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Abstract. This paper states two equivalent conditions from which modularity of the
lattice G of decision effects E can be derived. It may be seen as a supplement to Ludwig's
approach [5] to an axiomatic foundation of physical theories. As a consequence of these
conditions every filter TE is a self-adjoint projector on the Hubert space B' generated by the
decision effects.

I. The Construction of a Canonical Linear Order Isomorphism

The mathematical symbols and definitions used in the sequel are
taken from [1,2] without further explications. Theorem 4 in [1] states
the existence of a bijection J between the set of all atoms P of G and the
set A(W) of all atoms K 1 ( P ) = {VP} of W. This first part of our paper is
concerned with the possibility of extending that bijection J to the whole
of B' such that its extension J

(i) becomes a canonical linear isomorphism between B' and B and
(ii) preserves order in both directions.
Remark ί. Let us remember a well-known fact from linear algebra:

Given two R-vector spaces Bl, B2 and any linearly independent set
S C J B ι , S φ 0 :

(a) if h: S-*B2 is a map, then there exists a unique linear extension
h\lmRS-+B2

(b) the linear extension h of h is injective iff
(bx) h is injective and
(b2) Λ[S] is linearly independent.
Of course, B', B having the same finite dimension, say N, they are

isomorphic and the isomorphism depends, in general, on the basis
chosen. The very problem here is to point out a canonical isomorphism
J between B' and B such that

J\A(G)= J and Γl \A(W) = J""1 .

* This paper extends a final report presented to and supported by the Deutsche
Forschungsgemeinschaft.
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Indeed, these two restrictions will guarantee that J is canonical and
an order preserving isomorphism. Since A(G) generates £', every maximal
linearly independent subset S of A(G] is a basis of B'. Applying (a) and (b)
to such an S, we have, by hypothesis, linR S = B' and J injective. Moreover,
by άimB' = dim 5 = N the unique linear extension J of J is even bijective
provided the linear independence of J[S] could be verified.

To give a motivation though incomplete we define for every E
eG:^(E}\ = (S(£) \ S(E) C A(G) and S(£) generates a covering chain of £}.
Then the linear independence of every S(E) can be proved:

Theorem 1. For all EeG and every S(E)e^(£) there holds linear
independence of S(E).

Proof. Since B' is finite-dimensional, all covering chains of any
E e G are finite. For any E e G let Sr(£) = {P1, ...,Pr} generate the
covering chain P1 < P^ V P2 < <• V Pf = £ of E. Without loss of

ieNr

generality, assume, for the non-trivial case r> 1, the linear dependence
of Sr such that P r= £ β^. Since V pi=M> so K0( \/ PΛ

ieNr-i ίeNr-i \ieN, - i /

- P| K^P^tt and, because of Pr ^ V p<> there holds

KJ V PA£K0(P r). Hence there exists VfeKJ\ PΛ such that
\ieNr-! J \ i e N r _ ! /

<F', P r)Φo. The assumption, however, implies the contradiction

Theorem!. The image J[Sr(£)] = {FP. |/ 'e Nr} generates a covering
chain of KJ\J PΛ m VF and is linearly independent.

\iεNr J

Proof. G and FT being isomorphic lattices, there holds KI(PI)
<Kί(Pl VP2}<-"<Kίί V ^A which proves the first assertion. To

\ieNr J

verify the second one, assume, for the non-trivial case r > 1, with-
out loss of generality that J[Sr(£)] is linearly dependent such that
VPr= Σ ft Kjy Since P r£ V P^ ^ {VPr} = Kl(Pr)gKl( V

= KJ Λ ^V hence ίVPr> Λ P Λ Φ O . Since / V P j 9 /\ PΛ =o
\ieNr-! J \ i e N r _ i / \ i e J V r _ ι /

for every j<ENr__i7 the assumption implies the contradiction

From Remark 1 together with these theorems there results the
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Corollary. J has a linear injective extension J : \mRSr(E)^B.

Remark 2. The proofs make clear that analogous statements can
be obtained by starting from J[Sr] as a set generating a covering chain
in W and then applying J"1. Hence J preserves linear independence of
atoms of covering chains in both directions.

We failed to prove similar properties of J for any linearly independent
set of atoms in G and W, respectively, without subsequently introducing
an additional axiom suggested by Ludwig during a seminar at the
university of Marburg on foundations of physical theories. This axiom
turns out to be one of the postulates the equivalence of which will be
verified :

(1) £ β.p. = o<^ Σ βί VPl = 0 with β. e R for every i e Nn and any
ίeNn ίeNn

neN.

(2) <^P,e> = <FQ,P> for all P,QεA(G).

Theorem 3β If the postulate (1) holds, then the bijectionJ_ : A(G)-+ A(W)
defined by J_(P) = {VP} for every P e A(G) has a unique extension J : B'-*B
which is

(i) linear and bijective, (ii) canonical, (iii) order preserving
in both directions.

Proof, (i) Given any basis S = {P1 , . . . , PN} C A(G) of F, then, by (1),
£ ftFPι-0 implies Σ £^ = 0, hence ft = o for all ieNN and thus

J_[S^\ is a basis of B. Consequently, there exists a unique linear extension
JS:B'-*B which is-by bijectivity of J and lin^^^B'-bijective, too.

(ii) Let T={β l 9 ...,QN}cA(G] be another basis of B' and Jτ the
corresponding linear bijective extension of J| T to B'. Then any R e A(G)
has the representations

R= ^ βiPί and R= ^ ftQt with jS^ f teR for all ieNN.
ieNjv ieJVjv

Utilizing (1) again, we conclude from ]Γ jS fPf- ^ β'iQi^® tnat

Σ ^KP ι= X #7Qι. So, JS(R)= X ^jί)- iV^ and JT(R)
ί'eNjv ieNίv ieNN ieN^

= Σ β'ίJ-(Qi}= Σ jS'/^, hence JS(R) = JT(R) for all R e ^l(G). There-
ieNjv ieNN

fore, Js = : J is independent of bases consisting only of atoms. J is even
independent of any basis of £Γ because ^4(G) generates B'. J"1 is also
canonical because J is so.
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(iii) For every atom QeA(G)(l) implies β = Σ βiPi^VQ= Z f t F p , ,
ieN v ieJVίv

whence the desired restrictions J\A(G) = J and J ~ ί \ A ( W ) = J[ ~l follow.
There remains only to show that J[B'+~]=B+ and J~1[B + ~] = B'+:
every YeB'+ has a representation (cf. [5]) by 7= £ ftPp fte/?* for

all ίeN,. Applying J to 7, we get J(7)= X J M ( = Σ &^p,eB +
ieJVn ieNn

and, moreover, every Jίe£ + is the image of an ye£'+ under J. Con-
versely, if X E B +, then * = £ βjVQj,βj e#ΐ for a Π / e W m . Again by (1),

JeNm

J~l(X)= £ PJJ~I(VQ)= Σ j8}βjeF+ is obtained. This completes
JeIVm ' jeNm

the proof. |

Theorem 4. FF/t/i ί/zβ hypothesis of Theorem 3 there holds
(i) <^P, β> = <VQ, P> /or a// P, Q e A(G) (postulate (2))

(ii) J is symmetrical (J1 denoting the transposed isomorphism of J).

Proof _(i) r is_ defined by <J F, 7> - <F, J* Y>, i.e. by μ(JΫ,Y)
= μ(r 7, y) for all y, y E B'. B', B being finite-dimensional, J1 : F -> Br/ - B
is valid. For any fixed Q e A(G) and every P e >4(G) we obtain <(FP, Q>
-<JP,β>-<P,J ίβ> and thus o^<P,J ίβ>^l for every PeA(G).
So, JtQ = :XQeB+, whence Z Q -A Q K Q with F Q eX and /l ee^*.
XQ = 0, indeed, is excluded by J* being an isomorphism. Next we shall
show λQ = 1 and so, as a consequence, VQ=VQ. To this purpose let us
consider any orthodecomposition of 1 such that 1 = Q + ]Γ Pt and

ieNn

PieA(G). Utilizing (1), we conclude that <J1,6> = <FQ,Q>+ £ <TΛ,β>
ie]Vn

holds, hence <Jl,β> = <KQ,β> = 1. Thus 1 = <Jl,β> = <1, ̂ β))
- <1, XQy = AQ<1, KQ> - λQ. Finally, substituting β for P in the equation
<KP,β> = <P,Jίβ> = <P, VQy yields <β, 7Q>-1. Since X^β) is the
singleton {FQ}, so FQ= FQ. This proves (2).

(ii) As a consequence of J\A(G) = J t \ A ( G ) from (2) we even get
J = J* because ,4(G) generates B'. |

Theorems. Postulate (2) implies postulate (1).

Proof. Suppose that any finite S : = {P1 , . . . , PJ C A(G) satisfies
X ftPi-0 with ftetf for all i eN π . Then for every βe^(G), there

ieNn

holds /FQ, X ^Pλ - X j8 ί<^Q5P ί> = o. An application of (2) yields

o = Σ βi< C^> - Σ βT<vPί, Q> = /Σβi VP, Q} - Hence Σ βι VP, - o,
ieNn ie]Vn \ Ϊ6JVn / ieJVM

which completes the proof. |

Corollary. The postulates (1) and (2) are equivalent.
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II. B as a Hubert-Space

The most important result from (2) is that B' (and B as well) becomes
a real Hubert space.

Theorem 6. // (2) is valid and J denotes the isomorphism from Theo-
rem 3, then the bilinear functional < ) : B' x B' -> R defined by
<F| y>: - <J F, Y> - μ(J F, Y) for all F, Y E B' is an inner product on B'.

Proof, (i) Bilinearity of < | > is obvious.

(ii) To prove strict positivity of ( | > we remember that every ΎeBr

has a spectral representation (cf. [5]) by Y= £ ftP;, ftejR, P^e^l(G)

for all i E Nn, Pf 1 Pk for all i, k ε Nn and i Φ k. Therefore, < Y | Y> - < J Y, Y>

z,/ceNn ΐeN M

(iii) Symmetry of <• •> follows from symmetry of J: for all Y, YE B'
therehoids<F|y>-<jF,y>-<F,j ίy>-<F,jy>-μ(jy,F)-<y|F>.|

Theorem 7. (F, < | » /,s α real Hubert space.

Proof. Since B' is a real finite-dimensional Banach space with respect
to the supremum norm and since the norm induced by < | > on B' is
equivalent with that one, B' is also complete with respect to the inner
product norm. Thus B' is a real Hubert space and, being self-dual, it
coincides with B. |

Theorem 8. The lattice-theoretical orthogonality relation on G equals
that which is induced on G by the inner product < | ) of Theorem 6.

Proof. All Eΐ,E2eG have lattice-theoretically atomic ortho-
decompositions by Eί — ]Γ Pj and E2 — ]Γ Qy

ieNn jeNm

(i) Suppose that (Eι\E2y — Q. Then £ ^Pi\Qjy = o and so, by

positivity of each ^P lβj), there must hold Pf eK0(<2y) — X^βj^) for all
i E JVn and all jeNm. Hence P^Qj , whence we infer £x = ^ Pt

-£ δ j l = U !

(ii) The converse follows from reading (i) in the reverse direction. |
Another consequence of the inner product on B' is the existence of an

ortho-additive dimension function on G.

Theorem 9. (i) The function d:G->R+ defined by d(E)= <1 £> for
all E E G is isotone on G.
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(ii) ImdcNu{o). (iii) For any e£ l s £ 2 eG: if EV<E2, then all
maximal orthochains connecting Ev to E2 possess the same length.

Proof. By Theorem 8, there holds d(E) = <£ -f EL \ £> = <£]£> for
all E e G. Choose any orthodecomposition £ Pf of £, then

d(E)= Σ ^PilPj)— Σ δίj = n. Therefore, d(£) counts the atoms in
iJeNn ίJeNn

the above atomic orthodecomposition. By the function property of d,
any orthodecomposition of E different from the above must have the
same number of atoms, namely d(E) = n, which proves (ii) and (iii).
Utilizing atomicy and orthomodularity of G implies isotony of rf, which
proves (i). |

d being normalized by = : δ(E) for all E e G, the range of the
d(ί)

function δ satisfies {o, 1} £ Imδ C [o, 1] nβ. To state the defining relations
for δ to be an ortho-additive dimension function on G, observe that
immediately from the definitions of d and δ there results

(i) <5(0) = o, <5(1)=1; δ^ V E2) = δ(E1) + δ(£2)
 for a11 £ l 5

such that El.LE2 (finite ortho-additivity of (5). This fact is summarized
in the

Theorem 10. The normalized, Q-valued function δ on G defined by

δ(E}: = for all E e G is an ortho-additive dimension function on G.

δ permits us to introduce a dimensional equivalence relation ~ on
G b y :

For all E^ E2 e G: E, ~ E2 iff δ(Eί) = δ(E2) (cf. [4]). This equivalence
relation is connected to the lattice operations as follows:

(A) E - 0 implies E = 0.

( B ) £ ^ £ 1 V £ 2 implies the existence of E^E^εG such that
E = Ey E and E\ - Ei for all i e N2.

(C) Let (E't)ieNn and (E'l)ieNn be (finite) sequences of pairwise
orthogonal elements of G ("finite" because of dimB' = N < GO). If E'{ ~ E"

for every i e Nn, then V El ~ V E"

(D) If Ev ^ JE2, then there exist E; Φ 0 such that Ej ̂  £f for all i e N2

and EI ~ £2 .

(A)— (D) result directly from G being orthomodular and atomic.
In the sense of Loomis [4] G is a dimension lattice, whereas other
authors prefer to postulate :
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(D') Perspective elements of G are equivalent instead of (D) in order
to call G a dimension lattice. Loomis [4] proves (D') => (D). The validity
of the converse is, in general, unknown. However, in the special case of G
treated here we shall verify modularity of G and thus (D) => (D') by first
showing the validity of the Jordan-Dedekind chain condition and then
the so-called "covering condition" for G (cf. [6]).

Theorem_ll. For all E,EeG: if Erg£, then all covering chains
connecting E and E possess the same length.

Proof. Suppose E<E. dimB' = N<co, atomicy and orthomodularity
guarantee the existence of covering chains connecting E and E. Let
E<£VP1<EVP1 VP 2 <•••<£ V V pi = E be anY covering chain

_ ieNn _

between E and E with Pt e A(G) for all ieNn. Defining £,-: - E V V pι
iεNj

for every jεNn, we obtain En = E = En_ί V ( £ Λ E^_±) by ortho-
modularity of G and, since E covers £ n _ l 5 Ql:= E/\ E^^e A(G).
Similarly, since En_1 covers En_2, so Q2'*= En_l Λ £^__2 A(G). Con-
tinuing this procedure, we get a covering chain between E and E which
is constructed by n pairwise orthogonal atoms. Hence d(E) — d(E) = n.
Considering any covering chain between E and E different from the
above and having the length m, then, to this one there corresponds a
covering chain constructed by m pairwise orthogonal atoms via the same
arguments as above. Then Theorem 9 requires m = n. |

Corollary. For all P, Q e A(G): ifP-LQ, then G(0, P V β) is a modular
sublattice of G.

Proof. For all E', E" e G(0, P V Q) d satisfies the dimension equation
d(Ef) + d(E"} = d(E V E"} + d(E' Λ E"). |

Moreover, there holds the

Theorem 12. For all P, β e A(G): G(0, P V β) is a modular sublattice
of G.

Proof. By the preceding corollary only the case of P _^ Q needs to be
investigated. d(P V Q) = 2 must be shown: orthomodularity of G implies
P V Q = P V ((P V β) Λ P1) - P + ((P V Q) Λ P1) and P V Q = Q
+ ((P V β) Λ β1), whence \ (P V β) - \ P + \ (P V β) Λ P1 - \ Q
+ Ί (P V β) Λ β1. This implies that the line segments [P, (P V β) Λ P1]
and [β, (P V β) Λ β1] intersect in ^(P V β). Thus they span a plane in
β'(PVβ). Take i(P + β) in this plane and consider the line segment
[iCP + β),έ(PVβ)] which is, because of P_jZβ, not a singleton. To
exclude i(P + β)e3Lpv Q, assume the contrary. Then the extremal hull
of (i(P + β)}, which contains K^P V β) - CβP + \Q\ is contained in
dLpvQ. Since lin^K^P V Q) = B(P V β), we obtain B(P V β)clinHLP v Q
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= B'(P V Q}. This proper inclusion contradicts the isomorphy of B(P V g)
and B'(P V β). Thus |(P + Q) is an internal point of LPvQ and therefore
the extension of the line segment [i(P + β),i(P Vβ)] via i(P + g)
intersects dLPvQ in a point F. By construction we have i(P + β) = /lF
+ (1 — λ) |(P V β) with λ E ]o, 1[. F being an effect, it is a convex com-
bination F= ]Γ /I jF j of m extreme points Ff G G(0, P V Q) of LPvQ.

ieNm

Hence we conclude that < F | P V β > = £ ^<£i|P V β> ̂  1. Since
ίeJVm

<i(P + δ) |PVβ> = l, there holds 1 = <i(P +β)|P V β> =/l<F|P V β>
+ (1 - λ)$(P V β I P V β> - λ<F I P V β> + (1 - λ)%d(P V Q) whence we
infer < F | P V Q > - 1 and d(PVβ) = 2. d(PVβ) = 2 is equivalent with
modularity of G(0, P V β). |

As the final step towards modularity of G we shall verify the validity
of the covering condition for G:

Theorem 13. For all El9E2ε G: if El,E2 both cover Ev Λ £2, then
El V E2 covers E± and E2.

Proof. By hypothesis there exist two atoms P,QeA(G) such that
£ 1 = ( £ 1 Λ £ 2 ) V P and E2 = (E, Λ E2) V Q. So we obtain ^ Λ JE2)
V ( P V Q ) = E1VE2 = E1VQ = E2VP. Consequently, applying d to
these equations and utilizing Theorem 12, we have d(Eί)^d(Eί ί\E2}

- d(£! Λ £2) + 1 = d(El Λ £2) + d(Q) = d(E2) and d^i V £2)

1 Λ £ 2 ) + d(PVβ) = d(£;1Λ£2) + 2. Hence we infer d(£A V £2)
!) -f 1 = d(£2) + 1 which expresses that Eγ V E2 covers F! and £2. |

Now we can formulate the main result of this paper in the

Theorem 14. // B' is a Hilbert space equipped with the inner product
from Theorem 6, then the orthomodular lattice G is even modular.

Proof. With the hypothesis of Theorem 12 MacLaren has proved
the assertion in [6]. |

Corollary 1. d and δ are dimension functions on G.

Corollary 2. (D) implies (D').

Remark 3. The symmetry postulate (2) implies modularity of G.
Thus modularity of G is the consequence of certain possibilities of
constructing preparing and effect portions of technical apparatuses for
physical experiments. To be precise: VP, VQ are irreducible ensembles
causing the atomic decision effects P and Q, respectively, with proba-
bility 1. Vp produces the atomic decision effect Q with probability
<FP, β>. Then the symmetry postulate (2) says that the effect apparatuses
characterized by P react to the ensemble VQ with same probability as β
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reacts to VP. This fact is well-known in ordinary quantum mechanics
based on the Hubert space model where (VP,Qy is given by <FP, β>
= Tr(Pβ).

This promises another deduction of the Hubert space model of
quantum mechanics than that one given by Stolz [7] who used the co-
ordinatizing procedure of projective geometry and, therefore, must
necessarily involve the additional dimension postulate of d[G]§;4 in
his exposition.

We conclude this section by showing that the involution on &(Bf)
induced by the Hubert space property of B' has &~(G) in its set of fixed
elements. This question was broached in [2]. There we proved that the
algebra &(Bf) is generated by the physical filters TE provided G is
irreducible. By the Hubert space structure on B1 induced by the symmetry
postulate (2) £%(B'} becomes a J3*-algebra and its generators TE are self-
adjoint projectors on B'.

Theorem 15. Concerning the involution * on $(Br] induced by the
inner product <• | •> on B' there holds T£ = TE for all E e G.

Proof. Remember that TE was generally defined by < K, TE Jp> = < K, F>
for all VeK^E) and every F e L. Self-adjointness of any idempotent
TE E 3~(G) is equivalent with TE being a perpendicular projector on B'
(e.g. [3]). That is we have only to verify Ker TE = B'(E)L for all £ e G
concerning the orthogonal sum B' — B'(E}®B'(E}L:

(i) For every 7e B'(E)L we have <P| 7> - o for all P e LE i.e. for all
P^E. Then from <P| TE 7> - <P| 7> -o for all PeK±(E)cLE there
follows TEYeB'(E)A-nBf(E) = {Q}, hence 7eKerT£ and thus B'(E)L

(ii) For every YeKerΓ^ there holds <P| TEYy = <P| Y> -o for all
P e Kι(E) i.e. for all P g E. Therefore 7e B'(Eγ because K^ (E) generates
B'(E) consequently Ker TE g B'(E)L. |

There remain three open questions:

1. Does modularity of G imply the symmetry postulate (2) without
the requirement of d(G) ^ 4?

2. Suppose that the filter algebra $(B'} possesses an involution *
such that Γ*Γ = 0 implies Γ = 0 and such that Tg = TE. Does then the
symmetry postulate (2) hold?

3. It is possible to deduce the Hubert space model of quantum
mechanics from the symmetry postulate (2) without any use of projective
geometry?
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