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Abstract. The recently derived Fortuin, Kasteleyn and Ginibre (FKG) inequalities for
lattice gasses are investigated for higher order Ising spin systems and multi-component
lattice gasses. Conditions are given for the validity of the FKG inequalities for higher
order spin systems with Hamiltonians of the form used recently as models for various
physical systems, e.g. He® — He* mixtures. We also investigate various inequalities for
binary lattice gases and show how these can be carried over to continuum systems.

I. Introduction

In recent years a number of physical phenomena have been studied
where systems consisting of Ising type particles of spin one, §;=2,0, —2,
or higher spin have been used as models. Some examples of such phe-
nomena are a) the phase transitions of U0, [1] and DyV0, [2], b) an-
nealed alloys of magnetic and non-magnetic atoms [3], c) the separation
of components in a classical mixture [4, 5], and d) the A-transition and
phase separation in He® — He* mixtures [6]. Higher order spin systems
have also been investigated in order to gain insight into the general
nature and existence of phase transitions [7].

An interesting question in these investigations is the extent to which
the many results known for simple spin  Ising systems, S; = + 1, with
ferromagnetic interactions remain valid for these higher spin systems.
This question was partly answered by Griffiths [7] who showed that
every higher order Ising spin system can be “mapped” into some spin %
Ising systems. Higher spin systems with purely ferromagnetic interactions
were reduced to spin % systems with the same property. This showed
immediately that the Griffiths [8], Kelly and Sherman [9] (GKS) ine-
qualities for spin % Ising systems with ferromagnetic interactions re-
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mained valid also for higher spins. Unfortunately though most of the
higher spin systems used as physical models do not have all their inter-
actions ferromagnetic. The GKS inequalities do not therefore apply to
these systems. Recently however Fortuin, Kasteleyn, and Ginibre [10]
(FKG) derived some very interesting new inequalities for certain lattice
gases. The FKG inequalities apply in many cases in which the GKS do
not (and vice versa). In this note we find conditions for the validity of
the FKG inequalities for higher spin systems with Hamiltonians of the
type considered in the physical models.

We find for example that the FKG inequalities can hold for multi-
component lattice gases even in the presence of extended hard core
potentials between particles of different species on the lattice. This per-
mits an extension of these inequalities to continuum systems which may
be considered as limiting cases of lattice systems. An example of such
a system is the Lebowitz-Gallavotti [11] lattice model which becomes
the Widom-Rowlinson [12] continuum model. (The existence of phase
transitions in such continuum models was recently proven by Ruelle [13],
and Lebowitz and Lieb [14].) We also show that some of the inequalities
remain valid even for systems with extended hard core interactions
between particles of the same species. These too are extended to con-
tinuum systems.

We begin in Section 2 by introducing a general lattice spin system
Hamiltonian and also some general notation. In Section 3 we derive
sufficient conditions on the interaction coefficients of this Hamiltonian
for the FK G inequalities to hold. We then show how the spin one system
becomes, through a particular choice of interaction coefficients iso-
morphic to a binary lattice gas having extended hard core exclusion
between A and B particles; S;=2(S; = — 2) denotes an A-type (B-type)
particle. This system is designated as the A — B system and satisfies the
FKG inequalities. In Section 4 we consider binary systems which have
extended hard core exclusion between like particles as well as unlike
particles. For these systems neither the GKS nor FKG inequalities are
valid. We show however the validity of a more restricted set of inequalities.
In the concluding section, Section 5, the inequalities of the previous
sections for binary lattice systems are extended to the corresponding
continuum systems.

II. Description of the General System

The general system which we consider in the following sections con-
sists of an arbitrary lattice in v dimensions, enclosed in a region ¥ and
containing |V| lattice sites. On each site there is an Ising spin variable
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S;, where S; can take on the values p, p—2, ..., —p+2, — p, where p is
a positive integer. The Hamiltonian of this spin system which we shall
consider has the form

H({SY=— Y JG)S:S;— Y v@)SEST— L hDS;— Y u(@)S? ijeV
= = ' ' 2.1)

where h(i) may be thought of as an external magnetic field. Setting
S;=2n,—p, n;=0,1, ..., p this system is equivalent to a lattice gas sys-
tem where each site may be occupied by 0 to p particles.

For the special case where p=3 and J(i, j), y(i, j) different from zero
only for nearest neighbor pairs we have the system used as a model for
DyV0,. If we consider the case where p=2 we can with proper choices
of the four coefficients, J(i, j), (i, j), k(i) and u(i), in Eq. (2.1) obtain the
other lattice systems mentioned in the introduction.

Throughout the paper we define I as the set of all (2p + 1)!"! states
of particular system under consideration and we denote specified states
by x, y € I. The thermal average, indicated by brackets, of any function f
defined on I' is

O=Zyt Y f(x) e PH® 22
xel
where
Zy=Y e FH® 2.3)
xell

I1. GKS and FKG Inequalities

As mentioned in Section 1 it follows from the general results of
Griffiths [7] that the GKS inequalities

(S458> — <847 {Sp>20 (3.1)
where S, =[]S;, Sg=[]S:, 4, BCV, hold for Ising systems with arbi-

icA ieB
trary spins whenever all the coefficients of the spin variables in (2.1) are
non-negative. (By symmetry they also hold when h(i)<0 for all ie V
and the other coefficients are non-negative.)

We turn now to the conditions on the coefficients of (2.1) necessary
for the FKG inequalities to hold. We shall need the following notation:
For any x, ye I let S;(x), S;(y) be the spin on the i-th site, i € V, for the
x and y states respectively. We define x = y if for every ie V S;(x) = S,(y).
This definition establishes I' as a partially ordered set. Next we define
f(x) to be an increasing (decreasing) function on I' if f(x)= f(y)
(f(x) = f(y)) for any two states x and y such that x=y. The FKG ine-
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qualities and the conditions on (2.1) for which they are valid may now
be stated as follows:

Theorem 1. Let f and g be both increasing (decreasing) functions
onT. Then

Sfg>—<f><g>=20 (32
J@)z@p—22 @)l forall ijeV.

Proof. The result follows from Proposition 1 of Ref. [ 10] after showing
first that the states of the system form a distributive lattice and second
that the stated conditions on the J(i,j)’s and y(i,j)’s are sufficient to
insure the validity of the inequality

H(x V) p(x A y) 2 u(x) m(y) (3.3)

where pu(x)=exp[— fH(x)] and x V y (x A y) signifies the state which is
the least upper bound (greatest lower bound) of the states x and y. The
least upper bound, x V y, is formed by taking the maximum spin between
S;(x) and S;(y) for all ie V and x A y is formed by taking the minimum
spin ie., S;(xV y)=max[S;(x), S;(»)] and S;(x A y)=min[S;(x), S;(»)].

Fortuin et al. [10] noted in their paper that the states of a lattice
gas having as many as p particles on a site or the corresponding states
of the spin-p/2 system form a distributive lattice. The proof is simple.
By the definition we see immediately that the states form a lattice. To
prove the distributive property of I' we must show that for any x, y,ze I’
the operations satisfy either of the two equivalent conditions

xA(yVz)=(xAy)V(xAz), (34)
xVyAzZ)=xVy)AxVz2). (3.5

whenever

In terms of the spin system we must have, choosing to verify the first of
the two conditions, that for any site ie V

min {S; (x), max [S;(y), S;(2)]}

. . (3.6)
= max {min[S;(x), S;(y)], min[S;(x), S;(2)]} .

The S;(x), S;(), and S;(z) have 13 possible orderings (1 where S;(x)
= §;(y)=S,(z), 6 where two of the spin values are equal, and 6 where all
three spin values differ) and it is then a somewhat tedious but trivial
matter to verify the correctness of Eq. (3.4). Since the distributive property
holds for each site i€ V it holds for all V and therefore, the set of all
states, I, forms a distributive lattice.

We now show that the condition J(i,j)=(2p—2)?|yG,j)| is the
maximum restrictive condition imposed by the inequality (3.3). First we
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note that when x>y, i.e. two ordered states, then (3.3) holds as an
equality since u(x V y)= pu(x) and p(x A y) = u(y). Next we must consider
two unordered states x and y. The one-body interactions in (2.1), (i) S;
and u(i) S, have no effect on the inequality (3.3). This is because each
S;(x), S;(y), S?(x) and S?(y) appearing on the right hand side of the
inequality also appears on the left hand side and hence cancel each other.
We are then left with the pair interactions J(i, j) S;S; and y(i, j) S? S and
(3.3) becomes

ABCD = E(x)E(y), 3.7)
A=expf Y. JG,j) (min[S,(x), 5,()]) (min[S;(x), 5;(»)])
B=expf Y. 3(i,J) (min[S;(x). 5,(»)])? (min[S;(x). S;0))?
E@=expB{ £IG.)S(2) S0+ T90) @S @), z=x or .

C and D are obtained from A4 and B respectively by substituting max
for min in their definitions.

The inequality (3.7) will clearly be established if it holds for each term
in the sum over pairs in the exponents. Looking now at a particular pair
of sites i, j the inequality in (3.7) becomes an equality if S;(x) = S;(y) and
S;(x)= S;(y) or S;(x)=S;(y) and S;(x) < S;(y). Therefore we need only
consider two sites i,j € ¥ where these sites are unordered for the states x
and y. Let S;(x)=a, S;(x)=b, S;(y)=c, and S;(y)=d. Since the pairs of
sites are unordered for the states x and y we must have a<c and b>d
or a>c and b <d. In either case the required inequality is,

eBIii)ad GBI ijbe GBy(if)a?d? By (ij)b2c?

(3.8)

> P (i)ab GBI (ied oBr(Na2b? B y(iNe2d

This gives
JG, )z —(a+c)(b+d)y(,)). (39)

We must now vary a, b, ¢, and d subject to the conditions a>c and b <d
or vice versa and thereby obtain conditions on the coefficients J(i, j) and
(i, /). The most restrictive condition is obtained when the value of the
right hand side of Eq. (3.9) is at its maximum value. For y(i, j) negative
the maximum value of the right hand side of (3.9) occurs when a=p,
b=p—2,¢c=p—2and d=p. For y(i,j) positive the desired condition is
a=p,b=—p,c=p—2,and d= —p+ 2. Hence (3.3) will hold whenever
J(@i,/)=(2p—2)*y(i,j)l, and we have proven Theorem 1.

We note that the FGK inequalities are satisfied for values of the
interaction coefficients much different from those necessary for the GKS
inequalities. There are no conditions on the one-body terms u(i) and
h(i) and we are able to consider cases where y(i, j) is negative.
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At this point we wish to consider explicitely a particular set of values
of the interaction coefficients for a spin one (S;=2,0, —2) system. Let
us interpret S; = + 2 (— 2) to represent the presence of an A-type (B-type)
particle at the i-th site while S;=0 corresponds to the i-th site being
unoccupied. For the spin-one case the conditions of Theorem 1 require
that J(i, ) =4 y(i,j)|. We now set J(i,j)= —4y(i,j) =0 for all |r(i,j)| <d
where r(i, j) is the vector between the i-th and j-th sites. For sites i and j
with |r(i, j)| > d we make no restrictions on the values for J(i, j) and y(i. )
other than that the inequality J(i,j) =4 |y(i,j)| is satisfied. The Hamil-
tonian (2.1) now assumes the form

H=—X"J(i,j) S;8;(1 =3 8:8)—Z"J(i,)) 5:5;

— 2"9(i,j) 7§} — Zh(i) S;— Zpu(i) S? (10
where 2’ and 2" indicate summations over all pairs of sites for which
[r(G,j)|<d and |r(i,j)|>d respectively. Letting now J(i,j)—> oo for
[r(@i, j)| =< d we obtain a system in which A and B particles exclude unlike
particles from a sphere about their centers of radius d. We shall denote
this as the 4— B system. If J(i,j) and y(i, j) are zero for |r(i, )| > d then
we have the lattice gas system for which Gallovatti and Lebowitz have
proven the existence of a phase transition. This system has as it’s con-
tinuum analog the Widom-Rowlinson model. We shall prove the exist-
ence of the above correlation inequalities for this continuum model in
Section 5.

IV. Restricted Inequalities

We shall now consider a spin-one or binary lattice gas system in
which there are extended hard cores of radius d not only between 4 — B
pairs but also between A — A and B— B pairs. We shall label such a system
the A'— B’ system. This system may be obtained by letting y(i, j)— — o
in the Hamiltonian (2.1) for |r(i, /)| £ d. For the A’ — B’ system neither the
GKS or FKG inequalities are valid. Nevertheless we will prove the
existence of a restricted set of inequalities for this system whenever the
interactions for |r(i, /)| > d satisfy the conditions for the applicability of
the GKS or FKG inequalities to spin- systems.

For any “permissable” configuration, x, let R(x)C V be the set of all
sites occupied by an A(S; = + 2) or B(S; = — 2) particle. By “permissable”
we mean configurations where no particles are within a distance d of one
another. Note the transformation x— R(x) is many to one. For any
function f of the spin variable or of the occupation numbers in lattice
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gas language the thermal average can be written as

fr=z271 ) Y, fetH, 4.1)
RCV  Sy=#2
«=1,2,...,|R|

where |R| is the number of sites in R. This may be rewritten as

(fr= 2 PR {Z(R)_1 > fe_’”’l= Y. PR(f;RY. (42
RCV Se=12 RcCV
a=1,2,..,|R| J
Here {f; R) is a conditional thermal average of f when we are given the
set R of occupied sites, P(R) is the probability of having the R sites
occupied,
PR)=Z7') e PO =Z(R)/Z. (4.3)

The prime indicates a summation only over those states x which have
the set R as the occupied sites.

It is seen from (4.2) that {f: R) is the average of f with respect to
a spin } Ising system, S;= + 2, ie R. Hence if the interaction J(i, )= 0
for all i, j € R then the FKG inequalities are valid for this subsystem and
if in addition k(i) >0 (or h(i) <0) for all i e R then the GKS inequalities
too are valid. (Note that there is no constraint on the form of y(i, j) or
u(i) in (2.1).) These inequalities are of the form

{fg;R>—<{f;R><g;R>=0. 4.4

where f and g have the form appropriate for the different inequalities.
We shall use (4.4) to derive linear inequalities of the form

(F;R)>Z<G;R) 4.5)

where F and G are new functions of the states x. When (4.5) holds for
all R V,(P(R) = 0) we can multiply both sides of (4.5) by P(R) and sum
over all R to obtain the desired result

(F)2<G). (4.6)

We now give an example of such an inequality starting with the FKG
inequalities and therefore only require that J(i,j)=0 for all i,jeV,
r(i, /)] > d. We define (g, (i)) (<e5(i)>) as the density of A(B) particles on
the i-th site. In terms of the spin variables, S;, we have

Si(Si+2)

_ Si8i—2)
g = :

0= and g(i) =~ @)
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Since g4 (i) and —gg(i) are increasing functions of x we have for any RCV,

and ea(®) eg(); Ry = <e4(i); R) <ep(); R> (4.8a)
ep(i) 04(j); R> = <ep(D); R <eali s R . (4.8b)
Multiplying the two inequalities together and then using the FKG
inequality .
<ea(D) €4(); R) 2 <e4(i); R) <e4(); RY (4.9)

and the similar inequality for ggz(i) and gg(j) we have
<o) a(); R <eg(i) 04(); RY = <ea(i) 04(); R) <ep(i) ¢p(); R) . (4.10)

Until now we have placed no restriction on the one-body interactions
(i) and h(i). We now restrict ourselves to the case of a uniform periodic
system, i.e. h(i)=h, u())=u, i€V, and the potentials J(i,j) and y(i,j)
translationally invariant and satisfy periodic boundary conditions (when
h(i) =0 these requirements of uniformity are not necessary). With these
restrictions we have then that the two thermal averages on the left side
of inequality (4.10) are equal.

Hence we have

<ea(® ep(); RY = {04 (i) 04(); RY <op(i) 05(j); RD}*
<3{<ea() 24(); R> +<ep(D) 05(); RO} .

Multiplying (4.11) by P(R) and then summing over all possible R we
obtain

(4.11)

ea() e5()> =3 [<ea() e4()> + <es() 25()>]1 - (4.12)

~ Clearly other inequalities may be derived using these procedures the
main requirement always being to first obtain an inequality for the sub-
system R in the form of Eq. (4.5).

We note that for systems where in addition to the 4’ — B’ system'’s
hard core exclusion of radius d we also have an additional exclusion
between unlike, 4 — B, pairs to a greater radius which we call D then the
inequalities of (4.6) still remain valid if we begin with the FKG ine-
qualities in (4.4). The inequalities hold for such systems because the
additional hard core interaction is a result of requiring J(i, j) = 4y(i, j)
and then letting J(i, j)— + oo for d <|r(i, j)| £ D and this is clearly allow-
able for the FK G inequalities.

V. Inequalities for Continuum Systems

In this section we make use of the results for the lattice systems of
Sections 3 and 4 to derive similar inequalities for continuum systems.
The transition from lattice systems to continuum systems is accom-
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plished by considering a sequence of cubical lattices with spacing ¢ in
a given domain ¥ C IR’ and then letting the lattice spacing, J, go to zero
while keeping the interaction potentials fixed as a function of r;; the
Euclidian distance between the i-th and j-th sites.

We consider a continuum system contained in an open bounded set
(domain) ¥ CIR". The system contains two molecular species (the case
where more than two species exists can be treated in a similar fashion)
labeled by a = — 2, 2 where o =2 will denote on A particle and o= —2
a B particle. Each of the molecular species has a fugacity, z,, which may
be a function of position and is given by

z,(N=expf[ur)o®+h(r)a], o=-22,reV. (5.1)

There is also an interaction potential ¢,, (Jr —¥'|) between a molecule
of species o at position r and a molecule of species o at ¥’ which is given by

Gue (IF =¥ = = J(r = ¥]) oo = y(lr =¥ ) 2? o* . (5.2)

We assume at this point that the functions exp — f§ ¢, (|[r —¥'|) and z,(r)
are piece-wise continuous functions and satisfy the usual stability con-
dition necessary to insure the existence of thermodynamic behavior, i.e.,
the total potential energy for an arbitrary configuration of N particles
has a lower bound of the form — BN, where B < oo and is independent
of N. It is apparent with these definitions of the one and two-body
interactions that this system is the continuum analog of the spin-one
lattice system with the Hamiltonian of Eq. (2.1).

To make more explicit the correspondence between the lattice gas
and continuum system let X specify a configuration of the continuum
system and let w be an open set in IR’, w C V. Define now the function
5.(X; o, w) to equal the number of particles of species o which are in @
when the configuration of the system is specified by X (cf. Ruelle [15]).
In a similar way we define for the lattice gas the function

SJ (x’ o, O)) = Z Qa(l)
where g, (i)=1 if the spin variable on the i-th site of w is equal to « and
is zero otherwise (g, (i) = g4 (i), 0_ , (i) = 05 (i) given by Eq. (4.7)); the sum
is over all lattice sites i which lie in the domain w hence s;(x; , w) depends
on the spacing § of the lattice. It is now easily verified that under the
conditions specified earlier the expectation value, in the continuum
system grand ensemble, of any continuous function of the s,(X; o, w)’s,
S({s.(X; o, w}), is equal to the limit, as § -0, of the expectation value of
S ({s5(x; o, w)}). The Hamiltonian H(x) of (2.1), with S;=2,0, —2, to be
used in (2.2) and (2.3) for obtaining the expectation value of f({s;(x;0,®)})



310 J. L. Lebowitz and J. L. Monroe:

is related to the continuum functions defined in (5.1) and (5.2) in the
following way

JGN=JIri=rl),  y@G)=y(r—rD, hO=h@F), (63
ui)=p(r)+ B~ In " (5.4)

where r; and r; are the position vectors of the i-th and j-th lattice sites
respectively and with the introduction of the logarithm in (5.4), (2.2), and
(2.3) become Riemann sums of f(x)e #H® and e #H® respectively.
These Riemann sums go over into the appropriate continuum integrals
when 6 —0.

It is seen now that whenever J(r)=4|y(r)] then the FKG lattice
inequalities hold also in the continuum system for the expectation values
of functions f({s.(X;a, w)}) and g({s.(X;a w)}) for which the corre-
sponding lattice functions are monotone functions of x.

As an illustration of these inequalities we first note from (4.7) that
s5(x;2, w) =0 is an increasing function and s;(x, —2,w)=0 is a de-
creasing function of x. Hence, defining, in the usual way [15], the dis-
tribution function n;, ;, (X, ..., X;,, ¥1, ..., ¥1,5 {z,(r)}, V) as the average
joint density of having [, particles of species B at positions x;, ..., X;,
and I, particles of species A at positions y,,...,y,,, x;e V and y;eV,
we have whenever J(r) = 4|y(r)|

< Il—l[ SC(X; - 2: wi) 11—2[ Sc(X; 2’ (U;)>

i=1

= [dx,... [dx, [dy;... [ dy,m,,(xs ...y, {z,()} V)

wy, of i,

§<ﬁsc(X: —2,wi)>< ll_zlsc(X;2,w;> (5.5)

i=1 =1

= [dx,... [ dx, jldy1 e dygm (s xs (2,0} )

Mo, (V15 -5 Y13 {21} V)
where the sets {w,}, {w]} are assumed to be disjoint. Since (5.5) holds for

all such domains {w;}, {w;} and the distribution functions exist and are
piece-wise continuous (for a fixed volume V) we must have

nll,lz(xl’ e X Yo ees J’12)§ ”zl,o(xp eey le) ”0,12(."1a cees .sz)- (5.6)

The inequalities (5.6) apply in particular to the Widom-Rowlinson
model and similar systems discussed by Lebowitz and Lieb [14] and by
Stillinger and Helfand [5].
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When there are hard core interactions between particles of the same
species in the continuum system we are still able to obtain the modified
inequalities of Section 4. We expect that the inequalities for continuum
systems can be used, as they have been used for lattice systems, to
establish the existence of the infinite volume limit of correlation func-
tions in certain cases and to obtain inequalities between critical
exponents. We plan to investigate this further.
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