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Abstract. We show that positive linear functionals on the field algebra are necessarily
continuous and can be represented by conical measures. Furthermore extension theorems
for continuous linear functionals, defined on a subspace of the field algebra, to positive

linear functionals are discussed.

1. introduction

It is well known [1] that Wightman's axiomatic theory of quantized
fields can be discussed in terms of a topological ^-algebra 9ί, called the
field algebra, and its positive linear functionals that vanish on a certain
subspace. The study of continuous linear functionals vanishing on this
subspace is the content of the so called linear program in Quantum
Field Theory. Our intention here is to learn as much as possible about
positive continuous linear functionals on 91. In Section 2 we study the
field algebra, its hermitean part and the positive cone K. In Section 3 we
find that a positive linear functional on 91 is always continuous. Hence
the continuity requirement in Wightman's axioms can be dropped.
Section 4 shows that positive functionals are related to conical measures.
In Section 5 we are interested in the following situation: given a con-
tinuous linear functional T on a closed subspace Mc9ί and positive
on Kr\M, Furthermore let N be another closed subspace of 91. Under
what conditions does there exist an extension of T to a positive linear
functional on 91, vanishing on JV? We have necessary and sufficient con-
ditions for this situation. Section 6 deals with some applications to
Wightman's field theory.

2. The Field Algebra 21, its Hermitean Part 210 and the Positive Cone K

For our purposes the field algebra 91 is modeled over S(IR4"), the
Laurent Schwartz test function space [2], as follows
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Definition 2. L Let ®0 = <C5 &n = &(]R4n) and 21= 0 Sn, the topo-
n = 0

logical direct sum of the locally convex topological vector spaces Sn.
An element of 21 thus is a terminating sequence

Now we equip 51 with the multiplication
rc

(/0)n(*l> • • • > * * ) = Σ
/c = 0

9n-k(^k+ 1? •• - 5

and the involution

Thus 21 becomes a topological *-algebra with the identity 1 = {1,0,0,...}
we call it the field algebra.

Definition 2.2. The hermitean part 2ί0 of the field algebra 21 is given
by 310 = {/e SI;/*=/}.

Definition 2.3. Let π = j / ε SI / = Σ WΓ (01), Λ ^ ̂  9l e SI I, where

the sum extends over finitely many terms only. Furthermore call K = π
the positive cone of 21.

Lemma 2.1. a) 2I0 is a real complete locally convex topological vector
space:

b) K is a closed proper cone in 2I0 and is generating, i.e., 2I0 = K — K.

c) K turns 2ί0 into an ordered topological vector space.

Proof, a) From the general theory of locally convex tropological
vector spaces and the fact that the involution * is continuous it follows
that 3I0 is complete under the induced topology. Note that 2I0 is not an
algebra under the multiplication in 2ί, but only a real vector space.

b) First we show that π is proper and generating. Suppose that p ε π

and —pen, i.e. p = Σ^ (/')*/' and —p~= Σ/f/feό*^'- ^n components
i i

these statements read
n
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Starting the comparison from the zero's component upwards gives us

Hence p0 - 0, or (/% = 0 V z, and (0% - 0, Vj .
It then follows that also pl — 0. Furthermore

or on the diagonal X j = x2 we get

implying that (fί}1 (xj = 0 V i, and (#l)ι (x j) = 0, V; and thus p2(*ι > ^2) = 0
and also p3 = 0. Continuing this way we see that pen and — p e π imply
p = 0, i.e. π is proper.

That π is generating follows from the decomposition of / e ί̂0 by

/ = i(i+ /)(! + /) -id-/) (i-/).
Since π is generating, K = π has also the generating property.

It only remains to show that K is proper. Suppose that p e K and
— p e K, i.e. p — limpα, — p — lim^, where pα, ̂  e π. The same reflections

as for π lead us to the desired result.

c) The cone K determines an order relation [4] in 9ί0 by

The field algebra 91 is thus decomposed into 91 = 9ί0 ® i 9I0 where 910

is ordered by the generating cone K. The field algebra itself has some
nice algebraic and topological properties [3].

Lemma 2.2. a) 91 has no divisors of zero.

b) The center of 9ί is C and no element outside the center has an
inverse.

c) 0 and 1 are the only idempotents.

d) 91 has no minimal ideals.

e) 91 is semi simple.
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Proof, a) The condition / g = 0, / Φ 0 reads in components

n

n ( * l > •••,*«) = Σ /*(*!' "•>**)

from which, staring at π = 0, one easily deduces that 0 = 0.

b) The center of 91 consist of all elements / such that fg — 0/,
V0e9ί . In components this equation leads to f = λ-i. If then fφ<C,
which means that at least one component / k(x l 5 ..., x f c)ΦO, feΦO, the
condition /0 = 1 can be solved for 0 componentwise, but g is never a
terminating sequence, i.e. 0 ^ 91.

c) The equation f f = f has only two solutions, namely / = 0 and

/=!-
d) Suppose / is a minimal left ideal in 31. For / e /, / φ 0 we have

// C /, but the minimality requires // = /. Hence there is an element g e /
with gf = f. This only holds if g = 1. Since / is proper, Iφl, leading to a
contradiction.

c) The semisimplicity says that the intersection of all maximal left
ideals in 91 is {0}, or equivalently [5] that

But this condition is satisfied because the inverse only exists for non zero
elements in the center.

Lemma 2.3. a) 91 is a separable LF-space and thus is complete.

b) 9ί is nuclear, barreled, bornological and reflexive

Proof. See [3].

We now address our attention to the hermitean part 9I0 of the field
algebra. There the positive cone has some interesting properties.

Lemma 2.4. K has no interior point.

Proof. First π has no interior points because every neighborhood U
of an element / 6 π contains elements with an odd heighest component
an element /eπ however, has an even highest component. Then K has
also no interior points. Some more properties of K will be found but we
need to know something about £(91, 91), the space of continuous linear
transformations from 91 into 91 [4].

Lemma 2.5. Denote by 93 the family of all bounded sets in 91. Then
with #!, £2

 e ®? the product B1B2 is also bounded.

Proof. Let / g = Lf(g) = £„(/), /, g e 91.



Positive Forms of Field Algebra 227

From the separate continuity of the multiplication in 91 it follows that

Rg(B) is bounded, V # e 9ί , V £ e S .

Hence the set {Lf\ fe B,Be 33} d£(9l, 91) is simply bounded, i.e.
(Lf(g) / e B} is bounded for any g. But 91 is barreled and thus {Lf,f e B}
is equicontinuous. It follows now that {Lf(g);feBί,geB2} is bounded
in 91.

Definition 2. 4. Let 23 0 be the family of bounded sets in 910, and
Bκ = BnK-BπK, BE&Q. K is called a strict 23-cone if {£K;£e230}
is a fundamental subfamily of 230, i.e. every element of 230 is contained in
a suitable member of {Bκ; B E 230}.

Lemma 2.6. K is a complete strict SB-cone in 9I0.

Proof. First K is complete because 9Ϊ0 is complete and K is closed.
Now let B e 930. From the fact that 910 = K — K we know that there is a
5ιe930 such that

The last property of K will lead us to an interesting result about positive
linear functionals on 91.

3. Positive Linear Functionals on 91 are Continuous

Definition 3.1. a) Let 9Γ = £(9I, C) stand for the locally convex
topological vector space of the continuous linear functionals on 91.

b) A continuous linear functional Te9Γ is called hermitean if

c) A continuous linear functional Te9Γ is called positive if

d) A positive continuous linear functional Te9Γ is called a state
on 91 provided T( l)=l .

Lemma 3.1. a) A positive continuous linear functional is hermitean.

b) A positive continuous linear functional satisfies the inequality
( Cauchy-Schwarz inequality)

\ T ( f * g ) \ 2 ^ T ( f * f } T ( g * g ) .

c) For a positive continuous linear functional, the condition T(l) — 0
is equivalent to T = 0.

Proof, a) and b) are well known facts [5].

c) From the Cauchy-Schwarz inequality we get
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Thus Γ(l) = 0 implies T(f) = 0 V / e 91.

Remarks.!. Denote by £H(9I,C) the set hermitean continues linear
functionals on 91. This is a real locally convex topological vector space.
Furthermore let 9lΌ = fi(9I0,IR). It is well known that 9Γ0 and £H(9l,C)
are isomorphic. The isomorphism α : 9IΌ -» £H(9I, C) is given by

( * T ) ( f ) = T ( f 1 ) + i T ( f 2 ) ,
where

/ι = i(/ + /*) and /2=±(/-/*)

and
V/e9ί 0 .

Thus the positive continuous linear finctionals on 91 correspond in a
one-to-one way to elements of

X' is called the dual cone of K C 91 0 it turns 9Γ0 into an ordered topological
vector space.

We want to recall some topological properties of 9Γ [3].

Lemma 3.2. a) 91 = f[ (SJ.
H = 0

b) 9Γ is nuclear and complete.

c) 9Γ is bornologίcal.

Theorem 3.1. Every positive linear functional on 9X0 is continuous.

Proof. We know that 9I0 is bornological and K a complete strict
S-cone. This is sufficient to insure the continuity of every positive linear
functional on 91 0 [4]. The dual cone K'c9Γ0 also has some nice pro-
perties.

Definition 3.2. Let E be an ordered topological vectorspace and C
the corresponding cone.

a) A set of the form {x e E; a ̂  x :g b} is called an orderinterval and is
denoted by [a, &].

b) Let ,4 be any subset of E and

If A = \_A~], then A is said to be C-saturated or A is called a diamond.

c) The cone C is called normal if these exist a basis of neighborhoods
of zero consisting of diamonds.

Lemma 3.3. K' is a normal cone in 9Γ0.
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Proof. Since K is a strict 93-cone in 310 and SI'0 is bornological, we
conclude that K' is normal [4].

Lemma 3.4. K' is weakly complete and proper in 2Γ0.

Proof. Since every positive linear functional is continuous, the
algebraic dual K* coincides with Kf. K* however is closed in 21 g, the
algebraic dual of 210, and since 9ίg is weakly complete X* is also weakly
complete.

K' as we know is normal and hence proper.
This lemma enables us to represent positive linear functionals by

conical measures.

4. Positive Functionals on 31 are Represented by Conical Measures

We apply Choquefs theorem on weakly complete cones and conical
measures [6] to K'.

Definition 4.1. We consider the space 2Γ0 and its topological dual

91S = 9Ϊ0-
a) Denote by 5 the family of finite subsets of 2I0. For F e g and

Te2Γ 0 let

(sup/0(T)=sup{T(/),/ef}
and

H(2Γ0) - {G : 2Γ0 ->1R; such that 3 f\ , F2 e g with

G(T) - (supFi) (Γ) - (sup F2) (Γ), V Te 3Γ0} .

Hence 2I0 = (2Γ0)' c H(2IΌ) and .fiΓ(2Γ0) is a vectorlattice ordered by
G^OoG(T)^0,VTe2ίΌ. H(SίΌ) coincides with the piecewise linear
functional on 2Γ0.

b) The positive linear functionals on //(2Γ0) are denoted by
M4"(9I'0) = (/ί(9IΌ)*) + , and are called positive conical measures on 2Γ0.
On M+ (9IΌ) we put the weak topology. Furthermore let M(W0) = M+ (9IΌ)
-M+(2Γ0); this is a complete lattice.

c) K' C 9Γ0 is closed. A conical measure μ e M(9Γ0) is said to be carried
by K' if

and G = 0 on K/

d) Let μeM+(2IΌ). We say that TeSίΌ is the resultant of μ if

e) We introduce a partial ordering on M+(2Γ0) as follows: Let
SH={supF;Fe%} and μ, v eM+(2Γ0), then

^ v(G) , V G e SH .
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Theorem 4.1. Let TeK'cSίΌ Then there exists a maximal conical
measure μeM+(2Γ0) such that μ is carried by K' and has resultant T,

Proof. Since K' is a weakly complete, convex proper cone, we can
apply Choquet's theorem.

Remark 4.1. It is well known [7] that positive linear functionals on
a C*-algebra are continuous and can be represented by Radon measures.
For the field algebra we have a similar situation except that we have to
deal with conical measures. This difference is reflected in the fact that a
C*-algebra corresponds to bounded operators on some Hubert space
whereas the field algebra corresponds to unbounded operators on some
Hubert space; the correspondence is given by the GeΓfand-Segal con-
struction.

5. Extension Theorems

The goal of this section is to establish conditions under which a
continuous linear functional defined on a subspace M c 3ΪO and positive
on Kr\M can be extended to a positive linear functional on 31 0 in such a
way that a given subspace L C 9I0 belongs to the kernel of the extension.
We will break up the discussion into two parts. First we investigate the
extensions from a given subspace M and secondly we look for those
extensions vanishing on a given subspace.

All the following discussion are based on the Hahn-Banach theorem,
a consequence of which is the bipolar theorem.

Lemma 5.1. (Bipolar theorem). Let A C 9ί0 be any subset.
A° = {Γe 9Γ0; T(f) ^ ί, V / e A} is called the polar of A. Then A00 is the
weakly closed, convex hull of v4u{0}.

Proof. See (4).

Lemma 5.2. Let N be a closed subspace of 2I0, then (J£uN)°°= K + N,
or equivalently (K + 7V)° - (KuN)°.

Proof. By the bipolar theorem (K u N)°° is equal to the weak closure
of the convex hull of K and N. But the closure of a convex set is the same
for all admissable topologies.

We are now in a position to prove a key lemma.

Lemma 5.3. K + IR 1 = 2ί0.

Proof. Since there is only the trivial positive functional vanishing on 1,
we have K'n(IR 1)° = {0}. But (K')Q = - K and hence by the above
lemma

conv. closure ( — K u I R i) = sil0 ,
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or
-

equivalently

Let now M be any closed subspace of 9I0 and T a nontrivial continuous
linear functional defined on M and positive on K n M. The kernel of T
in M is denoted by ker T.

Theorem 5.1. There exists a positive linear extension of T, denoted
by ext T, ίo 9I0, provided Kr\M (j; ker T, zjff

ke rTφK

Proof, a) Suppose that K - f k e r T ^ K + M, then by applying the
polar operation

-X'n(kerT)0- -K'nM°,
or equivalently

Thus every positive linear functional, vanishing on ker T also vanishes
on M and hence its restriction to M is trivial, contrary to our assumption.

b) If K - f k e r T φ K + M, then K + kerTCK + M and thus
- Kf n M° C - K' n (ker Γ)° or Kf n M° C K' n (ker Γ)°. Hence there exists
a positive linear functional vanishing on ker T and not vanishing on M,
meaning that there exists an extention of T.

Corollary 5.1. Under the same assumptions as above plus the require-
ment that 1 e M, there exists an extension of T iff

K + ker T Φ 210

or equivalently
- 1 φ K + ker T.

Proof. The first part follows from the previous theorem, because
X"T"M = 9ί0. Secondly if - l e K - h k e r T then X - f k e r Γ and X + 1R
C K -f ker T or taking the closure we get that K + ker T— 9I0, meaning
that there is no extension.

Theorem 5.2. [8]. Let T be a continuous linear functional defined on
M = {Ap; λ elR,p e K} and positive on Kr\M. Then there always exist
an extension of T.

Proof. The condition for the extension theorem are satisfied, because

K + ker T = K Φ K + M, since K is proper.

Corollary 5.2. 91 is *-semisimple in the sense that the intersection of
all left kernels for positive linear functional^ is zero, i.e.

Π {
TeK'

16 Commun math Phys , Vol 27
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Proof. Assume / φ O and /e f| {#; T(#*#) = 0}. Then T(/*/)
ΓeK'

^ O V T e K ' . But for an element /*/eK there always exists a positive
linear functional Te X' such that T(/*/) > 0, and thus / = 0.

Corollary 5.3. f j kerT-0.
TeK'

Proof. An element /e3I satisfies the property T(/*/) = O V T e K'
iff T(/) = O V Γ e X'. The necessity of this statement follows from the
Cauchy-Schwarz inequality |T(/)|2 ̂  T(l) T(/*/) Conversely assume
that / satisfies Γ(/) = O V T e K ' . Then Tg(/) = T((λ + gf) /(λ + 0)*) is a
positive linear functional if TeK', and thus T((Λ, + 0)/U + 0)*) = 0
V λ e C , 0 e 9 I . Setting λ = l, -l,i, -z, one concludes that T(/*/) = 0
V T e K ' .

Having an extension theorem, we are next concerned with the
existence of positive linear functional vanishing on a given closed
subspace N C 510

Theorem 5.3. Let N be a closed subspace of $I0. Then there exists a
nontrivial positive linear functional T on 910, such that N C ker T, K f ker T,

Proof, a) Assume that K + N = 2ί0, then — K'nΛΓ° = 0, i.e. only
the trivial positive functional can vanish on N.

b) If K + N C 9I0 , then - Kfr\N°C {0} and thus there exists a positive
linear functional vanishing on N. Combining this theorem with the
extension theorem, we get the following statement.

Theorem 5.4. Let M and N be closed subspaces of S210 such that 1 e M.
Suppose that T is a continuous linear functional defined on M, positive
on Kr\M and T(l) = 1. Furthermore assume that NnM C ker T. If there
exists an extension of T to a positive linear functional on 9I0, then the set
of extensions contains positive linear functional^ vanishing on N, iff
- 1 φ K(T) + N, where K(T) = K + kerT.

Proof. The necessary and sufficient condition for the existence of an
extension of T is given by K(T) φ K + M. Note then that a continuous
linear functional, positive on K(T\ is an extension of T, up to normaliza-
tion. Since - 1 φ K ( T ) + N, we have that K(T) + JVΦ9I 0 . Hence there
always exists a continuous linear functional positive on K(T).

Theorem 5.5. // M is finite dimensional, 1 e M, KnkerT={0) and
Γ(l)= 1. Then there always exists an extension of T to a positive linear
functional.

Proof. Under the assumption that kerT is finite dimensional and
KnkerT={0}, we know [9] that K + kerT is closed and thus
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Corollary 5.4. Let p E K, p φ λ - 1, λ > 0, and M = {λ + μp; λ, μ E IR}.
Define T on M by T(\) — 1, T(p) > p0, where p0 is £/ze zero component of
p. Then there exists a positive functional ext T swdi f/iαί ext T|M = T.

Proof. The kernel of T is given by kerT = lR(T(p) —p). Because
T(p) > p0 it follows that Kn ker T = {0} and hence Theorem 5.5 applies.

The results of Section 5 hold generally for locally convex *-algebras
with identity provided one restricts attention to continuous positive
linear functionals.

6. Implications for Wightman's Axiomatic Theory of Quantized Fields

A Wightman theory for a neutral scalar field [1] is given by a positive
linear functional on 91, vanishing on a closed subspace Lc9I0. This
subspace L represents the linear program in quantum field theory and
will be defined below.

Definition 6.1. a) Let F : 91 -> 91 be the Fourier transform defined by

This is an automorphism of 91.
The left ideal

if q

is related to the spectrum condition and is called the spectrum ideal.

b) Let /2 be the two-sided ideal generated by elements of the form

where x = {x/,x / + 1, ..., x / + f c} C {x1? ..., xj for any / and k, and π is any
permutation of the elements in x; furthermore φn(x l 5 . . . ,x ? ••• xn) = 0
if (xf — x7 )

2 > 0, V x f , x7 E x, i Φ j. /2 ^s called the locality ideal.

c) Let

be the action of the Poincare group on 91. Then the subspace

73 = {/ 6 91 / = g — (α, A] g V(α, Λ)}

corresponds to the Poincare invariance.

16*
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d) Let N be the closed linear space of 7 l5 /2, /3.This is a closed linear
subspace of 21 and is called the Wightman kernel. A positive linear func-
tional W on 21 such that N C ker W is called a Wightman functional.

e) N can uniquelly be written as N = N1 + iN2, where N{ and JV2

are closed linear subspaces of 9I0. A positive linear functional on 21,
vanishing on N, is equivalent to a positive linear functional on 2ί0,
vanishing on the closed linear span L = L(N1, N2) of N1 and N2. Hence a
Wightman functional is characterized by WE K', W(L) = 0. Note that
1 φ L. L is called the hermitean Wightman kernel.

We are now in a position to characterize the existence of Wightman
functionals.

Theorem 6.1. Let M be a closed subspace of 2I0 with 1 e M, and L the
hermitean Wightman kernel. A continuous linear functional T defined on
M such that T(KnM)^0, L n M c k e r T and T(l) = l can be extended
to a Wightman functional iff -Iφ K(T) + L, where K(T} = K + ker T.

Proof. This is an immediate consequence of Lemma 5.3 and Theo-
rem 5.4.

Note that the general extension theorem depends on the detailed
structure of ker T and of L.
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