Symmetry of the Physical Probability Function Implies Modularity of the Lattice of Decision Effects*

Günter Dähn

Mathematisches Institut der Universität Tübingen

Received April 18, 1972

Abstract. This paper states two equivalent conditions from which modularity of the lattice G of decision effects E can be derived. It may be seen as a supplement to Ludwig's approach [5] to an axiomatic foundation of physical theories. As a consequence of these conditions every filter T_E is a self-adjoint projector on the Hilbert space B' generated by the decision effects.

I. The Construction of a Canonical Linear Order Isomorphism

The mathematical symbols and definitions used in the sequel are taken from [1, 2] without further explications. Theorem 4 in [1] states the existence of a bijection \underline{J} between the set of all atoms P of G and the set A(W) of all atoms $K_1(P) = \{V_P\}$ of W. This first part of our paper is concerned with the possibility of extending that bijection \underline{J} to the whole of B' such that its extension J

- (i) becomes a canonical linear isomorphism between B' and B and
- (ii) preserves order in both directions.

Remark 1. Let us remember a well-known fact from linear algebra: Given two **R**-vector spaces B_1 , B_2 and any linearly independent set $S \in B_1$, $S \neq \emptyset$:

- (a) if $\underline{h}: S \to B_2$ is a map, then there exists a unique linear extension $h: \lim_{\mathbf{R}} S \to B_2$
 - (b) the linear extension h of \underline{h} is injective iff
 - (b_1) <u>h</u> is injective and
 - (b₂) h[S] is linearly independent.

Of course, B', B having the same finite dimension, say N, they are isomorphic and the isomorphism depends, in general, on the basis chosen. The very problem here is to point out a *canonical* isomorphism J between B' and B such that

$$J|A(G) = \underline{J}$$
 and $J^{-1}|A(W) = \underline{J}^{-1}$.

^{*} This paper extends a final report presented to and supported by the Deutsche Forschungsgemeinschaft.

Indeed, these two restrictions will guarantee that J is canonical and an order preserving isomorphism. Since A(G) generates B', every maximal linearly independent subset S of A(G) is a basis of B'. Applying (a) and (b) to such an S, we have, by hypothesis, $\lim_{R} S = B'$ and \underline{J} injective. Moreover, by dim $B' = \dim B = N$ the unique linear extension J of \underline{J} is even bijective provided the linear independence of $\underline{J}[S]$ could be verified.

To give a motivation though incomplete we define for every $E \in G$: $\mathcal{S}(E)$:= $\{S(E) | S(E) \subset A(G) \text{ and } S(E) \text{ generates a covering chain of } E\}$. Then the linear independence of every S(E) can be proved:

Theorem 1. For all $E \in G$ and every $S(E) \in \mathcal{S}(E)$ there holds linear independence of S(E).

Proof. Since B' is finite-dimensional, all covering chains of any $E \in G$ are finite. For any $E \in G$ let $S_r(E) = \{P_1, \dots, P_r\}$ generate the covering chain $P_1 \lessdot P_1 \lor P_2 \lessdot \dots \lessdot \bigvee_{i \in N_r} P_i = E$ of E. Without loss of generality, assume, for the non-trivial case r > 1, the linear dependence of S_r such that $P_r = \sum_{i \in N_{r-1}} \beta_i P_i$. Since $\bigvee_{i \in N_{r-1}} P_i \neq 1$, so $K_0 (\bigvee_{i \in N_{r-1}} P_i) = \bigcap_{i \in N_{r-1}} K_0(P_i) \neq \emptyset$ and, because of $P_r \nleq \bigvee_{i \in N_{r-1}} P_i$, there holds $K_0 (\bigvee_{i \in N_{r-1}} P_i) \nsubseteq K_0(P_r)$. Hence there exists $V' \in K_0 (\bigvee_{i \in N_{r-1}} P_i)$ such that $\langle V', P_r \rangle \neq 0$. The assumption, however, implies the contradiction $\langle V', P_r \rangle = \sum_{i \in N_{r-1}} \beta_i \langle V', P_i \rangle = 0$. ▮

Theorem 2. The image $\underline{J}[S_r(E)] = \{V_{P_i} | i \in N_r\}$ generates a covering chain of $K_1(\bigvee_{i \in N_r} P_i)$ in W and is linearly independent.

Proof. G and W being isomorphic lattices, there holds $K_1(P_1) < K_1(P_1 \lor P_2) < \cdots < K_1 \left(\bigvee_{i \in N_r} P_i\right)$ which proves the first assertion. To verify the second one, assume, for the non-trivial case r > 1, without loss of generality that $\underline{J}[S_r(E)]$ is linearly dependent such that $V_{P_r} = \sum_{j \in N_{r-1}} \beta'_j V_{P_j}$. Since $P_r \leqq \bigvee_{i \in N_{r-1}} P_i$, so $\{V_{P_r}\} = K_1(P_r) \nsubseteq K_1 \left(\bigvee_{i \in N_{r-1}} P_i\right) = K_0 \left(\bigwedge_{i \in N_{r-1}} P_i^{\perp}\right)$, hence $\left\langle V_{P_r}, \bigwedge_{i \in N_{r-1}} P_i^{\perp}\right\rangle \neq 0$. Since $\left\langle V_{P_j}, \bigwedge_{i \in N_{r-1}} P_i^{\perp}\right\rangle = 0$ for every $j \in N_{r-1}$, the assumption implies the contradiction

$$\left\langle V_{P_r}, \ \bigwedge_{\iota \in N_{r-1}} P_i^\perp \right\rangle = \sum_{j \in N_{r-1}} \beta_j' \left\langle V_{P_j}, \bigwedge_{i \in N_{r-1}} P_i^\perp \right\rangle = 0 \; . \quad \blacksquare$$

From Remark 1 together with these theorems there results the

Corollary. \underline{J} has a linear injective extension $J: \lim_{\mathbb{R}} S_r(E) \to B$.

Remark 2. The proofs make clear that analogous statements can be obtained by starting from $J[S_r]$ as a set generating a covering chain in W and then applying J^{-1} . Hence J preserves linear independence of atoms of covering chains in both directions.

We failed to prove similar properties of \underline{J} for any linearly independent set of atoms in G and W, respectively, without subsequently introducing an additional axiom suggested by Ludwig during a seminar at the university of Marburg on foundations of physical theories. This axiom turns out to be one of the postulates the equivalence of which will be verified:

- (1) $\sum_{i \in \mathbf{N}_n} \beta_i P_i = 0 \Leftrightarrow \sum_{i \in \mathbf{N}_n} \beta_i V_{P_i} = 0$ with $\beta_i \in \mathbf{R}$ for every $i \in \mathbf{N}_n$ and any $n \in \mathbf{N}$.
 - (2) $\langle V_P, Q \rangle = \langle V_Q, P \rangle$ for all $P, Q \in A(G)$.

Theorem 3. If the postulate (1) holds, then the bijection $\underline{J}: A(G) \to A(W)$ defined by $\underline{J}(P) = \{V_P\}$ for every $P \in A(G)$ has a unique extension $J: B' \to B$ which is

- (i) linear and bijective, (ii) canonical, (iii) order preserving in both directions.
- *Proof.* (i) Given any basis $S = \{P_1, ..., P_N\} \subset A(G)$ of B', then, by (1), $\sum_{i \in N_N} \beta_i V_{P_i} = 0$ implies $\sum_{i \in N_N} \beta_i P_i = 0$, hence $\beta_i = 0$ for all $i \in N_N$ and thus $\underline{J}[S]$ is a basis of B. Consequently, there exists a unique linear extension $J_S : B' \to B$ which is-by bijectivity of \underline{J} and $\lim_R S = B'$ -bijective, too.
- (ii) Let $T = \{Q_1, ..., Q_N\} \subset A(G)$ be another basis of B' and J_T the corresponding linear bijective extension of $\underline{J} \mid T$ to B'. Then any $R \in A(G)$ has the representations

$$R = \sum_{i \in \mathbf{N}_N} \beta_i P_i$$
 and $R = \sum_{i \in \mathbf{N}_N} \beta_i' Q_i$ with $\beta_i, \beta_i' \in \mathbf{R}$ for all $i \in \mathbf{N}_N$.

Utilizing (1) again, we conclude from $\sum_{i \in N_N} \beta_i P_i - \sum_{i \in N_N} \beta_i' Q_i = 0$ that $\sum_{i \in N_N} \beta_i V_{P_i} = \sum_{i \in N_N} \beta_i' V_{Q_i}$. So, $J_S(R) = \sum_{i \in N_N} \beta_i J(P_i) = \sum_{i \in N_N} \beta_i V_{P_i}$ and $J_T(R) = \sum_{i \in N_N} \beta_i' J(Q_i) = \sum_{i \in N_N} \beta_i' V_{Q_i}$, hence $J_S(R) = J_T(R)$ for all $R \in A(G)$. Therefore, $J_S = : J$ is independent of bases consisting only of atoms. J is even independent of any basis of B' because A(G) generates B'. J^{-1} is also

canonical because J is so.

(iii) For every atom $Q \in A(G)$ (1) implies $Q = \sum_{i \in N_N} \beta_i P_i \Leftrightarrow V_Q = \sum_{i \in N_N} \beta_i V_{P_i}$, whence the desired restrictions $J \mid A(G) = \underline{J}$ and $J^{-1} \mid A(W) = \underline{J}^{-1}$ follow. There remains only to show that $J[B'_+] = B_+$ and $J^{-1}[B_+] = B'_+$: every $Y \in B'_+$ has a representation (cf. [5]) by $Y = \sum_{i \in N_n} \beta_i P_i$, $\beta_i \in \mathbb{R}_+^*$ for all $i \in N_n$. Applying J to Y, we get $J(Y) = \sum_{i \in N_n} \beta_i J(P_i) = \sum_{i \in N_n} \beta_i V_{P_i} \in B_+$ and, moreover, every $X \in B_+$ is the image of an $Y \in B'_+$ under J. Conversely, if $X \in B_+$, then $X = \sum_{j \in N_m} \beta'_j V_{Q_j}$, $\beta'_j \in \mathbb{R}_+^*$ for all $j \in N_m$. Again by (1), $J^{-1}(X) = \sum_{j \in N_m} \beta'_j J^{-1}(V_{Q_j}) = \sum_{j \in N_m} \beta'_j Q_j \in B'_+$ is obtained. This completes the proof.

Theorem 4. With the hypothesis of Theorem 3 there holds

- (i) $\langle V_P, Q \rangle = \langle V_O, P \rangle$ for all $P, Q \in A(G)$ (postulate (2))
- (ii) J is symmetrical (J^{t} denoting the transposed isomorphism of J).

Proof. (i) J' is defined by $\langle J\,\overline{Y},\,Y\rangle = \langle\overline{Y},\,J^{\,t}\,Y\rangle$, i.e. by $\mu(J\,\overline{Y},\,Y) = \mu(J^{\,t}\,Y,\,\overline{Y})$ for all $\overline{Y},\,Y\in B',\,B$ being finite-dimensional, $J':B'\to B''=B$ is valid. For any fixed $Q\in A(G)$ and every $P\in A(G)$ we obtain $\langle V_P,\,Q\rangle = \langle JP,\,Q\rangle = \langle P,\,J^{\,t}\,Q\rangle$ and thus $0\leq \langle P,\,J^{\,t}\,Q\rangle \leq 1$ for every $P\in A(G)$. So, $J^{\,t}\,Q=:X^0\in B_+$, whence $X^0=\lambda^0\,V^0$ with $V^0\in K$ and $\lambda^0\in R_+^*$. $X^0=0$, indeed, is excluded by J' being an isomorphism. Next we shall show $\lambda^0=1$ and so, as a consequence, $V^0=V_0$. To this purpose let us consider any orthodecomposition of I such that $I=Q+\sum_{i\in N_n}P_i$ and $I=Q+\sum_{i\in N_n}P_i$ a

holds, hence $\langle J\mathbf{1},Q\rangle=\langle V_Q,Q\rangle=1$. Thus $1=\langle J\mathbf{1},Q\rangle=\langle \mathbf{1},J^tQ\rangle\rangle=\langle \mathbf{1},X^Q\rangle=\langle \mathbf{1},X^Q\rangle=\lambda^Q\langle \mathbf{1},V^Q\rangle=\lambda^Q$. Finally, substituting Q for P in the equation $\langle V_P,Q\rangle=\langle P,J^tQ\rangle=\langle P,V^Q\rangle$ yields $\langle Q,V^Q\rangle=1$. Since $K_1(Q)$ is the singleton $\{V_Q\}$, so $V^Q=V_Q$. This proves (2).

(ii) As a consequence of $J|A(G) = J^t|A(G)$ from (2) we even get $J = J^t$ because A(G) generates B'.

Theorem 5. Postulate (2) implies postulate (1).

Proof. Suppose that any finite $S := \{P_1, ..., P_n\} \subset A(G)$ satisfies $\sum\limits_{i \in \mathbf{N}_n} \beta_i P_i = 0$ with $\beta_i \in \mathbf{R}$ for all $i \in \mathbf{N}_n$. Then for every $Q \in A(G)$, there holds $\left\langle V_Q, \sum\limits_{i \in \mathbf{N}_n} \beta_i P_i \right\rangle = \sum\limits_{i \in \mathbf{N}_n} \beta_i \left\langle V_Q, P_i \right\rangle = 0$. An application of (2) yields $0 = \sum\limits_{i \in \mathbf{N}_n} \beta_i \left\langle V_Q, P_i \right\rangle = \sum\limits_{i \in \mathbf{N}_n} \beta_i \left\langle V_{P_i}, Q \right\rangle = \left\langle \sum\limits_{i \in \mathbf{N}_n} \beta_i V_{P_i}, Q \right\rangle$. Hence $\sum\limits_{i \in \mathbf{N}_n} \beta_i V_{P_i} = 0$, which completes the proof.

Corollary. The postulates (1) and (2) are equivalent.

II. B' as a Hilbert-Space

The most important result from (2) is that B' (and B as well) becomes a real Hilbert space.

Theorem 6. If (2) is valid and J denotes the isomorphism from Theorem 3, then the bilinear functional $\langle \cdot | \cdot \rangle : B' \times B' \to \mathbf{R}$ defined by $\langle \overline{Y} | Y \rangle := \langle J \overline{Y}, Y \rangle = \mu(J \overline{Y}, Y)$ for all $\overline{Y}, Y \in B'$ is an inner product on B'.

Proof. (i) Bilinearity of $\langle \cdot | \cdot \rangle$ is obvious.

- (ii) To prove strict positivity of $\langle \cdot | \cdot \rangle$ we remember that every $Y \in B'$ has a spectral representation (cf. [5]) by $Y = \sum_{i \in \mathbb{N}_n} \beta_i P_i$, $\beta_i \in \mathbb{R}$, $P_i \in A(G)$ for all $i \in \mathbb{N}_n$, $P_i \perp P_k$ for all $i, k \in \mathbb{N}_n$ and $i \neq k$. Therefore, $\langle Y | Y \rangle = \langle J Y, Y \rangle = \sum_{i,k \in \mathbb{N}_n} \beta_i \beta_k \langle V_{P_i}, P_k \rangle = \sum_{i \in \mathbb{N}_n} \beta_i^2 \geq 0$. Hence $\langle Y | Y \rangle = 0$ iff Y = 0.
- (iii) Symmetry of $\langle \cdot | \cdot \rangle$ follows from symmetry of J: for all \overline{Y} , $Y \in B'$ there holds $\langle \overline{Y} | Y \rangle = \langle J \overline{Y}, Y \rangle = \langle \overline{Y}, J^t Y \rangle = \langle \overline{Y}, J Y \rangle = \mu(J Y, \overline{Y}) = \langle Y | \overline{Y} \rangle$. **Theorem 7.** $(B', \langle \cdot | \cdot \rangle)$ is a real Hilbert space.

Proof. Since B' is a real finite-dimensional Banach space with respect to the supremum norm and since the norm induced by $\langle \cdot | \cdot \rangle$ on B' is equivalent with that one, B' is also complete with respect to the inner product norm. Thus B' is a real Hilbert space and, being self-dual, it coincides with B.

Theorem 8. The lattice-theoretical orthogonality relation on G equals that which is induced on G by the inner product $\langle \cdot | \cdot \rangle$ of Theorem 6.

- *Proof.* All $E_1, E_2 \in G$ have lattice-theoretically atomic orthodecompositions by $E_1 = \sum_{i \in \mathbf{N}_n} P_i$ and $E_2 = \sum_{j \in \mathbf{N}_m} Q_j$.
- (i) Suppose that $\langle E_1|E_2\rangle=0$. Then $\sum\limits_{\substack{i\in N_n\\j\in N_m}}\langle P_i|Q_j\rangle=0$ and so, by positivity of each $\langle P_i|Q_j\rangle$, there must hold $P_i\in K_0(Q_j)=K_1(Q_j^\perp)$ for all $i\in N_n$ and all $j\in N_m$. Hence $P_i\leqq Q_j^\perp$, whence we infer $E_1=\sum\limits_{i\in N_n}P_i$ $\leqq\bigwedge\limits_{j\in N_m}Q_j^\perp=\Bigl[\sum\limits_{j\in N_m}Q_j\Bigr]^\perp=E_2^\perp$.
- (ii) The converse follows from reading (i) in the reverse direction. \blacksquare Another consequence of the inner product on B' is the existence of an ortho-additive dimension function on G.
- **Theorem 9.** (i) The function $d: G \rightarrow \mathbb{R}_+$ defined by $d(E) = \langle 1 | E \rangle$ for all $E \in G$ is isotone on G.

(ii) Im $d \in N \cup \{0\}$. (iii) For any $\in E_1, E_2 \in G$: if $E_1 < E_2$, then all maximal orthochains connecting E_1 to E_2 possess the same length.

Proof. By Theorem 8, there holds $d(E) = \langle E + E^{\perp} | E \rangle = \langle E | E \rangle$ for all $E \in G$. Choose any orthodecomposition $\sum_{i \in N_n} P_i$ of E, then $d(E) = \sum_{i,j \in N_n} \langle P_i | P_j \rangle = \sum_{i,j \in N_n} \delta_{ij} = n$. Therefore, d(E) counts the atoms in the above atomic orthodecomposition. By the function property of d, any orthodecomposition of E different from the above must have the same number of atoms, namely d(E) = n, which proves (ii) and (iii). Utilizing atomicy and orthomodularity of E implies isotony of E, which proves (i).

d being normalized by $\frac{d(E)}{d(1)} = : \delta(E)$ for all $E \in G$, the range of the function δ satisfies $\{0, 1\} \subseteq \operatorname{Im} \delta \subset [0, 1] \cap \mathbf{Q}$. To state the defining relations for δ to be an ortho-additive dimension function on G, observe that immediately from the definitions of d and δ there results

(i) $\delta(0) = 0$, $\delta(1) = 1$; $\delta(E_1 \ \forall E_2) = \delta(E_1) + \delta(E_2)$ for all $E_1, E_2 \in G$ such that $E_1 \perp E_2$ (finite ortho-additivity of δ). This fact is summarized in the

Theorem 10. The normalized, **Q**-valued function δ on G defined by $\delta(E) := \frac{d(E)}{d(1)}$ for all $E \in G$ is an ortho-additive dimension function on G.

 δ permits us to introduce a dimensional equivalence relation \sim on G by:

For all E_1 , $E_2 \in G$: $E_1 \sim E_2$ iff $\delta(E_1) = \delta(E_2)$ (cf. [4]). This equivalence relation is connected to the lattice operations as follows:

- (A) $E \sim 0$ implies E = 0.
- (B) $E \sim E_1 \ \forall \ E_2$ implies the existence of $E_1', E_2' \in G$ such that $E = E_1' \ \forall \ E_2'$ and $E_i' \sim E_i$ for all $i \in \mathbb{N}_2$.
- (C) Let $(E_i')_{i \in N_n}$ and $(E_i'')_{i \in N_n}$ be (finite) sequences of pairwise orthogonal elements of G ("finite" because of $\dim B' = N < \infty$). If $E_i' \sim E_i''$ for every $i \in N_n$, then $\bigvee_{i \in N_n} \bigvee_{i \in N_n} E_i''$.
- (D) If $E_1 \not\perp E_2$, then there exist $E_i' \neq 0$ such that $E_i' \leq E_i$ for all $i \in \mathbb{N}_2$ and $E_1' \sim E_2'$.
- (A)–(D) result directly from G being orthomodular and atomic. In the sense of Loomis [4] G is a dimension lattice, whereas other authors prefer to postulate:

(D') Perspective elements of G are equivalent instead of (D) in order to call G a dimension lattice. Loomis [4] proves (D') \Rightarrow (D). The validity of the converse is, in general, unknown. However, in the special case of G treated here we shall verify modularity of G and thus (D) \Rightarrow (D') by first showing the validity of the Jordan-Dedekind chain condition and then the so-called "covering condition" for G (cf. [6]).

Theorem 11. For all \overline{E} , $E \in G$: if $\overline{E} \subseteq E$, then all covering chains connecting \overline{E} and E possess the same length.

Proof. Suppose $\overline{E} < E$. dim $B' = N < \infty$, atomicy and orthomodularity guarantee the existence of covering chains connecting \overline{E} and E. Let $\overline{E} < \overline{E} \lor P_1 \lessdot \overline{E} \lor P_1 \lor P_2 \lessdot \cdots \lessdot \overline{E} \lor \bigvee_{i \in N_n} P_i = E$ be any covering chain between \overline{E} and E with $P_i \in A(G)$ for all $i \in N_n$. Defining $E_j := \overline{E} \lor \bigvee_{i \in N_j} P_i$

Corollary. For all $P, Q \in A(G)$: if $P \perp Q$, then $G(0, P \lor Q)$ is a modular sublattice of G.

Proof. For all E', $E'' \in G(0, P \lor Q)$ d satisfies the dimension equation $d(E') + d(E'') = d(E' \lor E'') + d(E' \land E'')$.

Moreover, there holds the

Theorem 12. For all $P, Q \in A(G)$: $G(0, P \vee Q)$ is a modular sublattice of G.

Proof. By the preceding corollary only the case of $P \not\perp Q$ needs to be investigated. $d(P \lor Q) = 2$ must be shown: orthomodularity of G implies $P \lor Q = P \lor ((P \lor Q) \land P^{\perp}) = P + ((P \lor Q) \land P^{\perp})$ and $P \lor Q = Q + ((P \lor Q) \land Q^{\perp})$, whence $\frac{1}{2}(P \lor Q) = \frac{1}{2}P + \frac{1}{2}(P \lor Q) \land P^{\perp} = \frac{1}{2}Q + \frac{1}{2}(P \lor Q) \land Q^{\perp}$. This implies that the line segments $[P, (P \lor Q) \land P^{\perp}]$ and $[Q, (P \lor Q) \land Q^{\perp}]$ intersect in $\frac{1}{2}(P \lor Q)$. Thus they span a plane in $B'(P \lor Q)$. Take $\frac{1}{2}(P + Q)$ in this plane and consider the line segment $[\frac{1}{2}(P + Q), \frac{1}{2}(P \lor Q)]$ which is, because of $P \not\perp Q$, not a singleton. To exclude $\frac{1}{2}(P + Q) \in \partial L_{P \lor Q}$, assume the contrary. Then the extremal hull of $\{\frac{1}{2}(P + Q)\}$, which contains $K_1(P \lor Q) = C(\frac{1}{2}P + \frac{1}{2}Q)$, is contained in $\partial L_{P \lor Q}$. Since $\lim_R K_1(P \lor Q) = B(P \lor Q)$, we obtain $B(P \lor Q) \subset \lim_R L_{P \lor Q}$

 $=B'(P\vee Q)$. This proper inclusion contradicts the isomorphy of $B(P\vee Q)$ and $B'(P\vee Q)$. Thus $\frac{1}{2}(P+Q)$ is an internal point of $L_{P\vee Q}$ and therefore the extension of the line segment $\left[\frac{1}{2}(P+Q),\frac{1}{2}(P\vee Q)\right]$ via $\frac{1}{2}(P+Q)$ intersects $\partial L_{P\vee Q}$ in a point F. By construction we have $\frac{1}{2}(P+Q)=\lambda F+(1-\lambda)\frac{1}{2}(P\vee Q)$ with $\lambda\in]0,1[$. F being an effect, it is a convex combination $F=\sum_{i\in N_m}\lambda_i E_i$ of m extreme points $E_i\in G(0,P\vee Q)$ of $L_{P\vee Q}$.

Hence we conclude that $\langle F | P \vee Q \rangle = \sum_{i \in N_m} \lambda_i \langle E_i | P \vee Q \rangle \geq 1$. Since $\langle \frac{1}{2}(P+Q) | P \vee Q \rangle = 1$, there holds $1 = \langle \frac{1}{2}(P+Q) | P \vee Q \rangle = \lambda \langle F | P \vee Q \rangle + (1-\lambda)\frac{1}{2}\langle P \vee Q | P \vee Q \rangle = \lambda \langle F | P \vee Q \rangle + (1-\lambda)\frac{1}{2}d(P \vee Q)$ whence we infer $\langle F | P \vee Q \rangle = 1$ and $d(P \vee Q) = 2$. $d(P \vee Q) = 2$ is equivalent with modularity of $G(0, P \vee Q)$.

As the final step towards modularity of G we shall verify the validity of the covering condition for G:

Theorem 13. For all $E_1, E_2 \in G$: if E_1, E_2 both cover $E_1 \wedge E_2$, then $E_1 \vee E_2$ covers E_1 and E_2 .

Proof. By hypothesis there exist two atoms $P,Q \in A(G)$ such that $E_1 = (E_1 \land E_2) \lor P$ and $E_2 = (E_1 \land E_2) \lor Q$. So we obtain $(E_1 \land E_2) \lor (P \lor Q) = E_1 \lor E_2 = E_1 \lor Q = E_2 \lor P$. Consequently, applying d to these equations and utilizing Theorem 12, we have $d(E_1) = d(E_1 \land E_2) + d(P) = d(E_1 \land E_2) + 1 = d(E_1 \land E_2) + d(Q) = d(E_2)$ and $d(E_1 \lor E_2) = d(E_1 \land E_2) + d(P \lor Q) = d(E_1 \land E_2) + 2$. Hence we infer $d(E_1 \lor E_2) = d(E_1) + 1 = d(E_2) + 1$ which expresses that $E_1 \lor E_2$ covers E_1 and E_2 .

Now we can formulate the main result of this paper in the

Theorem 14. If B' is a Hilbert space equipped with the inner product from Theorem 6, then the orthomodular lattice G is even modular.

Proof. With the hypothesis of Theorem 12 MacLaren has proved the assertion in [6]. ■

Corollary 1. d and δ are dimension functions on G.

Corollary 2. (D) implies (D').

Remark 3. The symmetry postulate (2) implies modularity of G. Thus modularity of G is the consequence of certain possibilities of constructing preparing and effect portions of technical apparatuses for physical experiments. To be precise: V_P , V_Q are irreducible ensembles causing the atomic decision effects P and Q, respectively, with probability 1. V_P produces the atomic decision effect Q with probability $\langle V_P, Q \rangle$. Then the symmetry postulate (2) says that the effect apparatuses characterized by P react to the ensemble V_Q with same probability as Q

reacts to V_P . This fact is well-known in ordinary quantum mechanics based on the Hilbert space model where $\langle V_P, Q \rangle$ is given by $\langle V_P, Q \rangle = \text{Tr}(PQ)$.

This promises another deduction of the Hilbert space model of quantum mechanics than that one given by Stolz [7] who used the coordinatizing procedure of projective geometry and, therefore, must necessarily involve the additional dimension postulate of $d[G] \ge 4$ in his exposition.

We conclude this section by showing that the involution on $\mathcal{B}(B')$ induced by the Hilbert space property of B' has $\mathcal{T}(G)$ in its set of fixed elements. This question was broached in [2]. There we proved that the algebra $\mathcal{B}(B')$ is generated by the physical filters T_E provided G is irreducible. By the Hilbert space structure on B' induced by the symmetry postulate (2) $\mathcal{B}(B')$ becomes a B^* -algebra and its generators T_E are self-adjoint projectors on B'.

Theorem 15. Concerning the involution * on $\mathcal{B}(B')$ induced by the inner product $\langle \cdot | \cdot \rangle$ on B' there holds $T_E^* = T_E$ for all $E \in G$.

Proof. Remember that T_E was generally defined by $\langle V, T_E F \rangle = \langle V, F \rangle$ for all $V \in K_1(E)$ and every $F \in L$. Self-adjointness of any idempotent $T_E \in \mathcal{F}(G)$ is equivalent with T_E being a perpendicular projector on B' (e.g. [3]). That is we have only to verify $\operatorname{Ker} T_E = B'(E)^{\perp}$ for all $E \in G$ concerning the orthogonal sum $B' = B'(E) \oplus B'(E)^{\perp}$:

- (i) For every $Y \in B'(E)^{\perp}$ we have $\langle P | Y \rangle = 0$ for all $P \in L_E$ i.e. for all $P \leq E$. Then from $\langle P | T_E Y \rangle = \langle P | Y \rangle = 0$ for all $P \in K_1(E) \subset L_E$ there follows $T_E Y \in B'(E)^{\perp} \cap B'(E) = \{0\}$, hence $Y \in \text{Ker } T_E$ and thus $B'(E)^{\perp} \subseteq \text{Ker } T_E$.
- (ii) For every $Y \in \operatorname{Ker} T_E$ there holds $\langle P | T_E Y \rangle = \langle P | Y \rangle = 0$ for all $P \in K_1(E)$ i.e. for all $P \subseteq E$. Therefore $Y \in B'(E)^{\perp}$ because $K_1(E)$ generates B'(E); consequently $\operatorname{Ker} T_E \subseteq B'(E)^{\perp}$.

There remain three open questions:

- 1. Does modularity of G imply the symmetry postulate (2) without the requirement of $d(G) \ge 4$?
- 2. Suppose that the filter algebra $\mathcal{B}(B')$ possesses an involution * such that $T^*T = 0$ implies T = 0 and such that $T_E^* = T_E$. Does then the symmetry postulate (2) hold?
- 3. It is possible to deduce the Hilbert space model of quantum mechanics from the symmetry postulate (2) without any use of projective geometry?

References

- 1. Dähn, G.: Attempt of an axiomatic foundation of quantum mechanics and more general theories. IV. Commun. math. Phys. 9, 192—211 (1968).
- 2. Dähn, G.: The algebra generated by physical filters. Submitted to Commun. math. Phys.
- 3. Halmos, P. R.: Finite-dimensional vector spaces. 2nd. Princeton: Van Nostrand 1958.
- 4. Loomis, L.H.: The lattice-theoretic background of the dimension theory of operator algebras. Mem. Am. Math. Soc. 18, 1—36 (1955).
- 5. Ludwig, G.: Attempt of an axiomatic foundation of quantum mechanics and more general theories. III. Commun. math. Phys. 9, 1—12 (1968).
- MacLaren, M. D.: Atomic orthocomplemented lattices. Pacific J. Math. 14, 597—612 (1964).
- 7. Stolz, P.: Attempt of an axiomatic foundation of quantum mechanics and more general theories, V. Commun. math. Phys. 11, 303—313 (1969).

Günter Dähn Mathematisches Institut der Universität D-7400 Tübingen Brunnenstraße 27 Federal Republic of Germany