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On a Quadratic First Integral
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Abstract. Associated with the charged Kerr solution of the Einstein gravitational field
equation there is a Killing tensor of valence two. The Killing tensor, which is related to the
angular momentum of the field source, is shown to yield a quadratic first integral of the
equation of the motion for charged test particles.

The Hamilton-Jacobi equation for charged particle orbits in the Kerr
spacetime1 has been found by Carter [1] to be solvable by separation
of variables. The separation constant, an expression which is quadratic
in the orbital tangent vector, provides in turn a fourth first integral of the
equation of motion for charged particles, the other three having been
obtained by reason of the two symmetries of the field, and the conserva-
tion of the particle rest mass. Walker and Penrose [2] have demonstrated

* The research reported herein has been supported in part by the National Science
Foundation, grants GP-8868, GP-20023, and GU-1598; the Air Force Office of Scientific
Research, grant 903-67; the National Aeronautics and Space Administration, grant
44-004-001 and the Westinghouse Corporation.

** Present address: Max-Planck-Institute for Physics and Astrophysics, 8000 Miin-
chen 40, Fδhringer Ring 6, Germany.

1 Throughout the discussion we refer to the general Kerr family of gravitational fields,
with or without either an electromagnetic field [3] or a cosmological constant [1].
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in an earlier communication how the fourth first integral of the geodesic
equation arises from the existence of a tensor Kah which satisfies2

V{aKbc) = 0. In the present communication we show that the quadratic
Killing tensor may be used to obtain also Carter's fourth first integral
of the equation of motion for charged test particles.

To expedite the discussion, we begin with a simplified proof of the
existence of a quadratic Killing tensor for the Kerr spacetime. The proof
is based on the following remark: let oA and ιA be a normalized spinor
dyad whose corresponding null vectors la:= oAδA and na:= ιATA' are
tangent to congruences of nonshearing null geodesic curves^, and let
φbea complex scalar such that φAB = φ o{AιB) satisfies the vacuum Maxwell
equation

AB = 0. (1)

Then the quantity XAB : = φ~312 φAB satisfies the twistor equation*

(7(/'XB C) = 0. (2)

To see this, we observe that the dyad component

of V{A

A> XBC) is simply one of the dyad components of VAA' \_φ o{AιB)~], which
vanishes by virtue of the Maxwell equation. The component with oA and
ιA interchanged vanishes for the same reason, and the remaining two
components vanish by virtue of the GSF conditions on oA and ιA.

The converse of the remark above is also true: If V(A

A> XBC) = 0, then
the principal spinors of XAB are GSF, and (XCDXCD)~3/2 XAB satisfies the
Maxwell equation. More generally, the principal spinors of a Killing

2 We use the notation of Penrose [4], as does paper [2]. We also make a number of
corrections to paper [2]. Eq. (5) should read V(A

A' XB Π = 0. In Eq. (4), the components g03

and g 3 0 should be 2mraR~2 sin2 Θ\ the component n2 of Eq. (16) should be (r2 — a2 — 2mr)2,
and the component Q11 in Eq. (17) should be rι Λ-a1 — 2mr. The equation immediately
preceding Eq. (17) should read Qbc = — 2R2 libnc). Finally, to be consistent with the Battelle
conventions for Latin and Gothic indices, the indices in the first line following Eq. (16)
should be Latin. The first unnumbered equation after Eq. (17) and the remark following
it should read

" όa

aδ
b

hδ
c

cV
aQbc = ge{aVeQ

bc) - QeiaVcg
bc)

in any coordinate system xα, with δa

a: = Vax
a, so that Va = d/dxa."'

3 Such spinors will be said to be GSF. We notice that the GSF condition oA oB VAA, oB = 0
is preserved under the rescaling oA-*λoA for an arbitrary complex scalar λ.

4 For a conformally flat spacetime, a solution of Eq. (2) describes a symmetric twistor
of valence two. A solution of Eq. (2) is generally referred to as a Killing spinor of valence two.
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spinor of arbitrary valence are GSF5. In the case of a non-flat vacuum
spacetime, this fact would allow us to conclude from the Goldberg-
Sachs theorem [5] that at most two of the principal spinors of a Killing
spinor of arbitrary valence are not proportional.

Upon examining the Bianchi identities it may be seen readily that in
any vacuum spacetime of type {22} with a Weyl spinor ψo{AoBιcιD) we
can construct an electromagnetic test field of the kind we have been
considering above: φAB = ψ2βo(AιB). Moreover, it is well known that in
correspondence with each vacuum spacetime of type {22} there exists a
parametrized family of type {22} solutions of the Einstein-Maxwell
equations for which the principal null directions of the electromagnetic
field coincide with those of the gravitational field6. Here the test electro-
magnetic fields of interest are already at our disposal. Associated, then,
with each of these spacetimes is a Killing spinor of valence two 7.

Given the Killing spinor XAB we define the tracefree symmetric tensor
p . Y Ϋ

Γab '— /^ABΛAB'

As a consequence of Eq. (2), Pab is found to satisfy, as it is shown in paper
[2], the conformal Killing equation,

where gab is the spacetime metric and where the vector Pa is defined by
Pa : = I VhP

ah. If Pa is the gradient of a scalar P, then it may easily be
verified that the tensor

Kab:== Pab~PQab

satisfies the Killing equation:

r(aκbe) = o. (3)
5 Let us consider, for example, an algebraically general Killing spinor XAl An of

valence n:

Upon transvection n times with σA the twistor equation becomes

which is seen to be the GSF condition on the congruence defined by σA.
6 Kinnersley [6] has provided an explicit algorithm for generating the electrification

of any type {22} vacuum spacetime.
7 The argument given in paper [2] for the existence of a Killing spinor of valence 2

is not quite complete as it stands for the charged Kerr solution, since the proof given would
seem to rely on the vacuum Bianchi identities. Our procedure here should clarify that
derivation.
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Let us examine the condition that Pa be a gradient. This condition
may be expressed in a particularly convenient form if we first observe that
the stress-energy tensor

τab''= ΦABΦA'B'

of the test electromagnetic field φAB is proportional to the conformal
Killing tensor Pα b, and satisfies

as a consequence of the vacuum Maxwell equation. From these facts it
follows that

where / : = (φφ)~1/2. Therefore, the requirement that Pa be a gradient is
equivalent to the existence of a scalar h such that

kanb)V
bf=Vah.

We shall now consider explicitly the case of the Kerr spacetime. In
the coordinate system of paper [2], the scalar φ is given by

φ = (r — iacosθy2

so that f = r2 + a2 cos2 θ. A simple computation shows that

Thus we establish that the Kerr spacetime admits a Killing tensor of
valence two8.

The equation of motion of a test particle with charge ε, moving under
the influence of an electromagnetic field Fab, may be written

fVct
u = εfFa

c, (4)

where ta is tangent to the orbit of the particle. As in the case of an affmely
parametrized geodesic orbit, as would be given by ε = 0, the equation
of motion admits gabtatb as a first integral since

Suppose that gab admits a one parameter group of isometries
generated by a Killing vector ξa, so that £?ξgah = 0. A first integral may
be constructed from ξa provided that the electromagnetic field is also
invariant under the action of the group. In fact, we may demonstrate that
J?ξFab = 0 is the necessary and sufficient condition that there exist a

8 We comment, incidentally, that our analysis is more generally valid for the charged
Kerr-NUT spacetimes [i, 7] wherein the Killing tensor assumes the form

Kab = (l-a cos θ)2 l{anb) + r2m(amb)

where I is the NUT parameter.
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scalar α such that

fVc(ξata + εx) = 0. (5)

Using the equation of motion (4) we find Eq. (5) to be satisfied if and
only if

for which we have the integrability condition

Vla(Fb]cξ
c) = 0.

Then, using Maxwell's equations in the form

2V[aFb]c+VcFab^0

we arrive at the desired relation:

If a local vector potential Aa for Fab be chosen with the gauge condition
SPξAa — 0, then α = ξaAa, and the conserved quantity is given by

Thus far our discussion of first integrals has been valid in general.
We restrict our attention now to those spacetimes which admit a Killing
spinor XAB, and ask under what conditions we can construct from XAB

a quadratic first integral for the orbits defined by Eq. (4). First we con-
sider the case in which the orbit is null8. If the tangent to the orbit is
written ta : = λΛ λA\ then the equation of motion (4) assumes the form

JA,(h V°λA + εφABλB) + λΛ(te VλA. + e.φA,B~λB) = 0
— (θ)

Fab:=z ΦAB^A'B' + ΦA'B'^AB

from which we deduce that

for some real scalar ω. A suitable new choice for the phase of λA serves to
eliminate ω. Then the equation of motion becomes

It is easy to see that the complex scalar X : = XABλ
AλB formed from

the Killing spinor XAB is constant along the orbits, ίβFβX = 05 provided

which is precisely the condition that XAB and φAB be proportional.

Therefore, for those spacetimes in which the principal null directions of

the electromagnetic field are aligned with those of the Killing spinor
9 The null charged particle orbits are, due to their conformal invariance, of some

interest in connection with the theory of twistor quantization [8].
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we obtain a first integral for the charged null orbits. This condition is
fulfilled, of course, for the charged Kerr spacetime.

We now demonstrate the construction of a first integral from the
Killing tensor _

Kab' = ^AB^A'B' ~ Pθab

for the non-null charged particle orbits in the Kerr case. Applying Eqs. (3),
(4), and (6) we find that

f Vc(Kabtatb) = 2εtafKb(aFc)

b = - 2εtatclXAC XB,(A,φ
B'CΊ

+ XA>C'XB(AΦ C)] >

which vanishes identically due to the proportionality XAB = φ~3/2φAB.
Thus we obtain the first integral

K ab + 4.

We remark, finally, on the physical meaning of the Killing spinor in
Kerr's spacetime. Suppose that from the Killing spinor XAB we construct
the bivector _ -

Mab
 ! — ^AB8A'B' + ^A'B'£AB

Then in the linear approximation to Einstein's theory, this bivector can
be shown to be related to the expression for the total angular momentum
of the source of the gravitational field10.

The authors are grateful to Jύrgen Ehlers and Ivor Robinson for their conversation.
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1 0 This last remark can be made in a more concise way in the language of twistors,

to which, in the linearized theory, Killing spinors have an especially close relation.




