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Abstract. The inverse scattering problem is considered for the radial s-wave Schro-
dinger equation with the energy-dependent potential V+(E, x)= U(x) + 2\/E Q(x). (Note
that this problem is closely related to the inverse problem for the radial s-wave Klein-
Gordon equation of zero mass with a static potential.) Some authors have already studied
it by extending the method given by GeΓfand and Levitan in the case Q = 0. Here, a more
direct approach generalizing the Marchenko method is used. First, the Jost solution
f+(E, x) is shown to be generated by two functions F+(x) and A+ (x, ί). After introducing
the potential V~(E, x)= U(x) — 2]/EQ(x) and the corresponding functions F~(x) and
A" (x, ί), fundamental integral equations are derived connecting F+(x\ F~(x), A+(x, t)
and A~(x9t) with two functions z+(x) and z~(x); z+(x) and z~(x) are themselves easily
connected with the binding energies Eπ

+ and the scattering "matrix" S+ (E), E > 0 (the input
data of the inverse problem). The inverse problem is then reduced to the solution of these
fundamental integral equations. Some specific examples are given. Derivation of more
elaborate results in the case of real potentials, and applications of this work to other inverse
problems in physics will be the object of further studies.

1. Introduction

The problem of describing the interactions between colliding particles
is of fundamental interest in physics. In many cases, a description can
be carried out through a well known theoretical model. To this end, the
following "inverse problem" is investigated: having determined some
important quantities from experimental results, what are the values of
the parameters occurring in the chosen model which reproduce them?

In particular, we are interested in collisions of two spinless particles,
and we suppose that the s-wave scattering "matrix" S(E) (defined for all
energies E > 0) and the 5-wave binding energies En are exactly known
from collision experiments.

We can try first to find a radial static potential V(x) (x ̂  0) which
yields the given S(E) (E > 0) and En through the radial s-wave Schro-
dinger equation. We recall that this equation is written as follows, in the
center-of-mass of the two particles, and with the usual reduced variables :

/ + [£-F(x)]j; = 0, x ^ O . (1.1)
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The above inverse problem has been extensively studied [1]. The most
powerful methods of investigation are the GeΓfand-Levitan [2] and
Marchenko [3] ones. They both use the fact that (1.1) is an eigenvalue
equation. However, the Marchenko method is much more direct than
the GeΓfand-Levitan one which needs the introduction of a spectral
function not easily connected with the input data.

More generally, we can try to describe the interactions through the
equation

j,+'' + [E-7+(E,x)]j,+ =0, x^O, (1.2)

in which the potential V+ (E, x) depends on energy in some way. In
particular, in this paper, we choose the following form for the energy-
dependence:

F+(E,xHC/(x) + 2]/£β(x), x ^ O ; (1.3)

"I/E" means the determination of the two-valued square root function,
defined as (note the negative sign)

(1.4)

U(x) and Q(x) are complex valued functions. We note that, with the
additional condition U(x)= - β2(x), (1.2) reduces to the Klein-Gordon
5- wave equation with the static potential Q(x), for a particle of zero mass
and of energy |/E.

It is useful to introduce the equation

jΓ'' + [E-7-(E,x)]jΓ=0, x ^ O , (1.5)

with the potential

7-(£,x)=[/(x)-2]/EQ(x), x ^ O ; (1.6)

i.e., we introduce the other determination "— |/E" of the two-valued
square root function. Setting

* = !/£, (1.7)

we write (1.2) and (1.5), (1.3) and (1.6), in the equivalent forms

y±rf + [k2-V±(k9x)']y±=09 x^O, 1 (1.8a)

V±(k,x)=U(x)±2kQ(x)9 x ^ O , (1.8 b)

where, because of our determination "j/E", Im/c<0 or k real positive.
However, (1.8 a) and (1.8 b) have a meaning for every complex fc; we
sometimes use this fact in our work.

1 The indices ± correspond to each other according to their position. This convention
will be used throughout.
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In Section 2, assuming U(x), Q(x) and Q'(x) continuous, and xU(x),
Q(x) and xQ'(x) integrable for x ̂  0 2, we examine the analytic properties,
in the complex /c-plane, of the regular solution φ± (fc, x) and of the Jost
solution f± (fc, x) of (1.8); we also derive some useful bounds3. Assuming
furthermore in Section 3 that the Jost function f± (k) has only non real
simple zeros in the half-plane Im/c ̂  0 [4], we define as in the case Q = 0
the binding energies E* and the scattering "matrix" S±(k) (fc>0); we
note a "completion formula"4 concerning the "admissible" solutions
φ+(k,x) and φ~(k,x). The potentials U(x) and Q(x) have a physical
meaning if the numbers E* produced are real and negative, and if the
function S+ (k) (fc>0) is absolutely bounded by 1 (this last condition is
fulfilled if Im(7(x):gO and ImQ(x)^O). However, as no additional
mathematical difficulty arises, we also admit non-physical potentials in
our study.

Our inverse problem is the construction of the potentials U(x) and
β(x), given En

+ and S+ (k) (k > 0). That is, for given En

+ and S+ (k) (k > 0),
we discuss the existence, the uniqueness, and the explicit construction of
U and Q in a certain class of functions. This problem has already been
studied [5] by extending the GeΓfand-Levitan method. In this paper, we
propose to solve it by a more direct approach generalizing the Mar-
chenko method. The principal difference from the case Q = 0 is that (1.2)
is no longer an eigenvalue equation.

There is a simple plausibility argument for the existence of such a
generalization. The problem which we want to study and the problem
of a spinning particle in the scattering problem at fixed energy, as studied
by Sabatier [6], are formally similar. Since it was possible in the latter
case to generalize [6] the GeΓfand-Levitan-Regge-Newton procedure,
we may hope, in our case, by using analogous extensions, to generalize
the Marchenko procedure.

With the above assumptions on U (x) and Q(x\ we show, in Section 4,
that f± (k, x) is generated by two functions F1 (x) and A± (x, ί), and we
derive, in Section 5, coupled integral equations connecting F+ (x), F~ (x),
A+ (x, t) and A~ (x, ί) with two functions z+ (x) (x > 0) and z~ (x) (x > 0).
These "fundamental functions" z+ (x) and z~ (x) are easily deduced from
En

+, £~, S+(k) (fc>0), S~(k) (k>0) and certain numbers Cn

+ and C~.
In Section 6, we investigate first the problem of solving the above

integral equations given z+(x) and z~ (x); we show how to construct
2 These conditions can be weakened; in particular, the assumption "[/(x) continuous

for x = 0" has been made for convenience only.
3 Throughout this paper, the term "bound" ("bounded") is often used instead of

"absolute bound" ("absolutely bounded").
4 We shall not use this "completion formula" in the following, though it is possible

to derive formally the fundamental integral equations of our inverse problem from related
formulas.
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potentials U(x) and Q(x) which yield given functions z+ (x) and z~ (x) as
fundamental functions, and we give some specific examples. Finally, we
apply these results to the solution of our inverse problem. In general, we
may expect many solutions to the problem, since we may start from
arbitrary values for the quantities Cπ

+, E~, C~ and S~ (k) (k > 0) to build
the functions z+(x) and z~(x); but the degree of this indetermination
has to be specified.

All the results we give can be refined, chiefly in the case of real
potentials. These improvements, as well as applications of our method
to other inverse problems in physics, will be the object of further studies.
It would also be of interest to investigate the inverse problem for poten-
tials with more complicated energy-dependence.

2. The Regular Solution φ±(k, x) and the Jost Solution f±(k,x)

In this section, we establish some basic properties of particular
solutions of the Schrδdinger equation

y±" + [k2-V±(k,x)']y±=Q9 x^O, k = a + ib, (2.1 a)
where

V± (fc, x) = U(x) ± 2k Q(x) (2.1 b)

U (x) and Q(x) are in general complex valued functions and we assume:

Assumption I. U(x) is continuous for x^O, and

J x | l / ( x ) | d x < o o . (2.2)
o

Assumption II. Q(x) is continuously differ entiable for x ̂  0, and

f |Q(*) |d*<oo, (2.3 a)
o
00

jx |β'(x) |dx<oo. (2.3 b)
o

As a consequence of these assumptions, β(oo) = 0 and x|β(x)| is bounded
forx^O.

The "regular solution" φ± (fc, x) is defined, as in the case Q = 0, by the
conditions

rtOHO, φ±f(k,Q)=l. (2.4)

φ ± (/c, x) is defined equivalently as the solution of the integral equation

(k, x) = - + ί V- (k, y) Ψ* (k, y) dy (2.5)
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in the class of functions continuous for x ̂  0, and therefore, can be
written as the sum of the Neumann series

φ±(k9x) = Σ < p * ( k 9 x ) 9 (2.6a)
, « = o

where
+ / i \ sin /ex Λφί(fc,x) = — — , (2.6 b)

x citΊ K,( X _ V^

φί (k, x) = J - {— -1L V± (k, y) φ^k, y)dy, n ̂  1 . (2.6c)
0 K

With the help of (2.6) we can prove:

Lemma 2.1. For each x^O, φ±(k^x) is an entire function of k, and
satisfies the following bounds5:

e2L(x\ x^O, / c e C , (2.7 a)

where

(2.7b)

φ*(k,x)-

where

(2.8b)

M(x) = J (|l/(y)| + 2|β(y)| + |β'(y)|) dy . (2.8 c)

We give the proof of (2.8) in Appendix A.I. The results (2.5), (2.6) and
(2.7) are analogous to those obtained in the case Q = 0 [7]. Note too that

φ±(-k,x) = φ τ(fc,x), fceC. (2.9)

It is also possible to defined [8], for each complex fc, a solution J± (fe, x)
of (2.1) satisfying the asymptotic relations

J±(k9x) = l + o(l)9 J±'(k,x} = 0(l), as x^O. (2.10)

φ±(k, x) and J±(kί x) form a fundamental system of solutions of (2.1).
The "lost solution" f±(k,x) of (2.1) is defined as usual by the

asymptotic condition
lim eikxf±(k,x) = ί . (2.11)
-

5 In the following, we use C as a general constant. It is not meant to have the same
value everytime it is used.
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According to the Assumptions I and II, f± (k, x) exists for b :g 0. f± (/c, x)
is defined equivalently as the solution of the integral equation

f± (k, x) = e~** + ] sinfe^-*) V± (k, y)f* (k, y) dy (2.12)
X &

in the class of functions continuous for x ̂  0. It can therefore be expanded
as follows:

f±(k9x) = Σtffcx), (2.13a)
n = 0

where
fi(k,x) = e-ikx

9 (2.13b)
00 sinfcίv _ xϊ

/„* (k, x) = f - f - - K* (fc, j,)/^ (/c, y) dy, n ̂  1 . (2.13 c)
X K

With the help of these equations, we can prove:

Lemma 2.2. For each x ̂  0, /* (fc, x), considered as a function ofk, is
continuous for b ̂  0, analytic for b < 0 and satisfies the following bounds :

(2.14a)

(2.14b)
X

|/±(/c,x)-e-ί([3CF±(x)|gC-^e2p<*), x^O, |/c| ̂  1 , (2.15 a)w
wwere

(2.15 b)

(2.15 c)

The proof of (2.15) is given in Appendix A. 2. The proof of the other
results quoted above presents no difficulty [9]. Note too that

lim eikxf±'(k,x)= -ik. (2.16)

It is also possible to define [10], for b ̂  0, a solution g± (/c, x) satisfying
the condition

lim e'ikxg±(k9x) = ί 9 lim e-
ίkxg±'(kίx) = ik. (2.17)

f± (/c, x) and g± (k, x) form a fundamental system of solutions of (2.1) for
k φ 0. We have the important relation

(2.18)
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3. The Jost Function/1 (fc), the Binding Energies E*
and the Scattering "Matrix" S± (k)

In this section, by analogy with the case Q = 0, we define, for V± (fc, x)
(b<Q or fc>0), the binding energies E* and the scattering "matrix"
S±(k)(k>0).

k being fixed, with b<0 or with /c>0, we shall say that, for the
potential V± (fc, x), the solution φ± (k, x) represents a bound state if it is
square integrable, a scattering state if it is bounded and not square
integrable. We call these solutions the "admissible" solutions φ± (fc, x) of
(2.1). To study them, it is useful to define6 the Jost function f ± ( k ) :

f±(k)=Wlf±(k9x)9φ
±(k9x)']9 fo^O, (3.1)

the function g±(k):

9± (k) = Wig* (k, x), φ± (k, x)-], bί 0, (3.2)

and the function f j (k):

f j (k) = WU± (k, *), J± (k, x)], b £0. (3.3)

We easily verify the formulas

(fc, x), J± (fc, x)] = - 1, k E <C, (3.4)

(/c,x),^±(/c,x)]=2i/c, b^O. (3.5)

We deduce from the previous relations that

φ±(k9x)=-^lf±(k)g±(k9x)-g±(k)f±(k,x) ] 9 fo^OandfcφO,

(3.6)
and, with (2.18), that

φ±(fc,x)=^[/±(/c)/τ(-fe,x)-/τ(-/c)/±(/c,x)], fc€lR-{0}.

(3.7)
In the same way, we find the formula

f±(k,x) = f±(k)J±(k,X)-tf(k)φ±(k,x), b^O, (3.8)

which yields, for x = 0, the useful equality

/±(/c) = /±(fc,0), b^O. (3.9)

Because of the Lemma 2.2, /± (k) is continuous for b ̂  0, analytic for
b < 0, and

l im/ ± (/c) = F±(0). (3.10)

6 We denote by W(fl9f2) the wronskian of two functions /i and /2.
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Using the asymptotic behaviour of /±(fc, x) and g±(k,x) and the
formula (3.6), we can assert that, relatively to the potential V±(k9 x):

1. φ± (/c*, x) represents a bound state if and only if k^ is a zero of
f±(k) for ί?<0; the numbers E^ =(k^)2 are the binding energies; for
real U(x) and β(x), a classic argument (similar to that used in the case
<2 = 0 [7] to show that the binding energies are real and negative) leads
to the following relation:

]Q(x)\φ±(kί,x)\2dx

= ̂  - (3.11)

2. φ± (fc, x) represents a scattering state if and only if k is real and
positive.

Now, we make an additional assumption:

Assumption III. f ± ( k ) has no real zero.

Let us remark that, for U(x) and Q(x) real, this condition is fulfilled
if /+ (/c), and hence /" (fc), does not vanish for k = 0. We can then define
the function

Clearly,
S ± (0)=l, (3.13a)

lim S±(fc) = [F±(0)]2. (3.13 b)
|fc|->oo

Furthermore, as in the case of a complex energy-independent potential
[11], we have the relation

4/c °°
|S*(fe)l2 = l + ,,τ, M|2 ί\φ±(k,x)\2JmV±(k,x)dx. (3.13c)

\J \ — κ)\ o

For fc>0, S±(k) represents the scattering "matrix" for V±(k9 x). The
formula

S±(k)= >

shows that S+ (k) and S~ (k) (feelR) are determined given S+ (k) and
S~ (k) (k > 0). Note that the conditions Im U(x) ^ 0 and Im Q(x) ^ 0 imply,
via (3.13 c), that \S+ (k)\ (k> 0) is bounded by 1 if also the binding energies
£π

+ are real and negative, the potentials U(x) and Q(x) have a physical
meaning.
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Using the properties of f±(k) and the Assumption III, it is easy to
prove that the number N± of zeros of f± (k) (Imk < 0) is finite. In Sec-
tion 5 we shall need the following additional assumption:

Assumption IV. The zeros of f±(k) are simple.

We prove in Appendix C a "completion formula", concerning the
"admissible" solutions φ+ (k, x) and φ~ (/c, x), in the space of twice con-
tinuously differentiable functions ψ(x) vanishing in the neighbourhood
of x = 0 and x = oo.

To end, let us give conjugacy relations in the case where U(x) and
<2(x) are real:

V±(k,x) = V±(k,x), feeC, (3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

S±(k)S±(k)=l, /ce lR. (3.21)

As a consequence of (3.18), if fc* is a zero of f ± ( k ) 9 —k^ is a zero of
/+ (/c); so, N+ and N~ are equal and we can number the zeros of/+ (k)
and / ~ (k) in such a way that

£ = -%. (3-22)

We have too

dk
(3.23)

4. A Useful Expression for/* (fc, jc)

With the Assumptions I and II, we show that the Jost solution
/± (/c, x) can be conveniently generated by two auxiliary functions F± (x)
and A± (x, t) and we study closely related questions. The principal results
of the section are the Theorems 4.1 and 4.2. They will be very useful later.

We obtain a preliminary result very simply. From the bounds (2.14)
and (2.15) it follows that

J \ f ± ( a + ib,x)-F±(x)e-iaxJx\2da = 0(e2bx)9 6^0, x ^ O . (4.1)
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We deduce from the Plancherel theorem that there exists a function
A± (x, ί), belonging to the class L2(— oo, oo) in f, such that

f±(k,x)-F±(x)e-ikx = li.m. \ A±(x, t)e~iktdt, for b = 0, x ^ O .
n-> oo J

(4.2)

Furthermore, according to a Titchmarsh theorem [12], we conclude
from the formula (4.1) and the Lemma 2.2 that

A±(x,t) = Q, for t<x. (4.3)

As a consequence, f± (/c, x) may be written in the form

f±(k,x) = F±(x)e-ίkx+Li.m. } A±(x,t)e~ikt dt, for fo = 0, x ^ O .
«-»00 „

(4.4)

The relation (4.4), though formally simple, is not easy to use, and gives
little information about the function A ± (x, ί)

We now obtain a more accurate result by another method. In the
following, we denote by σ 7 any non-increasing positive function, defined
for x ̂  0, such that

00

J σ(x) dx < oo . (4.5)
o

Let us introduce the class 91 of functions A± (x, t) defined and continuous
with respect to (x, ί) for ί ̂  x ̂  0, and satisfying the condition

(4.6)

where σ may depend on A±; as a consequence, A± (x, ί) belongs to the
classes Z/(x, oo) and L2(x, oo) in ί.

First, we prove the following lemma:

Lemma 4.1. Suppose that U(x) and Q(x) satisfy the Assumptions I and
II, that A±(x, t) is a function belonging to 9ί and that F±(x) is a continuous
and bounded function. Define f±(k, x) as

t, x^O, fc^O. (4.7)

7 The symbol σ is not meant to designate the same function everytime it is used.
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Then f±(k,x) is the Jost solution f±(k,x) of the Schrodinger equation
(2.1) if and only if

a) F±(x) = F±(x)9 x^O, (4.8 a)

b) A± (x, f) is a solution, in the class 21, of the integral equation

x + t
ι oo ι 2 t + y-x

A±(x,i)=- I F±(y)U(y)dy+- J U(y)dy J A±(y,ύ)du
^ x + t ^ Λ; t + x-y

β

(4.8b)

2

±i J

To prove the necessity of the conditions, we replace / ± (fc, x) by f± (k, x)
in (2.12) and make use of the formulas

(4.9a)

sίn/c(j;~x)

 e-'*»= 1 U+]~X

e-
ίk'dt (4.9 b)

we obtain

1 °° 2y — χ

— $ V±(k,y)F±(y)dy J

ι oo oo u + y — x

— ^ V±(k,y)dy^ A±(y,u)du J
^ x y u+x—y

(4.10)

Clearly, the hypotheses of the Lemma 4.1 allow the interchange of the
orders of integration in the integrals on the right hand side of (4.10).
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This yields the following equality:

F±(y)U(y)dy
\ ^ x+t

x + t
-J 2 t + y — x Λ oo t + y — x

— f U(y)dy f A±(y,u)du-\ f U(y)dy f A±(y,u)du
J J \S / S J \S •> / Λ J \S / S J \S 7 /

^ x t+x-y Δ x+t y
2

± f ke~ίktdt J F±(y)Q(y)dy
x + t

L 2

2 t + y~ x oo ί + y —x "Ί

+ ί Q(y)dy I ^±(ΛM) ί/M+ j β(y)dj; j ^(y.uίdM .
x t+x—y x+t y

We integrate by parts the last term of (4.11); (4.11) then takes the form

F±(x)-ί±i]F±(y)Q(y)dy]e-ίkx

X J

+ \e~ίktdt A±(x,t)-^ ? F±(y)U(y)dy
2 x+t

X + t

i 2 t+y-x

-T ί U(y)dy I A±(y,u)du (4.12)
^ x t+x-y

y-x j „ / Y - i _ f \ / v - u f \
ί A*(y,u)du*±F* i^~ β F^

2

' ί
= 0.

The first member of (4.12) appearing as a Fourier transform, the con-
ditions (4.8) follow easily. It is trivial to show that (4.8) is sufficient for
f± (fc, x) to be the Jost solution of (2.1).

Let us now study the integral Eq. (4.8 b). For this, we apply the
method of successive approximations. We define

), (4.13 a)
X + t_

2
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and, for n^ 1,

x + t

1 2 t+y-x

*(x9t)=Ύ J U(y)dy f ^(^dii

ί * A^(y,u)du (4.13b)

2

±i J
X X

It is possible to derive by induction a bound for ^4* :

, for B 6 t f , (4.14a)

(4.14b)

y9 (4.14c)

where
J

°

ΛΓ(x) is defined by (2.14b).
As a consequence, the series

(4.15)

converges uniformly for t ̂  x ̂  0. On the other hand, we see (by induc-
tion) that AH (x, ί) is continuous for t ̂  x ̂  0; it follows that A± (x, ή is
continuous for t ̂  x ̂  0. From (4. 14 a), we derive a bound for ̂ ± (x, ί)'

<»>. (4.16)

Since
00 00

I σB(x)dxg J J'[|I/(y)l + IQ'U')l]dy<oo, (4.17)
0 0

we can finally conclude that A±(xί t) belongs to the class 9ί. Lastly,
inserting the series A±(x, t\ defined by (4.15), in the integral equation
(4.8 b), we verify that A± (x, f) is a solution of this equation in the class 91.
If Af±(x, t) is another solution of (4.8 b) in the class 21, one can prove
by iteration the inequality

]\ for n
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(4.19)

We can now state the following result:

Lemma 4.2. With the Assumptions I and II, the integral equation
(4.8 b) has a unique solution in the class 21.

Lemmas (4.1) and (4.2) yield the following theorem:

Theorem 4.1. With the Assumptions I and II, there exists a unique
function A± belonging to the class 91 and a unique continuous and bounded
function F± such that the Jost solution f± (fc, x) may be expanded in the
form

f±(k,x)=F±(x)e-ίkx+]A±(x,t)e-iktdt, fc^O, x ^ O ; (4.20)
X

F± (x) = F± (x) and A± (x, t) is the unique solution in the class 9ί of (4.8b).

The formulation (4.20) generalizes that given by Marchenko [13].
It is easy to verify using (4.13) that, for U(x) and Q(x) real, we have

Note too the identity [14]

A± (x, t) = A± (x, f), almost everywhere in t.

(4.21)

(4.22)

Let us further investigate A±. Starting from the expansion (4.15), we
show in the Appendix B that the first partial derivatives exist and are
continuous for ί ̂  x 2; 0, and obey

dx

d
dt

A±(x,t)

A±(x,t)

< C

x + t

where

For convenience, we now introduce the variables

x + t
η =

x-t

and the function

(4.23 a)

(4.23 b)

(4.24a)

(4.24 b)
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With these variables, the Eq. (4.8 b) can be written as

ξ ξ o *

+ i ϊ β(M + η) «* (M, ι/) dw + i f Q(κ + ξ) α± (ξ, ιι) du, (4.25)
ξ o

ξ^O, η^O and ξ + η^Q.

Clearly, — - α* (ξ, η\ -— α* (ξ, η) and the mixed derivative (ξ, f
oς tf?7

exist, and

tf)] = 0.

(4.26)

Setting t = x and η = 0 in (4.8b) and (4.25) respectively, and differentiating
both sides of the results, we find respectively

F±f'(x)-2-^-A±(x,x)±2iQ(x)A±(x,x)-F±(x)U(x) = 0, (4.27a)

) = 0. (4.27 b)

Conversely, suppose that ^4±(x, ί) belongs to the class 91, that the

derivatives — -^(ξ, η\ -^-α *(£,/?), (̂ , yy) exist and are con-
c?ς σf/ cξoη

tinuous with respect to (ξ,η), and that the Eqs. (4.26) and (4.27 b) be
satisfied. Then, we can easily show that α *(<!;, η) is a solution of the
integral equation (4.25), and A± (x, t) is a solution of the integral equation
(4.8 b). Furthermore, if A±(x9t) has second partial continuous deriv-
atives, we notice that

±

)=-^(x,ί)-^^(x,ί), (4-28)

and that the Eq. (4.26) takes the form:

S2A± 82 A± d
-^Γ- (*> 0 - —tfΓ (̂  0 - ^W A± (*> 0 ± 2«βW -g^ (*» ^ = ° '

(4.29)

Using the Lemma 4.1, we can prove the following theorem which will
be useful in Section 6:
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Theorem 4.2. Suppose that U(x) and Q(x) satisfy Assumptions I and //,
and that the function f± (fc, x) defined in (4.7) is such that

a) F±(x) = F±(x)9

b) A±(x, t) belongs to 21,

, , j . - ^ , , ̂  , x d2^ , , J d2A±

 f xc) me derivatives —— (x, ί), —-— (x, t), 2 (x, t) and 2 (x, t)

exist and are continuous with respect to (x, ί),
d) the Eqs. (4.29) and (4.27 a) be satisfied,

dA±

e) lim sup

lim sup

dx
(x, t) = 0,

=0;
St v

then f± (k, x) is the Jost solution of the Schrδdinger equation (2.1).

5. Derivation of Fundamental Integral Equations

In this section, we make the Assumptions I, II, III and IV. We derive
coupled integral relations connecting F+(x), F~(x), A+ (x, t) and A~(x, t)
with two functions z+ (x) and z~ (x) directly determined by E+, E~,
S+(k) (fc>0), S~(k) (fc>0) and certain numbers CM

+ and C~ (see 5.12).
This result is precisely stated in the Theorem 5.1.

Writing the formula (4.20) for the case x = 0, we find

00

f ± ( k ) = F±(0) + J A±(0, 0 e ~ ί k t a t , ke 1R, (5.1)
o
o

/+ (— k) = F+ (0)+ J A + (Q,—t)e~lktdt, ke lR, (5.2)
— 00

where A± (0, ί) belongs to L1 (0, oo) and A+ (0, - ί) belongs to L1 (- oo, 0).
Theorems on Fourier transforms of integrable functions, and par-
ticularly a Wiener-Levy theorem [15], show that there exists a function
5^" (y) defined and integrable on 1R such that

s±(t)e-ίktdt. (5.3)

Let us now consider the equality derived from (3.7) by dividing both

sides by -^- :J 2ik

2ik f =f+(-k,x)-S+(-k)f±(k,x), fceR. (5.4)
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Substituting (4.20) and (5.3) in (5.4), we obtain

193

T (0) φ± (k, x) - H* (x) -H* (x) -

= -F±(x)e~ikx ] s

(5.5)

+ \A + (x,t)eίktdt-( I s+(t)eίktdt\($A±(x,t)e-""dt\.
x V-oo / \χ I

The right hand side of (5.5) is easily written in the form of the Fourier
transform of a function B± (x, t) integrable with respect to t:

- j s+(t + ύ)A±(x,u)du, t^-

(5.6)

— x< t <x,

- J u)A±(x9u)du9 t^

If the Fourier transform B+ (x, t) of the left hand side of (5.5) exists
as a Cauchy principal-value in some interval of ί, then B+(x, t) and
B+ (x, t) must coincide almost everywhere in this interval. We therefore
evaluate the quantity

-R

0— ikx
(5.7)

Let us consider the same integral computed along a closed path con-
sisting of the real segment [ — jR, + R] and the half circle |fc| = R contained
in the lower half of the complex fe-plane. Since φ± (fe, u) and f± (k) are
continuous for Imfc^O and analytic for Imfc<0, and since the As-
sumption III holds, we can apply the theorem of residues. Furthermore,

14 Commun. math. Phys., Vol. 28
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thanks to the bounds (2.7 a), (2.8 a) and the relation (3.10), we see, using
one of Jordan's lemmas, that, in the case t > x ̂  0, the integral along the
half circle vanishes as R->oo. We conclude that the quantity

B+(x,t)= limβ£(x,ί) (5.8)
.R-»oo

exists for t > x ̂  0 and is given by

Bτ(x,ί) = i Σ Res \2ik ̂ f/.f e-'"l, t>x^0. (5.9)
n = ί k = k$ [ J (K) J

Using the Assumption IV, we obtain

.

- «/'«=«

With the help of the relations (3.6) and (4.20), we write

Σcnf±(kΐ9x)e-i^t

9 ί>x^0, (5.11)
u M

where

C- - ' , (5.12)- -ί<l±(k'}

and

B:f(x,t) = F±(x)pIf(x + t ) + ] A ± ( x , u ) p + ( u + t)du, t>x^Q, (5.13)
Λ:

where

p τ(x)= Σ C n T e " ί / C n ± x (5 14)
n = l

So, we have shown

B*(x,t) = B*(x,t), (5.15)

for almost every t(t > x ̂  0). It is always possible to choose the function
s±(t) of (5.3) in such way that the following equality:

S+ (ί) = f τ (0)4T (0, ί) - pτ (ί) - F τ (0) J A* (0, M) sτ (u + 1) άu

°
(5.16)
^ /

A±(0,u)p^(u + t ) d u ,
0

deduced from (5.15), (5.13) and (5.6) by putting x = 0, holds everywhere
for t ̂  0. Since s1 (t) and p± (t) are integrable for t ̂  0, p± (t) is continuous
for t ̂  0, and A± (0, ί) is continuous and bounded for t ̂  0, it is easy to
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see that s± (t) is continuous for t ̂  0. As a consequence, B± (x, t) is con-
tinuous with respect to (x, t) for t ̂  x ̂  0. A glance at (5.13), shows that
the same is true for B±(x, t). Therefore, the equality (5.15) holds for
ί^x^O. We finally obtain two coupled integral equations:

du, ί^x^O, (5.17)

where
(x). (5.18)

z+ and z~ will be called the "fundamental functions" associated to U and
Q. We see from the formula

1 +R

s±(x)=1im — f lS±(k)-F±(Q)2]etkxdk, x>0, (5.19)
R^OO 2π _R

which will be proved later on, and from the formulas (3.13), (3.14) and
(5.14) that the fundamental functions are determined by the data of £M

+,
E~, S+(k)(k>0), S'(k) (k>0) and the numbers Cw

+ and C~.
On the other hand, we easily derive from (4.20) the relation

F+ (x) - F- (x) = J lA-(x, t) - A+ (x, ί)] at , (5.20)
X

and from (2.15b) the relations

F + (x)F-(x)=l, (5.21 a)

limF±(x) = l . (5.21 b)
X^ co

The Eqs. (5.17), (5.20) and (5.21) replace the fundamental equation
obtained by Marchenko [16] and are the analogues of equations given
by Sabatier [17] for the scattering of a spinning particle. In the next
section, they will be the starting point of the investigation of our inverse
problem.

In what follows, we consider z± (x). It is clear first that z± (x) is con-
tinuous for x ^0 and integrable on [0, oo[. In order to obtain a bound
for z1, we shall need the following classic result (R) [18]:

(R): "Let f(x) and g(x) be non-negative functions in the interval
a ̂  x ̂  b ̂  oo, and suppose that g(x) and f(x) g(x) are integrable in this
interval. If

f(x)£c+lf(t)g(t)dt9
X

where c is a positive constant, then
b

Sg(t)dt
f(x)^cex , α g x
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Using the bound (4.16) in the Eq. (5.17), we obtain

/ x -\- 1\ °° / x 4- u\
^(x + Wίcσ, U— }+c^\z±(u + t)\σv -̂ — }du. (5.22)

\ ^ I x \ *• I

Suppose first that συ(ύ) does not vanish for any positive value of w; then,

(5 23)

+θσ,-'(̂ )]k(̂ Uf)μ.
V z / J L \ z / \ Z / J

Using (R) we have :

Setting ί = x in (5.23), it is easy to obtain the bound

(5.25)

If now σv(ύ) vanishes for some positive value of w, there exists some w0 > 0
such that σv(u) = 0 for u ̂  u0 and σv(u) φ 0 for 0 ̂  w < w0. Hence:

z±(x)-0 for x^2w 0 , (5.26)

2MO-X -

. (5.27)

Using (̂ ), we are still led to the bound (5.25). Lastly, it is obvious that
(5.25) holds in the case συ(u) = 0. With the help of the bounds (4.23) and
(5.25), it is easy to see from the formula (5.17) that z± (x) is continuously
differentiable; s±(x) is therefore also continuously differentiable and as
a consequence the formula (5.19) is justified. z±f being given by the
formula

+ F±(x)~A±(u,x)\u=x-F±(x)] -j-A^(x,u)
ΰu x ox

it is not difficult to prove that it satisfies the bound

(5.29)
Clearly

x σ , ( x ) £ ί y [ . \ U ( y ) \ + \V(y)\ ]dy«x>, x ^ O ; (5.30)

hence:
oo oo

j xσϊ(x) dx ̂  c J σv(x) dx < oo . (5.31)
0 0
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On the other hand, we see from (4.23 b) that

J xW(x)dx<w. (5.32)
o

As a consequence of (5.30), (5.31) and (5.32),

Jx |z ± ' (x) |dx<oo. (5.33)
o

To recapitulate:

Theorem 5.1. // the conditions /, //, /// and IV hold, the functions
A+(x, £), A~ (x, t\ F+(x) and F~(x), which generate the Jost solutions
f+ (fe, x) and f~ (k, x), satisfy the fundamental equations (5.17), (5.20) and
(5.21). The function z± (x) is continuously differentiable for x ̂  0, satisfies
the bound (5.25) and xz±f(x) is integrable.

For real U and β, we easily obtain, in view of (3.20), (3.23), (3.22) and
(3.18), the following conjugacy relations:

C? = C , (5.34)

p±(x) = p= F(x) j (5.35)

5T(x), (5.36)

:z τ(x). (5.37)

6. The Inverse Problem

Our purpose, in this section, is to give a method of solving the inverse
problem set in the introduction, i.e. of constructing the potentials U(x)
and Q(x) from the knowledge of the binding energies E* and of the
scattering "matrix" S+ (k) (k > 0). Up to now, we have proved that, given
potentials U(x) and Q(x) satisfying the Assumptions I, II, III and IV, the
Jost solution f± (fe, x) is generated by two functions A± (x, ί) and F± (x),
where (A+(x, t\ A~(x,t\ F+ (x), F~(x)) is a solution of the system of
fundamental equations (5.17), (5.20) and (5.21). These equations are
determined from the data of the fundamental functions z+ (x) and
z~(x) (x^O). The starting point of our method is the investigation of
this system. A complete solution of it is carried out only in some special
cases at the end of the section. Nevertheless, for some sufficiently large
values of the real positive number α, we solve, under not too restrictive
conditions upon the input functions z+(x) and z~(x), the following
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system of equations :
00

A-(x,u)z+(u + t)du, ί ^x^α, (6.1 a)

J A + (x,u)
X

F+(x)-F-(x)=]ίA-(x,t)-A+(x,t)-]dt, x^a, (6.2)
JC

F+(x)F~-(x)=l, x ^ α , (6.3 a)

jύnF±(x) = l, x ^ α ; (6.3 b)

if α = 0, this system is identical with the system (5.17)-(5.20)-(5.21).

§ 1. Solution of the System of Fundamental Equations (6.1), (6.2) and (6.3)

We make the following assumption on the input functions z+ (x) and
z-(x):

Assumption Γ. The function z± (x) is continuous for x ̂  0 and bounded
ίx\

by a function σ0 — , positive, non-increasing and integrable for x^O:

(6.4a)

σ0(x)dx<oo. (6.4 b)
o

We seek the functions A+ (x, t) and A~ (x, t) belonging to the class Stα

8

and the functions F+ (x) and F~ (x) continuous and bounded for x ̂  α,
which verify the system of Eqs. (6.1), (6.2) and (6.3). We set

Rx=]σJ^\dt, x^O. (6.5)
2x \ Z /

Clearly, there exist x0 = 0 and Xi ^ 0 such that

RX<1 for x^x0, (6.6 a)

Rx<^ for x^xlt (6.6 b)

We now prove that, for t^x^x0, A+ (x, t) and A~(x,t) are uniquely
determined by (6. la) and (6.1b), given F+(x) and F~(x). For this, it is
sufficient to show that, x being fixed, the two following coupled Fredholm

8 The class 2I0 is defined as is the class 51 in Section 4, but for t ̂  x ̂  α instead of
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integral equations with kernels z+ (u + ί) and z~ (u + 1)

00

A+(x,t) = J A~(x,u)z+(u + ήdu, ί ^x^x 0 > (6.7 a)

00

zΓ (x, ί) = J A+ (x, M) z" (w + ί) dw, ί ̂  x ̂  x0 , (6.7b)
Λ:

have only the trivial solution. Inserting (6.7 b) and (6.7 a) in the right
hand side of (6.7 a) and (6.7 b) respectively, and interchanging the orders
of integration we obtain

A±(x,t)= \A±(x,u)^(u,t)du,
x

where

= ̂ (t,u), (6.9)

Clearly, we have the following bounds for u ̂  x, t ̂  x, x ̂  0:

(6.10a)

(6.1Gb)

(6.10c)

It is not difficult, from (6.8) and (6.10), to prove by induction that

00

"^0> (6.11)

where

e±π (u, t) = j e±k («, r) βί,._ !_»(», o d« ,
(6.12)

and
_ . . / U -\- Y \

(6.13 a)

(6.13b)
2 '
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Hence, we can write from (6.11) and (6.13 a)

(6.14a)

where
M= sup |zl±(x, ί)|, (6.14b)

ί^x|θ

and this yields the desired result

A±(x,t) = Q, ί^x^xo, (6.15)

because the limit of the right hand side is obviously zero as n-» oo. Now,
we apply the method of successive approximations to (6.la) and (6.1b),
considered as coupled Fredholm integral equations with kernels z+ (u +1)
and z~ (u + ί) and with solution (A+ (x, ί), A~ (x, ί)) It is straightforward
but tedious to show that the unique solution, for t ̂  x ̂  x0, of the system
(6.1 a)-(6.1 b) is given by

A± (x, ί) = Fτ (x) y± (x, ί) + F± (x) ΦJ (x, ί), ί ̂  x ̂  x0 , (6-16)

with
00

(6.17)

(6.18)

« = 0

The mainstay of the proof is the uniform convergence (because of the
bound (6.13)) of the series (6.18) for M^X, ί^x, x^x 0. The following
formulas are also needed:

ί z± (u + υ) <£*>, v)dυ=] z± (w + v) ̂ n(v, u) dv ,

(6.19)
n^O, u^x, w^x, x^O,

oo

z±(u + v) Φ* (w, v) dv = J z± (w + υ) Φj(t?, w) dt? ,

(6.20)

It is now easy to see that, in the system of fundamental equations, (6. la)
and (6.1b) can be replaced by (6.16) for ί^x^x 0. Furthermore, for
u ̂  x, t ̂  x, x ̂  x0, Φ* (w, t) is continuous with respect to (x, w, ί) and has
the following bounds:

ίίίMJIS- -^-σo (-̂  ), (6.21a)

(6.21 b)
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for t ̂  x ̂  x0, Ψ* (x, t) is continuous with respect to (x, ί), and

\Ψ* (x, t)| ί£

Inserting (6.16) in (6.2), we obtain

σ0

(x, u) - Φx (x, u}} du

- F~ (x] I I - T (Ψ+ (x u\ - Φ+ (x— L \^)\L J V r x VΛ> u) ψx VΛ>

Since (6.21) and (6.22) together give:

ίVί(x,u)-Φί(x,u))du

(6.22)

(6-23)

x ̂  χ0 .

(6.24)

we see, in view of (6.6 b), that the second factor of each side of (6.23) does
not vanish for x^x{. Then, recalling (6.3 a), we obtain:

± (x)]2 =

l-f(ίPj(x,u)-Φ:(x )tt))d«

(6.25)

F±(x) is completely determined by the condition (6.3 b). Clearly, F±(x)
is continuous for x ̂  xί and has the bound:

Thus A±(x9 1) given by (6.16) is continuous for t^x^x^ and, because
of the bound

A± (x, t) belongs to the class 2ΪX1. So, we have proved that the system of
fundamental Eqs. (6.1), (6.2) and (6.3) has a unique solution (A+ (x, t\
A' (x, t\ F+ (x), F- (x)) for α ̂  xί .

§ 2. Solution of the System of Equations (6.1) and (6.2)

Now, we suppose α ̂  xx. Let a± (x, t) be a function belonging to the
class 9Iα and /±(x) a function continuous and bounded for x^α. If
(a+ (x, t\ a~ (x, £), /+ (x), /"" (x)) is a solution of the system of Eqs. (6.1)
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and (6.2), i.e. if

, ί^x^α, (6.28)

f+(x)-f-(x)=la-(x,t)-a+(x,ή ]dt, *^α, (6.29)
Λ:

the results obtained in § 1 are still valid up to and including (6.24) if
A± (x, ί) is replaced by a± (x, t\ F± (x) by f± (x), x0 and x1 by α. This is
true, in particular, for the formula (6.23) and hence

f~(x\f+(x)= Ή^) (xK x-α - (6'30)

Using (6.16), we conclude finally that there exists a unique function U(x)
defined and continuous for x Ξ> α such that

f±(x)=U(x)F±(x)9 x ^ α , (6.31 a)

a±(x9t)=U(x)A±(x,t), t ̂  x ̂  α . (6.3 1 b)

§ 3. Properties of the Solution (A + (x, t\ A ~ (jc, t), F+ (x), F" (*))

From here on, Γ is replaced by the stronger Assumption IΓ:

Assumption IF. z±(x) is twice continuously differentiable for x^O,
and there exist functions σ0 (x), σ1 (x) and σ2 (x), positive and non-
increasing for x ̂  0 such that

|z±(x)|^σ0 I—-I and j xσ0(x)dx< oo , (6.32a)
\ 2 / o

/ γ \ «>

1^'Ml^σιhr and J x2

ffl(x)dx< oo, (6.32b)
\ 2 / o

σ2(x) dx«x> . (6.32 c)
/ o

We set

i, (6-33 a)

(6.33 b)
2x
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Clearly, from Assumption II',

00

J xσ0(x)dx< oo ,
o
00

J xσ 1 (x)dx< oo .
o

Let us also set

Sx = sup (σ0 (x), σ0 (x), Rx), x ̂  0.

There exists x2 ̂  0 such that

Sx < 1 for x Ξ> x2 .

We define x3 by

X3 = sup(x l 5x 2).

It is then straightforward but tedious to prove:

a) F±f(x) exists and is continuous for x ̂  x1? and

203

(6.34 a)

(6.34b)

(6.35)

(6.36)

(6.37)

(6.38)

x3 (6.39)

c) —— A ± (x, ί) and —— A ± (x, ί) exist and are continuous for t ̂  x ̂  x1,

b) F ± f f ( x ) exists and is continuous for x^x3, and

and

/ x + ί \ , . . ,£ A~
\ 2 y + f f i (-^—H' t^x^χι> (6 4°)

, t^x^x 1 ; (6.41)

d2A± 62A±

d) 2 (x, ί) and —2

^x^x3, and

A±(x9t)

d2 .

(6.42)

(x, ί) exist and are continuous for

(6.43)

IV

^x^x3. (6.44)
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In Appendix D, we give some bounds useful in deriving the preceding
results. Note that if

a) z±(x) is twice continuously differentiable for x^O,
b) z±(oo) = z±/(oo) = z±//(oo) = 0,
c) z±f'(x) is bounded by a positive and non-increasing function

( x \ °°
— such that J x3σ2(x)dx< oo, the Assumption IΓ is fulfilled, and
2 / o

moreover, it is possible to choose σ^x) and σ0(x) in such a way that
σ1 = σ1 and σ0 = σ0. The bounds of § 3 take then a simpler form.

§ 4. Partial Differential Equations for A + (jc, f), A " (x, f), ̂ + (*) and F (x)

Let us define the functions β(x), α1 (x, ί) and /* (x) as follows:

β(x)=ί;4ϊ7T> x = *3> (6.45)
Γ ^XJ

--^±(x,ί), (6.46)

^x3. (6.47)

The above results show that α±(x,ί) belongs to the class 2IX3 and that
/± (x) is continuous and bounded for x ̂  x3. We next apply the operator

—^ --- --=- ±2fQ(x) — - - to both sides of (6.1); by means of differen-
dx ot ot

tiation under the integral sign and of integrations by parts, it is not
difficult to prove that (α+(x, t\ a~(x,t\ / + (x), /"(*)) is a solution of
the equation (6.28) for α = x3. Using the identity obtained by dif-
ferentiating twice both sides of (6.2), we find that the Eq. (6.29) is also
true for α = x3 . From the results in § 2, we conclude that there exists
a function U(x) defined and continuous for x ̂  x3 such that

-
ax

^x^x 3 ? (6.48)

, x^x 3 . (6.49)

It is easy to see from the formulas (6.45) and (6.49) with the help of the
bounds established in § 3, that Q(x) is continuously differentiable for
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x ^x3, U(x) is continuous for x S: x3 and that

|β(x)| ̂  C[σ0(x) + σ0(x)], x ̂  χ3, (6.50)

|β'(x)|^C[σ0(x) + σ0W + σ1(x) + σ1(x)], x^x3, (6.51)

IU(x)\ ̂  C[σ0(x) + σ0(x) + σt (x) + σl(x)], x ̂  x3 . (6.52)

Hence, using the Assumption IF:

]x\Q(x)\dx«x>, (6.53)
*3

oo

J x|β'(x)|rfx<oo, (6.54)
X3

J x\U(x)\dx<ao. (6.55)

§ 5. Construction of U and Q from Given z + and z

Given functions z+(x) and z~ (x) satisfying the Assumption IΓ, we
propose to find potentials U(x) and β(x), whose associated fundamental
functions are precisely z+ (x) and z~ (x). The results obtained in § 4 are
not sufficient for our purpose. We shall assume that they hold, not only
for x ̂  x3 but also for x ̂  0; this will be proved in some particular cases
in § 7. Then, from the important Theorem 4.2, we see that the Jost
solution f±(k9 x) corresponding to the potentials U(x) and Q(x) defined
by (6.49) and (6.45) is generated by the functions A±(x, t) and F±(x),
themselves obtained from the data of z+ and z~ by solution of (6.1), (6.2)
and (6.3) for α = 0. Let z*(x) and z~(x) be the fundamental functions
associated with the potentials U(x) and Q(x), which we also suppose
satisfy the Assumptions III and IV. The generating functions A±(x9t)
and F± (x) being unique for a given potential from Theorem 4.1, z±(y)
and z^ (y) are solutions of the same Volterra integral equation

6(6'56)

derived from (5.17) by setting t = x, v = x + u, y = 2x. Since A±(x, t)
belongs to the class 91, and F± (x), z± (x), z^ (x) are bounded, it is easy
to prove that

(6.57)
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Therefore, with the assumptions made, there is one pair of potentials
(U(x), β(x)) which reproduces the input functions z+ (x) and z~(x) as
fundamental functions. U(x) and Q(x) are given by (6.49) and (6.45). The
pair (U(x(, Q(x)) is unique in the class (£ of potentials satisfying the
Assumptions I, II, III and IV since the system of fundamental equations
has been proved to hold in these conditions.

§ 6. Construction of U and Q from the Data of E+and S+ (k) (k > 0)

Here, we suppose that the N+ binding energies E* and the scattering
matrix S+ (k) (k>0) are exactly known from collision experiments, and
we apply the results of § 5 to construct the potentials U(x) and Q(x) which
reproduce E* and S+ (k) (/c>0). We assume we are given N+ numbers
Cn

+, N" numbers C~, N~ numbers E~ and a function S~{k) (fe>0);
the quantities Cπ

+, ΛΓ, C~, E~ and S~(k) (k>0) play the role of
parameters, and may be chosen freely. We assume ΛΓ+, AΓ~, E*9 E~9 C*9

C~, S^(k) and S~ (k) (/c>0), to be such that the input functions z+(x)
and z~(x) (x>0) are determined via the formulas (5.14), (3.14), (3.13),
(5.19) and (5.18), and that they verify the conditions of § 5. We know then,
from §5, how to construct the unique pair of potentials (£/(x), Q(x))
belonging to (£ which have z+ (x) and z~(x) as associated fundamental
functions. For U(x) and Q(x) to reproduce £π

+ and S+ (k) (k > 0), it is suf-
ficient that the constructed function F+(x) satisfies the relation (3.Ί3b),
and that the following conditions be satisfied by the solution (A+ (x, ί),
A' (x, ί), F+ (x), F~ (x)) of the system of fundamental Eqs. (5.17), (5.20)
and (5.21):

F+(Q)p-(t)+ $A+(Q,u)p-(u + t)du = Q, ί^O, (6.58)
o

A- (0, ί) = F+(0) 5" (ί) + j v4+ (0, w) 5~ (w + 0 dw, ί ̂ 0, (6.59a)
o

(6.58), (6.59a) and (6.59b) are readily obtained by writing /+(fcn

+) = 0
and /+ (k) = S+(k)f~(-k)(kε R). Using the formula (5.17) for x - 0, it
is easy to see that either of the two formulas (6.58) and (6.59 a) yields the
other. Note that if the conditions (5.34), (3.22) and (3.21) hold, U (x) and
β(x) are real. If S+ (k) = S~ (k) - S(k), Cn

+ = C~ = Cn and ̂  = k~ = kn,
then Q = 0.
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An important question has still to be solved. One would like to know
how far one can vary the input parameters C*, N~, C~, E~ and
S~ (k) (k > 0) and still retain the existence of a pair (U(x), Q(x)) solution
of the inverse problem. This question has been already solved for real
U and Q = 0: we know [19] that, under very general conditions on En

and S(k), the only restriction on the numbers Cn for the inverse problem
to be soluble is that they be positive. It should also be possible, by using
similar arguments, to solve the question for real U(x) and Q(x\ In
general, we may expect many solutions to the problem.

§ 7. Specific Examples

In the real world E* and S+ (k) (k > 0) must be found from collision
experiments and £~, N~, C*9 C~, S~ (k) (k> 0) are almost free parameters.
In general they lead to complicated functions z± and so to complicated
integral equations. Here we start from simple functions z±. In this way
one can see how the method is applied without involving oneself in
complicated numerical calculation.

First, we remark that there are cases in which our method of solution
of the system of fundamental Eqs. (6.1), (6.2) and (6.3) holds for α = 0.
In fact, if we have

K * = o < i , SX=0<1, (6.60)

then the number x3 may be chosen equal to zero in all the results of
§ 1, 2, 3, 4. If the conditions III and IV hold for the potentials U(x) and
Q(x) that we construct, we also obtain the results of § 5. This is the case if

Rx=o<τ, (6.61)

since the lost function f± (k) constructed has then no zeros for Imk ̂  0.
We give now an exactly soluble example. We start from the following

input functions:

α + e < C , p>0, (6.62a)

(6.62 b)

and we suppose a) or b):

a) Imα + Φθ, (6.63)

b) α+ is real and p>α + . (6.64)
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The system of fundamental Eqs. (5.17), (5.20) and (5.21) can be easily
solved, with the solution

F±(x)=[ί -- e-2px\ , x^O, (6.65)
\ P I

A + (x, t) = α+ e~p(x + t) F- (x), t ̂  x ̂  0 , (6.66)

A-(x,t) = Q, ί ^ x ^ O ; (6.67)

Hence:

Q(x)= -ia+e~2pxlF-(x)']2, x ^ O , (6.68)

U(x) = (2pa+ e~2px + (α+)2 e~4px) [F" (x)]4, x ̂  0 , (6.69)

(6.70)

-ipYl, x ^ O , (6.71)

-ip)-1. (6.72)

f~(k) never vanishes; /+(/c) has a simple zero for /c = /c0, fc0 being
defined as

' (6.73)

therefore, if p>Reα + there is no bound state corresponding to F+; if
Imα+ φO, and p< Reα+, there is a bound state corresponding to V+

and it is easily found that

2 (6.74)

In both cases, it is easy to verify directly that the pair (U(x\ Q(x)) is the
only pair of potentials belonging to (£ which has the input functions
z+ (x) and z~ (x) given by (6.62) as fundamental functions. Note that for
real α+, U (x) is real and Q(x) is imaginary.

For appropriate values of the complex numbers α+ and α~, we can,
more generally, construct the unique pair of potentials (U(x), Q(x))
belonging to (£ which has as fundamental functions

(6.75)

We can always choose α+ and α~ in such a way that there is no bound
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state. We give the principal results:

= |l__^L e-2P*+^< -4
v 4p

- , (6.76)
α+ α + α~ \~*

~~p~e 4p2 / ' x= '

^oHi-^^f1
P 7 (6.77)

— a
4p2

4p2 p -

the form of U(x) is more complicated let us only note that

U(x)x~^Ce~2px. (6.79)

Lastly, note that if α+ = α~, t/(x) and β(x) are real, and that if α+ = α~,
g(x) vanishes.

Acknowledgement. Professor P. C. Sabatier suggested this problem. We would like to
thank him for many helpful discussions.

Appendix A.I

We want to estimate the behaviour of φ± (k, x) for large values of k.
For this, we start from the Neumann series (2.6) and write the general
term as follows:

φn

±(/c,x) = αn

±(fe,x) + ^±(fe,x) + yn

±(/c,x), for π^O, (A. la)

yn

±(/c,x) = αn

±(/c,x) + fcn

±(fc,x) + cn

±(/c,x), for n^O, (A.lb)

where:

αo± (k'x) = Ίϋk"' β°(k> x) = ~ ^ϊTΓ' (A'2 a)

yί (k, x) = a0± (/c, x) = ij (k, x) = cί (fe, x) = 0, (A.2b)

15 Commun. math. Phys., Vol 28
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and, for n ̂  1:
eίkx '

<£ (k, x) = + -̂ 7- ί e-""Q(y) /£.! (/c, y) rfy
I r\

-.
pikx I ~"~

0

2ik n\
for n ̂  0,

(A.3a)

x Γ Γ/ίv) 1
c± (/c, x) = ί sin/c(x- y) l-gL ±2Q(y)\γ^1(k, y) dy (A.3e)

o L κ J

We readily see that

-, for rc^O. (A.4b)

Hence:
GO £i/CX

X ^(k,x) = H±(x)—-—, (A.5a)
M = O 2z/c

where H1 (x) is given by (2.8 b). We are led to look for a bound for the
quantity

φ* (fe, x) - I H ± (x) -^ - H+ (x) ^k I » i e for Σ yί (fc' *)

It is straightforward to prove that

\bn (k, x)\ ^ C ——2 :—, for n ̂  1 and |fc| ^ 1, (A.6)

where M(x) is defined by (2.8 c). We obtain a similar bound for a^ (k, x)
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by integrating by parts each of the two terms of the expression (A.3c).
We have for the first term, for n ̂  1,

= + Vί
x e~2iky

ίkx

= +

2ik

-2iky

± i j β ( f ) d f
Q(y)-' °

n-1

4k2

ikx x p-2iky

(n-l)!

y \n-l

±iSQ(t)dt)
0 / (A.7)

4k

Q'(y) - + Q2(y)(±i)n

\lQ(t)dt\
vn-l \0 /

\ π - 2

dy,

and an analogous result for the second term. We deduce from this:

M* \(M(x)γ-ί ,

|fc|2 L (n-l)! nl

for n ̂  1 and |fc| ̂  1.
(A.8)

With the help of inequalities (A. 6) and (A. 8), it is not difficult to prove
by induction the following bound for y*(k,x):

Γ(2M(x))π~1

nl

for n ̂  1 and \k\ ̂  1,

which leads to the inequality (2.8 a).

(A.9)

Appendix A. 2

Proceeding as in Appendix A.I, we obtain the behaviour of f± (fc, x)
for large values of k. We write the integral Eq. (2.12) in the form

00 °° U(v]
f± (k, x) eίkx = 1 + i J Q(y) eίkyf±(k, y) dy + f -^~- eίkyf±(k, y) dy

«X

e-2ik(y-x}

 X l (A.10)

-ί —^ [I/(y)±2fcQ(y)]^V±(fe,)')^,
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and expand /± (fc, x) eikx as follows:

f±(kίx)eίkx= Σgϊ(k,x)9 (
w = 0

vϊ(k,x), for n ^ O , (A. lib)

ϊ(k,x) + t*(k,x), for n^O, (A. lie)

where :

μ£ (k, x) = 1 , vί (/c, x) = rf (/c, x) = So* (/c, x) = tf (fc, x) = 0 , (A. 1 1 d)

and, forn S: 1 :

μ± (/c, x) = + i J β()0 ̂  ! (/c, y) dy , (A. 1 1 e)

r± (k, x) = + i e- «*ϋ--«) β(y) μ±_ , (k, y) dy , (A. 1 1 f)
X

" " (A 1 1 8)

It is easy to see that

i-Ί V
, for n ^ O , (A.12a)

(A.12b)

n I
and

where F11 (x) is given by (2.15b). We seek now a bound for the quantity

f± (k, x) eikx - F± (x), i.e. for £ v± (/c, x). It is not difficult to obtain the
n = l

inequality

C (P(χ]Y
| s ± ( f c , x ) | ^ _ l _ _ 9 for rc^land/cφO, (A. 13)

where P(x) is defined by (2.15c). Integrating by parts (A.I If) and using
the Assumption II, we derive also a bound for r* (k, x) :

_ , for « ^ l a n d / c Φ θ . (A. 14)
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From formulas (A. 13) and (A. 14), we prove by induction that

i)"-1 , (2P(x))"
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n\
, for n^l and |fc| ̂  1. (A. 15)

Inequality (2.15 a) follows immediately from (A. 15).

Appendix B

We intend to prove the differentiability of A± with the help of the

expansion (4.15). We note first that —— AQ (x, t) and —-A$ (x, t) exist
o x c/1

and are continuous for ί ̂  x ̂  0, and are given by the formula

rl r\

They also satisfy

a ,.
and o (x, 0 2 '

(B.2)

where VF(x) is defined by (4.23b). Let us assume that the property (P):

4ί Λ O

^— Λ.f (x, t} and ^— ^4 * (x, t) exist and are continuous for t ΞΞ x ̂  0,
(7X ϋί

and satisfy

8 A±(Ύ t\
dx n(X't}

and
d +

dt n

is true for a fixed arbitrary value of n^ 1. Using this and the results
obtained for A^ (x, ί) and ^4^+ ί (x, ί)? it is tedious but straightforward to

prove that —— A^+l (x, ί) and —— A*+lιx, t) exist and are continuous for
<9x dt
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ί^x^O and are given by the following formulas:

- -

χ + t

*V(y)A*(y,

± i f

±» J βU')--

±> ί βW-^-^ίy.

Inserting the bounds (B.3) and (4. 14 a) in the expressions (B.4) and (B.5),
we show the validity of the bound (B.3) and hence of the property (P)
in the case n + 1. As it is not difficult to prove (P) for n = 1, we conclude
it holds for every n ̂  1. °° ^

In view of (B.3), it is obvious that the series £ ——A^(x,t) and
oo ^ n = 0 Vχ

Σ ~^~ AH (x, ί) converge uniformly on every compact set. Therefore,
n=o M
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—— A± (x, t) and —- A± (x, t) exist and are continuous for t ̂  x ̂  0 and,

-j^A±(x,t)= £ -jLA*(x,t), (B.6)
OX n=Q OX

-^A±(x,t) = X -j-A*(x,t). (B.I)

The inequality (4.23 a) follows immediately.

Appendix C

In this appendix, making the Assumptions I, II, III and IV, we prove
a "completion formula".

To this purpose, we introduce the Green's function

(C.I)

Except for a finite number of non real poles corresponding to the bound
states, G±(fe, x, y) is, for fixed x and y, analytic in k for Imfc<0 and
continuous in k for Im/c^O. Let ψ(x) be a function twice differentiable
and vanishing in the neighbourhoods of x = 0 and x = oo. We set

θ(x)=-ψ''(x)+U(x)ψ(x). (C.2)

It is easy to see that

ψ(x) = f G ± ( k , x , y ) [%) ± 2kQ(y)ψ(y) - k2ιp(y^ dy (C.3)
o

hence:
w(χ] 1 °° °°
^ = - I G±(k,x,y)θ(y)dy±2$G±(k,x,y)Q(y)ψ(y)dy

\ ° (C.4)

-k]G±(k,x,y)ψ(y)dy.
0

We integrate both sides of (C.4) around a half-circle |fc| = R contained
in the lower half of the complex /c-plane and described in the positive
sense. Thanks to the bounds (2.7) and (2.14), we see, using a Jordan's
lemma, that the integral of the first term of the second side of (C.4)
vanishes as R-+ oo. The same result holds for the integral of the second
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term; to prove this, we replace, in G* (fe, x, y\ φ± (fc, y) and f± (k, y) by

φ± (k, y) = H± (y) -f^ - # T (y) ̂ ~ + *ί (k y) , (C.5)

f±(k9y) = F±(y)e-ίky + R}(k9y)9 (C.6)

we integrate by parts with respect to y the terms containing e+lky and
OO

e-ιky jn ^g expression Of J Q± ̂  x? ̂  <2(y) ^Q/) ^y, an(j lastly, we make

use of the bounds (2.7), (2.8), (2.14) and (2.15). The left hand side of (C.4)
yields iπ ψ(x). We have therefore

φ(x)--— lim j kdk]θ±(k9x9y)ψ(y)dy. (C.I)
in R-+CO \k\=κ o

Let us consider the same integral computed along a closed path, which
is composed of the real segment [ — R, +K] and the half circle |fe| = R
contained in the lower half of the complex /c-plane; applying the theorem
of residues, and making use of the formula (3.6) in the case fc = fc*, we
obtain as R -> oo

171 o o

W± oo (C 8)

+ Σ Bί φ± (k+n, x) ί ψ* (k*, y) Ψ(y) dy ,
n=ί 0

where

- . (C.9)

We add the formula (C.8) corresponding to the index " + " and the
formula (C.8) corresponding to the index " — " then, with the help of the
relations (2.9) and (3.7), we derive the following "completion formula"
valid in the space of the functions ψ(x) previously defined:

ψ(x) = J φ+ (fc, x) dρ+ (k) J φ+ (fe, y) ψ(y) dy
o o

00 00

+ I ψ~(k, x) dρ~(k) } φ~(k, y) ψ(y) dy

I B+ \ (C 1Q)
-f ^ ——φ + (k*,x) J φ + (kr

n=ι 2 o
N ~ D— oo

+ Σ ^^-(/c^x)!^-^,
n = l 2 o
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where
de

±(k)
dk

(C.11)

Note that the coupled integral equations (5.17), which are of para-
mount importance in the study of the inverse problem, may be easily
derived, in a purely formal sense, from the formulas (C.8).

Appendix D

In this appendix, we list some bounds useful in deriving the results
of §3. These bounds are obtained without difficulty; we omit proofs.
For n ̂  0, u ̂  x, t ̂  x, x ̂  0, we have:

c

~dJβ-
(M)

~Γ U \ I "* \ /τ^\

2 )S 2 j ' (D 1)

ft / /- 4- Y \ /T-4-ίΛ
iC±

du ~x>" (M)
<^ T)2n sr 1 I J Ϊ / 1 /"Γ^

"^ σ°i 2 J σ ° i 2 j ' (υ 2)

for u ̂  x, t ̂  x, x ̂  XQ :

d +

du x «)

5 +

and

(w, ί) ^ ί+R2

x (x + Λσ (x + t\ (Ό

(L-R

X) \ 2 / \ 2 /

^ 4- , ^ 1 / X + ί \ ^ / X + W \ /Ύ^f f r + (u f\ <? ff /T ' (T)ψχ (u,t) ^ 2 σ0 1 I ° l 9 /

3)

4)

for t ̂  x ̂  x0:

ax [σ0(x) + σ0(x)] ,

θx

^ C
σ0

for M Ξi x, t ̂  x, x ̂  0:

a2 _ , / .^ C σ0(x) σι

(D.5)

5

(D.6)

(D.7)

(D.8a)
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dx2 < ς ( 4 ( n - ί ) n + ίOn)S2" σ0(x) σ0

X +

I a2

\dx8u
5£ 2nS2V0(x)σo

for w ̂  x, f ̂  x, x ̂  x2:

s2 , + .
^C σ0(x)σ0

for u ̂  x, t ̂  x, x ̂  x0:

x + w ^

+ σ0(x)σ1

2 / M 2
f x + t " '

dxdu

s2 ,
and

for t ̂  x Ξ; x 2:

dx2 ^C|σ0(x)σι

x + t

σ2

(σ0(x) + σ1(x) + σ1(x))

dt2 •Ψ*(x,t)

(D.8b)

(D.9a)

(D.9b)

(D.10)

(D.ll)

(D.13)

(D.15)
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Note Added in Proof. After the completion of this work we read a paper by H. Cornille
[J. Math. Phys. 11, 79 (1970)] in which he studied the reconstruction of U(x) and Q(x) from
the S-matrix discontinuities in the complex A -plane for the Schrδdinger equation (1.8 a)
with the energy-dependent potential V±(k, x) =U(x)± 2(k2 + m2)* Q(x), m > 0, in the case
where U(x) and Q(x) are superpositions of exponential-type potentials - with the additional
condition U(x)= —Q2(x\ this equation reduces to the Klein-Gordon equation with the
static potential Q(x) for a particle (antiparticle) of mass m and of energy k -. In this study
he gave an extension of the Marchenko formalism: he showed that the Jost solution
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f±(k,x) may be written in the form (Cornille formula 33)

and by using dispersive methods he derived two coupled integral equations (Cornille
formula 34) connecting K^ (x, ί) and K2 (x, ί) with certain functions easily deduced from
the S-matrix discontinuities in the complex fc-plane. Using the theorem of residues in the
complex /c-plane, it is easy to see that these functions are also easily deduced from the
S-matrix for real k, from the binding energies and from certain other numbers associated
with the bound states, and therefore are similar to our functions z+ and z~. It is certainly
possible to prove that this formalism is valid for a larger class of potentials U(x) and Q(x)
though one cannot expect to use dispersive methods in general for the proof. However, for
m = 0, because of our assumption that Q(x) is differentiable - which allowed us to perform
useful integration by parts all along our paper - our formalism is not identical with the
Cornille formalism. The connection between the two formalisms is nevertheless easy to do.
Integrating by parts the second term in the integral of (i) and taking into account the relation

oo

K2 (x, x) = sin J Q(t)dt (Cornille formula 39 a), we find again our relation (4.20) if we set

A± (x, t) = K,(x, t) + i A K2(x, t) . (ii)

Furthermore, starting from the Cornille integral equations for Kλ (x, t) and K2 (x, ί), and
integrating by parts certain terms, we find, after some work, our integral Eqs. (5.17) for
A + (x, ί) and A ~ (x, ί), but valid only in the case of superpositions of exponential-type
potentials.




