) and (4.17)], we see that

η(p)=U(e)ε^(p)U(er (5.7)

so that η is a unitary representation of P ( n ). Clearly

η(p)e^(ρί ...ρn,ρ1 . . . ρ j .

To prove the Theorem we need

5.2. Lemma. The relation

Bψe = ψeoB, BeΓ{Q1...ρn9Q1...Qn) (5.8)

defines a ^-isomorphism of ^~(ρ1 . . . ρ n , ρ 1 . . . ρ n ) onto (uσ(x) (x)u
Further

φ(B)=j^TrB I (5.9)

where φ = φn... φ1 and φj is the left inverse of ρ^j— 1,2 ... n.

Proof. The first assertion follows immediately noting that ψe is
a unitary map of M?

σ® -®^σ onto H(ρί ... ρ j and comparing with
Proposition 3.5. If ψl9 . . . , φ d is an orthonormal basis in H(ρ\ the map

AeW^>φ(A)= ~ t Ψ?ΛΨi (5.10)
a i=ί

is a linear positive identity preserving map of 91 into 91 such that
φ(Aρ(B)) = φ(A)B, A,BeSΆ. By [2; Theorem 3.9] if ρ is irreducible, φ
is the unique left inverse of ρ. We may take \pj = \p(e^ where el9...,ed

is an orthonormal basis in J^σ. We then have by (5.8)

= Σ Ψn(einr...ψ1(eil)*Bψx(eii).:ψn(ein)
ii, -in

and comparing with (5.10) we get (5.9).
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Remark. We note in passing the relations

') = (ψ9ψ')φ(A)

m(ψ'Aψ*) = j-(ψ,ψ')ρ(A) (5.11)

A e 21, ψ, ψ' e H{ρ).

The first of these generalizes (5.10).
To complete the proof of Theorem 5.1 define V(p) = ή{p) and note

that (5.5) follows trivially from (5.6) and (5.8). If φ0 is the left inverse of ρ
then from (5.7) and [2; Eq. (5.1) and Lemma 5.4]

Φ(Φ)) = ΦU^iP)) = ωn

λ(p) = -jr Truλ(p). (5.12)

Hence Fand uλ have the same trace by (5.9) and so must be equivalent.
The matrix elements of V{p) in the basis eh® "®ein are given by

ι(S) ' ®ejJ = ψfn...ψfιε^(p)ψjl ψjn (5.13)

where we have used (5.Γ) and (5.7). If W = (ρ'| W|ρ) is a unitary inter-
twiner, then replacing ρ by ρ' and ψj by Wψj leaves (5.13) unchanged
by [2; Eq. (4.18)]. Hence V depends only on the sector ρ.

Remark. Let K be a unitary o n ^ 0 (χ)Jζ such that

Kuλ{p)=V{p)K, pePW

so that by (5.5)

ΨpoK = ΨeoKuλ(p) (5.14)

If K were induced by a Klein transformation ψeg-^ipeg, i.e. if

then by (5.14) fields of irreducible tensor character σ in g would hav.e
normal commutation relations.

Theorem 4.2 described an intrinsic feature of the commutation
relations between spacelike separated fields transforming according
to conjugate representations of ^. Theorem 5.1 has given us an intrinsic
feature of the commutation relations between spacelike fields transforming
according to the same representation of ̂ . The wave function permutations
are described by the unitary representation V of P(n) whose equivalence
class is determined by the statistics parameter λ.

We conclude with some remarks on the universality of the concept
of statistics for which Theorem 5.1 provides further evidence. There are
two ingredients involved in statistics; the first is the more primitive
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concept of a product of states. Here we have two choices, we may use
the product of localized states as is done in [2] or we may use the
asymptotic product of scattering states and so arrive at particle statistics.
Which product we take will have no effect on the statistics assigned to a
sector because scattering theory relates the asymptotic product to the
product of localized states whose localization centres are far apart.
The second ingredient is to define a product of state vectors. In [2] as in
elementary wave mechanics the product of state vectors is chosen to be
compatible with the product of states. Permuting the order of the
product of state vectors provides a representation e(j° of the permutation
group commuting with the observables.

However in the presence of a field algebra it is customary to define
a product of state vectors in terms of a product of field operators.

ψ1Ω x ψ2Ω = ψί\p2Ω.

In this way the statistics is analyzed in terms of the commutation relations
of fields. Setting

\p> φ(i).ψpiH)(vJΩ (5.15)
we have

P,qeP{n) (5.16)

so that the wave function permutations are unitarily implemented.
However since η(p) e 51 we see that unless we have ordinary Bose or
Fermi statistics the state vectors \q) do not represent the same state over 91.
In other words the product of these field operators does not induce the
commutative product of the corresponding localized states. On the
other hand by Theorem 5.1, the wave function permutations yield the
correct statistics. The consistency of the second-quantized version
of parastatistics involving wave function permutations and the first
quantized version involving permutations commuting with the observ-
ables was first shown by Stolt and Taylor [5]. They remarked that
these two kinds of permutations were implemented in different Hubert
space representations where the same states were represented by spaces
of state vectors of different multiplicity. The same feature can be seen
here: ε(j°(p) operates in the representation π 0 ° ρ

n and η(p) in the defining
representation on Jtf where the multiplicities are in general quite
different. The wave function permutations \q}-^\pq} are precisely
the permutations which arise in [6] in comparing theories described
in terms of para-Fermi fields with theories described as here in terms of a
field algebra and a gauge group. These wave function permutations
arise too in the description of parastatistics in [7] in terms of "distinct
but dynamically indistinguishable particles". This discussion indicates
the basic compatibility of the various approaches to parastatistics.

24 Commun. math. Phys., Vol. 28
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