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Abstract. A generalized definition of entropy for any state on a C* algebra is given
and studied. We piove that the entropy characterizes uniquely the normal states.

I. Introduction

For the algebras of the canonical commutation and anticommuta-
tion relations the theorem of DelΓAntonio, Doplicher and Ruelle [1]
is well-known; it states that normal factor states on the CCR and CAR
algebras are characterized by the existence of a number operator on the
representation space induced by the state. Physically it means that the
states describing a finite number of particles are exactly the normal factor
states.

In this work we characterize the normal states (Definition 1) on any
C*-algebra by an other physical quantity, namely the entropy; for the
exact formulation see Theorem 1 below. In physical terms, it means
that the states of finite entropy are exactly the normal states.

In order to work out the subject we generalize first the motion of
entropy of a state on a C*-algebra (Definition 2). For normal factor
states it coincides with the ordinary definition and we prove also that
it satisfies properties and inequalities analogous to those satisfied by
the usual entropy. Finally we discuss more in detail the entropy definition
and give an alternative expression for it (see Definition 3).

II. Normal States and Total Entropy

Definition 1. Let ω be a state on a C*-algebra stf, ω is called normal
if ω is a convex linear combination of pure states on s$'.

Remark that, if ω is a normal state, then Hω, the GNS representation
induced by ω, is the direct sum of irreducible representations of s4\
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it is clear that normal states are not necessarily factor states. Generally
in the physics literature a normal state corresponds in our terminology
to a normal factor state.

Definition 2. The entropy S(ω) of a state ω on s^ is given by

a) If ω is a normal state, i.e. co= Σ Kωm Σ ^ = ^ K = ̂  > anc^ ωn
pure, then n n

infΣ -λn\ogλn

the infimum is taken over all possible decompositions of ω into pure states.

b) // ω is not normal, then S(OJ) = oo.

For any state ω on ,*/, denote by Πco, J^ω, Ωω respectively the GNS-
representation, representation space and cyclic vector induced by ω;
let ψeJfω then ωψ is the state on sd, defined by ωψ(x) = (ψ\Π(O(x)ψ),
xe sJ.

Proposition 1. The entropy S(ω) of the state ω satisfies:

i) If ω is a normal factor state, i.e. there exists an irreducible representa-

tion Π on a Hilberΐ space Jf and a density matrix ρ such that

ω(x) = TΊ> ρ Π(x),
then

S(OJ) = — Tr^ ρ logρ .

ii) // O)1 and ω2 are states on sd, and λ such that 0 ̂  λ ̂  1 then

i) + (1 + λ) S(ω2) <> S(λω1 + (1 - λ) ω2)

ίii) 5(ω) = 0 if and only if ω is a pure state.

Proof. See Appendix A and B.

Theorem 1. Let ω be any state on ,s/, then ω is a normal state if and
only if the set

P={ψe:ϊfω\\\ψ\\ = \, S(ω v)<oo}

is dense in the unit sphere of J^ω.

Proof. Suppose first that ω is normal, then Πω — (J) Πn where Πn

n

are irreducible representations, <ffω = ©<#?„. For any finite sequence

(ψi)i=ι,...,p w i t h ΨiG ^ C P \\ψi\\ — ̂  where all n{ are different for different i,
then

Σ λίVl ί = i
i - 1

P

for all sets (Λ X ̂ . . .^,/ί j ^O, Σ
i = 1
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As the states ω V ι are pure, it follows from Definition 2 that:

s(ω p W - X λt logλi < oo .
\ ιiι

λιψι) ί = 1

To prove the converse, suppose ω is not normal, then Πω is not a direct
sum of irreducible representations, hence there exists in the commutant
Πω(s^)' at least one projection E which majorizes no minimal projections.
Let ψ be a unit vector of E Jfω and Eψ^E where Eψ is the orthogonal
projection on Πω(s$)\p. Then the induced representation Πω\Eψ is
the GNS representation for the vector state ωψ. As Eψ majorizes no
minimal projections, Πω | Eψ is not a direct sum of irreducible representa-
tions, hence S(ωψ)=co.

Let ψ e 34?ω, \\ψ\\ = 1, then ψ = ofiψί + ]/T^~oίxp2 where
\\ψx\\=U and ψ2ejrωQEMrω9 \\ψ2\\ = l. As £ e J

α)ω φ 2 .
From Proposition 1:

and for all vectors ψ such that αφO, S(ωψ) = oo. This proves that the set
P is not dense in the unit sphere of J^ω. Q.E.D.

III. Discussion of the Entropy Definition

In this section we study in more detail the generalized notion of
entropy given in Definition 2 in order to justify the notion of normal
states as the states of finite entropy.

We start with the following notation: let 3 be an abelian von Neumann
algebra on a Hubert space Jf, Ω a unit vector of Jf 5 then denote

where hΩ{£)= - ]Γ {Ω\EnΩ)\o%{Ω\EnΩ) and & = (En)neJ is a sequence
nel

of two by two orthogonal projections En of 3 such that Σ En = ί. Denote

by ^ the set of such sequences.

Lemma 1. // there exists α element $ of ^ such that all En are minimal
in 3 then

Proof. Let G be any projection of 3 Then

nel / nel
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As all En are minimal, GEn = 0 or GEn = En for all n. Hence any projection
of 3 is a sum of projections En. Take any

& = (Fp)peV; let Ip = {neI\EnFp = En},
then

Ipnlq = 0 for p^q and \Jlp = I.
p

Using the monotonicity of the logarithm we get

Λ«W = - Σ Σ ( Ω I E » Ω ) l o § ( Ω I EnΩ)
P nelp

^ - Σ Σ (Ω\EnΩ)\og(Ω\FpΩ)

Lemma 2. Suppose that 3 is an abelian von Neumann algebra on a
Hubert space ffl which contains no minimal projections. Let Ω be a
separating vector for 3, then:

a) for any ε > 0 and any projection E of 3> there exists a projection F
in 3, such that \\FΩ\\ <εandF^E.

b) for any projection E e 3 the set

χE = {\\FΩ\\, F projection of 3, F^

is dense in the interval [0, | |£Ω||}.

Proof, a) Take any ε> 0 and E projection in 3 Suppose there exists a

sequence (#„)„= i>2,... of projections in 3 such that

E^H^^^ ^H^"

\\HnΩ\\^ε for all n.

Then infHn ΞΞ// is a projection in 3 such that \\HΩ\\ ^ε([2], (App. 2)).

Hence the set of projections {GE3\G^E, \\GΩ\\ ^ε} satisfies the con-

ditions of the lemma of Zorn. Let Gm be the minimal element of this set.
It cannot be minimal in 3, hence there exists a non trivial projection
F e 3, F < Gm such that | |FΩ|| < ε.

b) Let E be any projection in 3 ; 0, \\EΩ\\ s χE. It is sufficient to prove
that for any pair α, β : α, β e χE, α < jβ, there exists a y e χE such that
α < γ < β.

Let Ea, Eβ E 3 be such that

£ α ^ £ , £ ^ £ , | | £ α Ω | | = α 9 \\EβΩ\\=β.

3 being abelian, £^(1 — Ex) is a projection majorized by E; Eβ(l — EJ φ 0
because otherwise Eβ g £ α and j8 g α.
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By a) there exists a projection F e 3 such that

F<Eβ(l-EJ

\\FΩ\\2<β2-a2

and since Ω is separating for 3

The projection £ α + F < E and the lemma follows. Q.E.D.

Lemma 3. Let 3 be an abelίan von Neumann algebra on J^ Ω a unit
vector of ffi separating for 3 Suppose that all elements $ e %> contain at
least one projection En which is not minimal, then

a) 3 contains a projection E such that the

χE = {||FΩ||, F projection in 3, F ̂  £}

is dense in [0, | |£Ω| | ] .

b) There exists amxe R, 0 < α ̂  1, and for any integer n>\a sequence
(Fp)p=i, ..,n °fn pairwise orthogonal projections in 3? such that

c) s β (3)=oo.

Proof, a) Let (Eβ)βeI be the set of all minimal projections of 3, then
E = 1 — ]Γ Eβ is a non trivial projection of 3 which majorizes no minimal

βel

projections of 3 Let JFE be the range of £, and 3 E the reduced von Neu-
mann algebra of 3 o n ^Έ' > 3E ̂ S abelian and contains no minimal pro-
jections; the vector EΩ = ΩE is separating for 3 E Applying Lemma 2,
the set

\F projection of 3E, F^ 1}

is dense in the interval [0, | |Ω£ | | ] .
By canonical imbedding of 3# into 3 one obtains the desired result.

b) Take E as in a), α = \\EΩ\\2 and choose any integer n. From a) a
projection Gλ<E exists such that

since
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Furthermore E—G1 majorizes no minimal projections of 3 Applying
Lemma 2, the set

{||FΩ||,F projection in 3, F^E-Gt}

is dense in the interval [0, \\(E — Gt) Ω||]. Hence there exists a projec-
tion G2 ^ E — Gγ in 3 such that

Analogously we construct projections Gp such that
p

PΣ Gk
k- 1

In
One obtains:

E- Σ Gp)Ω
nl In

^n — j . The projection Gn_ x satisfies the right inequality and we may
construct Gn. This proves b).

c) Take any integer n ̂  3, ne TV. By b) there exists a sequence
#" = (Fp) ; 7 = : l s...> n of pairwise orthogonal projections satisfying

for some fixed α : 0 < α ̂  1.
For n ^ 3 :

Using the monotonicity of the function x->— xlogx in the interval

for p = 1, ..., n. Hence

2 ° 2 n
and

.(#") = sΩ(3) = oo . Q.E.D.

Lemma 4. Lei 3 ^^ <^ abelian von Neumann algebra on a Hilberί space
, Ω α unit vector of Jf separating for 3 if ifeere exists a sequence
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6ύ = (£„)„ E ̂ (3) such thai all projections En are minimal in J , then

%(3) = M A '/ »<>*> s«(3) = °°
Proof. Immediate from Lemma 1 and 3.

Definition 3. The entropy S'(ω) of a state ω on s4 is given by

S'{ω)= infsβ ω(3)

where the infimum is taken over all maximal abelian von Neumann algebras
3 of the commutant Πω{.stf)'.

Each sequence $ = (En)n of minimal projections in Uω{sd) such that

Σ En = 1 generates a maximal abelian von Neumann algebra 3 oϊΠω(s/)'

EnΩ
and a decomposition of ω in pure states: let Ωn — — then

\\EnΩ\\
ω=Σ{Ω\EnΩ)ωΩn.

n

If there exists such a sequence then the state ω is normal and from the
definitions Sf(ω)^S(ω). If there exists no such a sequence then by
Lemma 4: S'(OJ) = oc . Hence in general

S'(ω)^S(ω). (•)

Lemma 5. Let ω be a normal factor state on sd, then there exists a
countable sequence $ = (En)n of minimal projections En e Πω(sd)' such that

In particular, S(ω) = Sf(ω).

Proof. By Proposition 1: S(ω)= — Ti> o ρ logρ (with the obvious
notations). Let ρ = Y^λnEψn be the spectral decomposition of ρ, (ψn)n

n

is an orthonormal basis of M 0 then Πω = Q)Π0 jfω = © ̂ , Ωω = Y)f~λnψn

n n

is the GNS-triplet induced by ω. Let En be the projection on the πth-term
Jfo of the direct sum Jff0 = (fyjtfΌ, then $ — (£„)„ is a sequence of minimal

n

projections in Πω(s^)' such that hΩ(S) = — Tr^ o ρ logρ hence S(ω) = /ιΩ(^).
Q.E.D.

Proposition 2. For any state ω on a C*-algebra srf : S(ω) = 5;(ω).

Proof. If S(ω) = oo, the equality follows from (•). It is sufficient to
consider the case that ω is normal. In this case, there exists a unique
decomposition ω = £ / p ω p of ω in disjoint factor states [3] 5.4.9, p. 109.
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Fp is a central projection of Πω(sJ)'. For any sequence S' = (En)neI of
minimal projections En e Πω(jtf)', there exists a partition (Ip)p of the index
set / such that

X £W = F P . Then
nelp

haW = - Σ Σ (Ω' En Ω) log(ΩI EnΩ)

- _ V Y ) (O \F Q
p nelp

= " Σ Σ yΩ p |£ nΩ p)logΛ p-Σ Σ Ap(Ωp|£nΩp)log(Ωp|£πΩp)
p nelp p nelp

V P

where S>

p = (EnFp)neIp. It is clear that any choice of S corresponds to a
choice of sequences Sp and vice-versa. Hence

By Lemma 5:

P

By Proposition B.I (Appendix B):

S'(oj) = S(ω). Q.E.D.
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Appendix A

Here we prove Proposition 1 (i): i.e. the equivalence of our definition
of entropy with the ordinary one for normal factor states.

Let Q be a positive trace-class operator on a Hubert space Jf7, and
.W an infinite separable Hubert space, ρ = ]Γ λnEφn the spectral decom-

π

position of ρ (φn)n {{ψn)n) an orthonormal basis of J

Then for all bounded operators A on Jf, denoted by ι

ΊΪQA = (Ω\Λ01Ω). (A.I)

Define the projection En on Jf ® ffi' by

En=\®Eψn. (A.2)
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The En are minimal in 1 ®^(Jf") and Σ^n = 1* (Ω|£πΩ) = /,n5 and hence
n

- T r ρ l o g ρ = - £ (Ω|£BΩ) log(Ω|£nΩ). (A.3)
n

Let (Fp)p be any sequence of pairwise orthogonal minimal projections
in 1 ® 0β{3tf") such that Σ Fp = 1. Then F p is of the form Fp= l®Hp where

p

Hp is minimal projection on Jf"; let (χp)p be the orthonormal basis
corresponding to (Hp)p then

(Ω\FpΩ)= ΣKiΨn\Hpψn)= Σλn\(ψn\xP)\2

By the convexity of the function — x log x for x > 0:

— Σί^lFpΩJlogίΩIFpΩ)^ — Σ^°2>K— — ̂ VQ ^°EQ (A.4)

Now we prove a proposition, which seems to be known:

Proposition A.I. // ρ : and ρ2 are positive trace-class operators on a
Hubert space 3ft1, then:

— Tr(ρ! 4- ρ2) log(ρx + ρ2) ^ — Trρj logρx — Trρ 2 logρ2 .

Proof. Take a Hubert space 3tf" as above, let Ωγ and Ω2 be the vectors
of 3^® jtf" such that (see A.I)

Trρ 2 /l-(ί2 2 | y4® 1 Ω2), yl

Let {Eί

n)n and (£^)π be the sequences of minimal projections in 1® M{M ')
such that (see A.3):

-τΐρ2\ogρ2=-Σ(Ω2\E2

nΩ2)\og(Ω2\E2

nΩ 2)

Form 3tr' = jtf"®jtf", then tf®tf" = ^®3fe'@#e®2te' and form
Ω = Ωt ® Ω2 e 3tf ® Jf". Then

Ω) A

The projections Eι

n and £^ are minimal in 1 ®^{:W')dSid^d(E}n

JrEl

n)-= 1 ^ .

By (A.4)

- Σ (ΩI E\ Ω) log(Ω IE,1 Ω) - Σ (ΩI £n

2 Ω) log(Ω | E2

n Ω)

^ - T r ( ρ 1 + ρ 2 ) l o g ( ρ 1 + ρ 2 ) .



336 J. Manuceau, J. Naudts, and A. Verbeure:

But {Ω\E1

nΩ) = (Ω1\E1

nΩιl (Ω\E2

nΩ) = (Ω2\E2

nΩ2). Hence the result
Q.E.D.

Proposition A.2. Let ωbe a normal factor state on si ^ then

S(ω)= - T r ^ ρ l o g ρ .

Proof. As ω is normal. ω = Σμnωn where ωn are pure states; ωn

n

induces the GNS-triplet (Πn,^n,Ωtι); as ω is a factor state, all Πn are
equivalent, Π = Πn for all n. Let (En)n be the set of one dimensional pro-
jections on .Jf such that

n μ)
then

ω(A) = ΊrρΠ(A)

where ρ = YuμnEn is the unique density matrix induced by ω. From

Proposition A.I:

- Tr ρ log ρ g - Tr (μM EJ log (̂ un En) = - Σ μn log μn.

This is true for any decomposition of ω, hence:

— Trρ logρ gS(ω).

To prove the contrary inequality, let ρ = £ ^ n E V n ^ e t n e spectral decom-
n

position of the density matrix ρ, then also oj=ΣλnωWn and
n

S(ω) S — X K logλπ = — Trρ logρ, hence the result. Q.E.D.

Appendix B

We prove Proposition 1 ii), iii), i.e. we prove that our generalized
definition of entropy satisfies the same kind of inequalities as the ordinary
definition of entropy for a factor state.

Proposition B.I. Let (ωn)n be a countable sequence of normal states
on .£/, ω = ]Γ λnωn a convex combination of the J

then

The equality sign holds if the states ωn induce factor representations two
by two disjoint.
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Proof. Let ωn = Σ λn

pω
n

p be a decomposition ofωn in pure states, then
"P

V

> = V VOJ= ΣΣλnλ
n

pω
n

p is a decomposition of ω in pure states, hence o) is
n p

normal and

S(ω)£-ΣAnλnplogλnλp=-Σ-
n,p n

Since the decomposition of the ωn is arbitrary

If the states ωn induce factor representations two by two disjoint, then
ω= Σ^nωn ι s a unique decomposition in this sense. It follows that all

n

decompositions of ω in pure states are obtained by all decompositions of
the ωn in pure states, and the equality holds. Q.E.D.

Proposition B.2. Let ω1 and ω2 be normal states, and ω = λco1

+ (1 — λ) ω2 where 0 ̂  λ :§ 1, then

λSiωJ + (1 - λ) S{ω2) g S{ω).

Proof. Let ωt = Σ ^pωp^ i ~ ̂  ^, be the decomposition of α^ and ω2

pel,

into disjoint factor states;

K is the set of indices p e ^ such that the representations Πωίp are
disjoint from all subrepresentations of ω 2 ;

L is the set of indices pelx such that Πωι is quasi-equivalent with
some subrepresentation Πω2 induced by ω2;

M is the set of indices p e / 2 such that Πωi is disjoint from all sub-
representations induced by ω 2 .

Then

ω — Σ λλpCΰp + Σ (1 ~ λ)λ^OJp + Σ (^^p + (1 ~ ̂ )^np)
 ωp,rcp

peK peM peL

where

oκn = -ττrr7Γ-irτr- ̂ ; > i +11 - )̂ ; 4^<3, v ε L

is the unique decomposition of OJ in disjoint factor states.
From Proposition B.I

S(ω) = Σ λλl[S(ωl) - logλλ^] + Σ (1 - λ)λJ[S(ωJ)- log(l - A

+ X (λλl + (1 - λ) λB

2

p) [S(ωp,np) - \og(λλl + (1 - A) /π

2

p)] .
peL
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As the states ωι

p and ω\ are quasi-equivalent factor states (see [4] p. 27)

and

S(ω) ^ λ Σ KίS(ωp) - logλj] +(l-λ)Σ λ\I?K) " l o 8 ^ ]
peli pell

Using proposition B.I

S(ω) ^ AS(ωi) + (1 - λ) S{ω2). Q.E.D.

Proposition B.3. S(ω) = 0 if and only if ω is a pure state.

Proof. Follows immediately from the definition of S(ω) and from
Proposition B.I. Q.E.D.
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