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Abstract. We study some properties of invariant states on a C*-algebra ^ with a
group G of automorphisms. Using the concept of G-factorial state, which is a "non-com-
mutative" generalization of the concept of ergodic measure, in general wider in scope than
G-ergodic state, we show that under a certain abelianity condition on (X, G), which in
particular holds for the quasi-local algebras used in statistical mechanics, two different
G-ergodic states are disjoint. We also define the concept of G-factorial linear functional,
and show that under the same abelianity condition such a functional is proportional to a
G-ergodic state. This generalizes an earlier result for complex ergodic measures.

1. Introduction

In a recent paper [1] we studied a possible extension of the concept
of ergodic measure from the classical case of a positive measure to an
arbitrary complex measure, requiring that for every G-invariant (|w|-a.e.)
measurable subset E of the space X we have either m(E) — 0 or
m(X — E) = 0. Here G is the group of transformations of X, and \m\ is
the total variation of m. It turned out that this extension is essentially
trivial, in the sense that such an ergodic measure m is of the form fc|m|,
with fc a complex constant ("ergodicity implies positivity"). A related
result - which, although it can be considered to be a direct corollary of the
above result, is as easily proved directly from the extremality property
of positive ergodic measures - is that two positive measures on the same
space, ergodic under the same group, are either orthogonal (i.e. their
supports are disjoint), or proportional. Namely, if m^ and πι2 are two
non-proportional positive ergodic measures, form m = m1+m2 Unless
there is a measurable set £, G-invariant (m-a.e.), such that m1(£) = 0,
m2(X — E) = 0, m is ergodic, which contradicts the non-trivial decompo-
sition m = m 1 +m 2 . - Expressed in the C*-algebra language, with j/
a C*-algebra, acted on by a group G of automorphisms, this means that
two different G-ergodic states on a commutative C*-algebra are disjoint,
i.e. the corresponding cyclic representations of si are disjoint. This
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follows if we realize st by the Gelfand isomorphism as the C*-algebra
C(X) of continuous functions on the space X of irreducible representa-
tions of jtf.

The present paper is devoted to the extension of these results to non-
commutative C*-algebras. In this connection the natural generalization
of ergodic positive measure seems to be not G-ergodic state, but the —
in the general case - wider concept of G-factorial state (Definition 3.1).
This concept can be defined in a way which carries over to a general
G-invariant continuous linear functional on jtf (Definition 4.3). In the
commutative case this definition coincides with the definition above of an
ergodic complex measure (Section 5).

If the set of G-factorial states coincides with the set of G-ergodic
states - this is true if (j/, G) satisfies a certain abelianity condition (A)
(Definition 2.6), weaker than the requirement that G is a "large" group
of automorphisms - then any two different G-ergodic states are disjoint.
This applies in particular to the G-ergodic states of the quasi-local
algebras used in the description of infinite systems in statistical mechanics.
In this description the G-ergodic states are often taken to correspond to
equilibrium states of pure phases two different such states then give rise
to disjoint representations of the algebra, i.e. the two sets of pure (irre-
ducible) states into which the two equilibrium states can be decomposed,
are disjoint. This disjointness property is of course closely connected with
the fact that we have to do with an infinite system; for a finite system it
cannot be expected to hold strictly. A very simple example of this is a
classical gas in a container, with equilibrium states described by the
canonical distribution. Two equilibrium states corresponding to different
temperatures certainly overlap in phase space, but in the infinite volume
limit, when the canonical distribution approaches the micro-canonical
one, the overlap goes to zero.

Still assuming the validity of condition (A) we show that every
G-factorial linear functional is proportional to a G-factorial (hence in
this case G-ergodic) state, thus generalizing the result in [1]. It should
be stressed that in general ergodicity does not imply positivity, i.e. one
can find systems (j/, G) - even G-abelian ones - having G-factorial
functionals not proportional to G-factorial states, and where different
G-ergodic states are not disjoint (they can even be equivalent). Although
indefinite linear functionals have no obvious physical interpretation
in the ordinary scheme, it should be remarked that an indefinite hermitian
functional defines a representation of the algebra in a space with in-
definite metric, if one carries through the GNS-construction separately
for its positive and negative parts. The concept of G-factorial functional
could thus be of interest in this wider framework. Of course, since the
resulting representation decomposes into separate representations in
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the positive and negative signature spaces, one should have, as is generally
the case in theories with indefinite metric, a richer structure with addi-
tional operators outside the algebra of observables, mixing the repre-
sentations.

2. Basic Notations and Auxiliary Results

(j/, G) denotes a C*-algebra stf with a group G of automorphisms:
A -> τg(A). s$* is the dual of j/? <s/g the set of G-invariant elements in the
dual, S>

G the set of G-invariant states on s£. All representations we shall
consider will be covariant representations (π, U) of (X, G) in a Hubert
space je : π ( τ g ( A ) ) = U ( g ) π ( A ) U(g)~l. π'(U') is the commutant of
π(L7), and π" the von Neumann algebra generated by π (weak closure
of π). y>G = π' n π" n U' is the commutative von Neumann algebra of
G-invariant central elements in π". For ρ e $G(πQ, l/ρ, ̂ ρ?xρ) denote the
corresponding cyclic representation (πρ, Uρ) in Jfρ, with normalized
cyclic G-invariant vector xρ, so that ρ(A) = (xρ, πρ(,4)xρ). π ̂  πρ = πPρ

means that πρ is a subrepresentation of π, with Pρ the projector on πρ.
Since in this case ρ(,4) = (xρ,π(>l)xρ) and π" is the weak closure of π,
ρ extends by continuity to n" for simplicity we keep the same notation
and put ρ(B) = (xρ, BxQ), B e π".

We start by stating and proving some simple Lemmas, which will be
used in Sections 3 and 4.

Lemma 2.1. Assume QE$G and π ̂  πρ. Wfe associate with ρ three
projectors acting in ffl:

1. ρ's projector Pρ. We have Pρ = Proj[π"xρ] (denotes projector on the
subspace generated by {Bxρ: B e π"}). Evidently Pρ e π'n U'.

2. ρ's support Eρ. I — Eρ is the largest projector in π" such that
ρ(I -Eρ} = 0 ([2], A 26, p. 337). // x e J^ has the property that ρ(A]
= (x, π(A)x), Aestf, then Eρ = Proj[π'x]. We have EQ e π"n U'.

3. ρ's central support Fρ. Fρ is the central support of both PQ and Eρί

i.e. is the smallest projector in π'nπ" such that Fρ^Pρ (or Fρ^Eρ).
Fρ is G-invariant, i.e. Fρ e ^G, and can be expressed in the form
Fρ = Proj[π'π"xρ].

Proof. The results in 1. are obvious. - 2. We show that
Eρ = Proj[π;x] = E'ρ. Firstly, £ρεπ", and leaves x invariant, so
ρ(/ —Eρ) = 0. Since ρ(Eρ) = (x, £ρx) = 1 for the support £ρ, we have
£ρx = x, i.e. Eρ leaves x invariant. Since by definition Eρ commutes
with π', Eρ must contain E'ρ. But then Eρ = E'ρ. To show that £ρe U'
we observe that x = xρ is a possible choice; as U(g)xρ = xρ, and
U(g)π'U(gΓ1=π', it follows from Eρ = Proj[π'xβ] that EρeUf. -

18 Commun. math Phys., Vol. 26
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3. The central supports of Pρ and Eρ are the projectors on π'PQ^f and
π"EQ^f, respectively, i.e. they are both Proj[π'π"xρ]; this representation
also shows that FQ e Ur.

Lemma 2.2. Assume (β^ U) is a covariant von Neumann algebra (i.e.
τg(@} = U(g)^U(g)~1 = &) in jjf, and Q a projector in 3$ 'nU1 ', with
central support I (unit operator). &Q = $Q is the induced von Neumann
algebra in Q^ it is evidently covariant. Define ΉG = 3$ n $' n U',
^GQ — &Q<^3&Q^U'. Then the mapping B-+BQ is an isomorphism from
%G onto <#GQ.

Proof. According to ([2], A 15, A 20, pp. 335-336) J* 9 B-+BQ e @Q

is an isomorphism, hence so is ̂ n <%' 3B-+BQ e ̂ Qr\&Q. As τg(Q) = β,
all g e G, this isomorphism commutes with all τg, so the result follows.

Lemma 2.3. Assume (β, U) as in Lemma 2.2, and put

f(B)= t av(xv,Bxv),
v = l

all B e & here (al9 ... an) G C", and xl7 ... xn are G-inυaήant vectors in Jtif,
defining a subspace J^n. Define β-Proj[^^fJ; evidently Qe&'πU'.
F is the central support of g, and ̂  G = ̂ n^'n U', ΉGF = ΆΈc\Sί'Έr\ V,

Then (a), (b), and (c) are equivalent:
(a) f(P)f(I - P) = 0, every projector
(b) /(P) f(F - P) - 0, every projector P e ̂ GF.
(c) f ( P ) f ( Q - P) = 0, every projector P e %GQ.
In particular, if ρe^G, and π ̂  πρ, then ρ(P) = 0 or 1 for every

projector P e ̂ G if and only if ρ(P) = 0 or 1 /or βί erμ projector P e Ή QG

Proof. (b)<^>(c), since from Lemma 2.2 %>GQ and ^GF are isomorphic,
and f(B) = f(BQ), all Be 3SF. (b)=>(a) follows from f(B) = f(BF), all
βe J*. (a)=>(b) is a consequence of the fact that f(F - P) = f(I - P),
every projector P e ̂ GF C ̂ G.

We recall the following definitions and criteria ([2], 5.2 and 5.3):

Definition 2.4. Two states ρ t, ρ2

 αrβ Sfl^ ίo ^^ equivalent (~), quasi-
equivalent («), or disjoint (ό), z/ ί/ie corresponding relation holds between
πρι and πρ2.

Criteria 2.5. /or quasi-equivalence and disjointness: Assume π^π ρ ι ,
π ^ πρ2, Ft and F2 ^^ central supports of ρi and ρ2, respectively. Then
we have
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Finally we introduce and discuss an abelianity condition for (X, G),
which will turn out to be a sufficient condition under which we can
generalize to the non-commutative case the results mentioned in the
beginning of the introduction for the commutative case.

Definition 2.6. (X, G) is said to satisfy condition (A), if π'ρnU'ρCπ'ρ
for every ρ e <fG.

The inclusion relation π'ρ n U'β C n"Q is trivially fulfilled for every
G-ergodic ρ. If the group G is trivial, G = {e}, then condition (A) is
equivalent to requiring jtf to be commutative. This is perhaps most
directly seen using the result (Theorem 3.4) that if condition (A) holds,
any two different G-ergodic states are disjoint. Assume that jtf had an
irreducible representation of dimension ^ 2 then two different unit
vectors in the space of this representation would define two different,
equivalent pure states on j/, which contradicts Theorem 3.4. So all
irreducible representations of stf are one-dimensional, and this implies
that <stf is commutative. - That si commutative implies condition (A)
for any G is evident, since for any cyclic representation of a commutative
j/ we have π' = n" (π" is a maximal commutative von Neumann algebra).

If G is a "large" group of automorphisms of ̂  (hence a fortiori if
(j/, G) is weakly asymptotically abelian; see [3], p. 430), condition (A)
holds ([4], Ex. 6 C, p. 164). Condition (.4) is strictly weaker than G being
a "large" group, as is shown by example "1 φ 2" ([3], p. 431) of the algebra
of compact operators in a Hubert space with a certain group G, which is
not a "large" group in this case there is only one G-invariant state, which
is then G-ergodic, so condition (A) holds. The G-abelian C*-algebra of
complex 2 x 2-matrices, with G the group of diagonal unitary matrices
acting by conjugation (example "Oφl" in [3], p. 431) does not fulfil
condition (A): the set of G-invariant states is given by ρα = OLQI -f (1 — α)ρ0,
0 !g α ̂  1, where the extremal states (which are even pure states) ρ0 and
ρt are equivalent; by direct construction one easily shows that the non-
extremal states don't fulfil the requirement of condition (.4). Alternatively,
it follows from Theorem 3.4 that condition (A) cannot hold. Thus
G-abelianness does not imply condition (A). We conjecture that the
inverse implication is also not true, so that G-abelianness and condition
(A) are independent abelianity conditions.

3. G-Factorial States

We recall that a state ρ on j/ is factorial, if π'Qr\π"e = {λl} ρ e SG is
G-ergodic, if it is extremal in $G, or, equivalently, if π'ρn U'ρ = {λl}.

Definition 3.1. ρ e $G is G-factorial, if π'ρnπρn U'Q = {λl}, i.e. if 0 and
1 are the only projectors in ̂ ρG.
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In terms of the decomposition theory of states (see [5], Chapter 3,
for a recent summary of the present status of this theory) Definition 3.1
is equivalent to requiring that the central measure μρ of ρ on the state
space $ is ergodic, since under the isomorphism from π'ρnπρ onto
L00^,μρ) G-invariant projectors in π'ρnπρ evidently correspond to
characteristic functions of G-invariant measurable sets (modulo μρ) in δ.
We recall that the measure μρ is concentrated on the subset δf of factorial
states, and, at least if jtf is separable, intersects each quasi-equivalence
class of factorial states at most in one point (loosely speaking). Since the
decomposition theory, although very "anschaulich", is complicated by
measure-theoretical intricacies, which often force one to make restrictive
separability assumptions, we shall use it for purpose of illustration only.

If ρ e $G is factorial, or G-ergodic, then ρ is G-factorial. Thus we have
&oe C <^G/> where δGe(δGf) is the set of G-ergodic (G-factorial) states on ̂ .

Alternative characterizations of δGf are given by

Theorem 3.,2. Assume ρ e <^G> π ̂  πρ, F e ̂ G the central support of ρ.
Then (a), (b), and (c) are equivalent.
(a) ρe£Gf.
(b) F is minimal non-trivial projector in ̂ G.
(c) For every projector P e ̂  G we have ρ(P) = 0 or 1.

Proof. Follows directly from Definition 3.1 and Lemmas 2.2 and 2.3.
Next we give a theorem, which states that two G-factorial states are

either quasi-equivalent or disjoint. Furthermore, the set of G-factorial
states consists of quasi-equivalence classes of G-invariant states, where
each such class forms a convex set, the extremal points of which (if they
exist) are also extremal in δG, i.e. are G-ergodic.

Theorem 3.3. Assume ρ1? ρ2

 e δG. Then we have
(a) // ρ l 5 Q2 e δGf, then either ρ1 « ρ2, or ρ^ i ρ2.
(b) // ρx 6 δGf, and ρ^ « ρ2, then for every α e [0,1] ρ = aρ^ -f (1 — α)

• ρ2 e <cίGj, and ρ « ρ1 in particular ρ2 e δGf.
(c) If Q = αρj + (1 — α) ρ2 e δGf, some α e (0,1), then ρl, ρ2 e (fG/, and

βi ^^2-
In terms of the ergodic central measures of ρl and ρ2 (a) means that

if one equivalence class of factorial states meets the supports of both
measures, then every class either meets both supports, or none. We can
also remark that if — for a given (j/, G) — two different quasi-equivalent
G-factorial states exist (example "OΦ1" at the end of Section 2 is an
example of this), then the map <fG9ρ->μρ cannot be affine, since this
would lead to the absurd result that a convex combination of two
different ergodic measures is ergodic.

Proof of Theorem 3.3. (a) Apply Criteria 2.5 to π = πρι 0πρ2; if neither
Qi ~ Q2 nor Qi A £?2> then F — FγF2 would be a non-trivial projector in
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#G, strictly smaller than at least one of F1 and F2, thus contradicting
Theorem 3.2 (b).

(b) Take ρ, 0<α<l , and form π = nρ@πρι®πρ2i since ρ^ » ρ2,
 trieY

have common central support F, which is minimal, since Qι£$Gf\
hence also ρ2

 e^c/ From ρι(F) = ρ2CF) = 1 follows that ρ1(P) = 0 or 1
and ρ2(P) = 0 or 1 simultaneously for a projector Pe^G, and then we
have also ρ(P) = 0 or 1, so that ρ e SGf. In particular F is also the central
support of ρ, so ρ « ρί.

(c) π is defined as under (b). If ρ e $Gf, some α, 0 < α < 1, we have for
every projector P e %7

G either ρ(P) = 0 or 1, and then necessarily ρ^P) = 0
or 1, ρ2(P) = 0 or 1, simultaneously, hence ρ1? ρ2 e $Gf, and ρj « ρ2.

From Theorem 3.3 follows easily

Theorem 3.4. Consider the following statements about (jtf, G):
(a) GS/, G) /M//Ϊ/S condition (A), Definition 2.6.
(b) SGe = $Gf, i.e. every G-factorial state is G-ergodic.
(c) Any two different G-factorial states are disjoint.
(d) Any two different G-ergodic states are disjoint.

We have (a)=»(b)o(c)=>(d).

Proof. (a)=>(b) and (c)=>(d) are trivial. (b)=>(c): According to
Theorem 3.3 (a) two different G-factorial states are either quasi-equivalent
or disjoint; if they were quasi-equivalent, then every convex combination
would by Theorem 3.3 (b) be G-factorial, hence G-ergodic, which is
absurd. (c)=>(b): if there were a G-factorial state which is not G-ergodic,
then it is not extremal, and we could write it as a non-trivial convex
combination of G-factorial states, which would then be quasi-equivalent,
by Theorem 3.3 (c), contradicting (c).

Put in words Theorem 3.4 expresses the obvious fact that if every
G-factorial state is G-ergodic — which follows trivially from condition (A) —
then every G-factorial state is extremal, so the quasi-equivalence classes
building up SGf contain only one element each. Combined with
Theorem 3.3 (a) this gives the disjointness of different G-factorial states.
An illustration is given by the fact - which we shall not prove here - that
if condition (^4) holds, then the map $G 3 ρ-»μρ from G-invariant states
to the corresponding central measures is actually affine; cf. remark after
Theorem 3.3.

The weaker result that condition (A), combined with G-abelianness,
implies that two different G-ergodic states are not quasi-equivalent, is
well-known (see e.g. [4], Ex.6 D, p. 165; [6], Theorem 3.9, p. 129). -
(c) does not follow from G-abelianness alone, as we already remarked in
the discussion following Definition 2.6. The G-ergodic states ρ0 and ρl in
example "Oφ 1" discussed there are even equivalent.
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4. G-Factorial Linear Functional

We recall that every /e stf* has a unique decomposition / = g + ίh
into hermitian elements g and h; further g and h have unique decom-
positions into orthogonal positive functionals:

g = g+-g_, \\g\\ = \\g+\\ + \\g_\\, h = h+-h_, \\h\\ = \\h+\\ + | | Λ _ . | | .

If /is G-invariant, it follows from the uniqueness of the decompositions
that also g+ etc. are G-invariant. We put / = (g+ +#_ +/z+ +h_)/N,
N = \\g\\ + || A H if /e j^£, then evidently /e <?G.

To generalize the concept "G-factorial" from states to general linear
functionals we must define a class of representations carrying enough
information about the functional. We also prove a Lemma exhibiting
explicitly representations of this class, and showing that the definition
of G-factorial linear functional introduced later is independent of the
representative of the class one chooses for the definition.

Definition 4.1. Assume fes^ξ. A covariant representation (π, (7) in
ffl is called a f-representation, if there are G-invariant vectors x l 5 ... xn in
Jf , and complex numbers aί9 ... an such that

f(A)= £ av(xv,n(A)Xv), all Aest .

Lemma 4.2. Assume /E ^/<f , f^$G as above. Then

(a) Ifn^πj , then π is a /-representation.

(b) Assume π t and π2 are two /-representations, Ή1G and Ή2G the cor-
responding commutative von Neumann algebras. If for every projector
P1 e #1G either f ( P 1 ) = 0 or f(I — P±) = 0, then the same is true also for
every projector P2 E^G

Proof, (a): Assume x0 is the G-invariant cyclic vector of π/, so that
f ( A ) = (x0, πf(A)xo) = (xθJ π(A)x0). As g+/N is dominated by /, there
exists ([2], 2.5.1) a unique self-adjoint Teπ), O ^ T g l , such that
g + (A) = N(TxQ, πf(A)Txo). The uniqueness of T and the fact that
U(g)x0 = x0 implies that Te U}, thus U(g)Tx0 = TxQ. Put xl = Tx0,
dι = N, and proceed similarly for #_, h+, and /z_ it follows that π^, and
hence π, satisfies, with n = 4, the requirement for a /-representation.

(b): We form π = π10π2 and apply Lemma 2.3 with & = π". f is
defined on ^ either by vectors (x^ , ... xm) e J^ or by (yx , . . . yn) e J 2̂ ?
the corresponding projectors Q1 and Q2

 are evidently projectors in J#Ί
and Jf2> respectively. With ^ίG = π nπ"nί7', ^GQ, = ̂ Ql

n^Ql

n^'»
z — 1, 2, we can use Lemma 2.3, (a)<=>(c), to run through the chain
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In view of Lemma 4.2 (b) and Theorem 3.2 (c) it is natural to introduce
the following generalization of G-factorial state:

Definition 4.3. /ej/<f is said to be G-factorial, if for some (and then
for every) f-re present at ion π we have the relation /(P)/(/ —P) = 0 for
every projector P e #G = π'nπ"n U1.

If we study the C*-algebra of 2 x 2-matrices, example "0 Φ 1" at the
end of Section 2, which is a G-abelian algebra not fulfilling condition (A),
and put / — αρ0 +bρί9 where a and b are complex non-zero numbers,
such that a/b is not a real positive number, we get a G-factorial linear
functional, which is not a complex multiple of a G-factorial state. How-
ever, the following theorem holds:

Theorem 4.4. // (j/, G) satisfies condition (A), then every G-factorial
f is of the form k f , where k is a complex number (\k = \\f\\\ and f is a
G-ergodic state.

Theorem 4.4 is a direct consequence of the following central Lemma:

Lemma 4.5. Given two non-zero positive G-invariant functionals 0 l5

02, which are orthogonal i.e. \\g1 -02|| - \\gλ\ -f ||02||. Put gt = 0^110^. //
condition (A) holds, g± and g2 are disjoint.

Before proving this Lemma, we use it to prove Theorem 4.4: If
f — g + ih is G-factorial, it follows that g — g+ — g_ and h — h+ — h_
are also G-factorial. Assume condition (^4) holds; if g+ and g_ were
both different from zero, they would have non-trivial orthogonal
central supports F± in a /-representation. Evidently this means e.g.
g(F+)g(I — F+)φO, which is a contradiction. Hence g is definite, say
positive, 0 = ||0||0, where g is a G-factorial, i.e. from Theorem 3.4 a
G-ergodic state. Similarly for h. Finally, if g and h are both non-zero, it
follows from the fact that / is G-factorial that 0 and h have the same
central support, i.e. by Theorem 3.4 they are the same state, so
Theorem 4.4 follows.

Proof of Lemma 4.5. The orthogonality of gί and g2 is equivalent to
the property that in a representation π containing the cyclic represen-
tations πt and π2 corresponding to 0X and 02, the supports £x and E2 are
orthogonal ([2], 12.3.1). To show that J^ £2 ̂  0 implies 0t i g2, we have
to show that the only intertwining operator between πλ and π2 is trivial:
Tπι(A) = π2(A) T, all A e s/9 implies T - 0.

Form ρ = \gλ + \g2, ρ(A) — (xρ, πρ(A)xρ). We can find unique self-
adjoint positive T^π'^U^ such that gi(A) = 2 ( T i x β , π β ( A ) T i x β ) ,
Tf + T2=L From Lemma 2.1 we can write the supports
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£. = Proj[π'ρΓίxρ]. Since E{E2 = ̂  we have (Γ1xρ,B/T2xρ) = 0, all
B' e π'ρ. Condition (A) implies that 7) e πρ, so we get (T2 Γx xρ, £'xρ) = 0.
In particular we can take B' = T2Tl9 and from T2 7\x ρ = 0 and the fact
that xρ is separating for π'β we get T2 7\ = 0. Hence (7^ + T2)

2 = /, and
T! and T2 are orthogonal projectors on two complementary subspaces
of JFQ. We have π f ^ nJT^^ i = 1, 2. An intertwining operator is then a
TE πρ with TT2 — 0 and range in T2 j-fρ, i.e. 7\ T = 0. But since condi-
tion (A) implies TT1 = T1 T, we get T = 0.

Let us note that a modification of the proof gives an alternative proof
of (a)=>(d) in Theorem 3.4: if g± and g2 are G-ergodic and different, one
can conclude — independently of condition (A) — that 7)2 = Ti9 so that
Tf are projectors with Tί + T2 = Im, then ^ A g2 follows as above.

The conclusion of Lemma 4.5 does not hold if we assume (s#9 G) to
be G-abelian instead of satisfying condition (A\ as is shown by the
orthogonal, equivalent states ρ0 and ρ1 of example "0 Φ 1".

5. The Commutative Case

We want to show that if stf is commutative, the definition of G-fac-
torial linear functional is equivalent to the definition of complex ergodic
measure, in the case that this measure has a bounded total variation. We
shall also study the relation between Theorem 4.4 and the result in [1]
that a complex ergodic measure is proportional to a positive ergodic
measure.

(X, B, m, G) is a set X with a σ-algebra B of subsets, m a complex
measure on (X, B}; \m is its total variation, and we assume m\ (X) < GO.
G is a flow on X, a group of β-measurable (E e B=>g(E) e B, all g e G)
and m-measure-preserving (m(E) = m(g(E)\ all E e B) transformations of
X. By Lemma 1 in [1] m-measure-preserving implies |ra -measure-
preserving. E e B is G-invariant (|m| — a.e.) if |m| (g(E) ΔE) = 0, all g e G;
here FΔ£ = FuE — FnE. m is said to be ergodic, if for every G-invariant
(|m| - a.e.) £ e £ we have m(£) m(X - £) = 0.

Introducing the space E°(X,B,\m\) of |m-equivalence classes of
m|-essentially bounded measurable functions on X, which with the norm
\\φ\\ — esssup{|φ(x)|; x 6 X} and natural definitions of product and
involution is a commutative C*-algebra, m defines in the obvious way a
continuous linear functional /m on L°°. Evidently there is a one-to-one
correspondence E<-+χE between \m -equivalence classes of sets in B and
projectors (characteristic functions) in L°°, and we have m(E) = fm(χE).
G-invariant sets correspond to G-invariant projectors. L00 has an iso-
morphic representation as a concrete C*-algebra of operators (multi-
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plication by the L°° function) in the Hubert space L2(X,B, m\/\m\ (X});
this is just the /^representation π/m(π, for short), π is evidently already
weakly closed, i.e. a von Neumann algebra; this corresponds to the fact
that L°°, as the dual of L1, is a Vϊ7*-algebra, an "abstract" von Neumann
algebra ([5], p. 1, p. 45). Since furthermore π is cyclic and commutative,
we have π = π' = π". So the G-invariant projectors in L°° coincide with
the projectors in ^G = π'nπ'Όl/', and evidently the condition that m
is ergodic corresponds to the condition that fm is G-factorial. Theorem 4.4
then implies that m is a complex multiple of a positive ergodic measure,
which is Theorem 1 in [1].

Conversely we show that if s# in (j/, G) is commutative, Theorem 1
in [1] implies Theorem 4.4 in this paper. A commutative j/ can be con-
sidered, by the Gelfand isomorphism, as a C*-algebra C0(X) of con-
tinuous functions, vanishing at infinity, on a locally compact space X.
If B is the family of Borel sets on X, generated by the open sets of X, the
action of G on the elements of s# is transformed into homeomorphisms
of X, mapping B onto itself. An element / e j/<f corresponds to a G-in-
variant complex measure mf on (X, B), of bounded total variation mf .
The /-representation π/( = π) of ̂  = C0(X) is evidently given by the
functions in C0(X) acting by multiplication in L2(X,B, mf\/\mf\ (X)). In
this case we find π' = π" = L°°(X, B, mf\). As before we conclude that /
G-factorial is equivalent to mf ergodic. So Theorem 1 in [1] shows that
mf = k\mf9 where of course mf is positive and ergodic; this gives
Theorem 4.4.

In a certain sense Theorem 1 in [1] implies Theorem 4.4 also in the
general non-commutative case. If condition (A) holds, the mapping from
G-invariant states to G-invariant central measures on the state space is
affine, as we remarked at the end of Section 3. (The proof of this result
runs largely parallel to the proof of Lemma 4.5). This mapping can then
be extended by linearity to a mapping from j/^ to complex bounded
G-invariant central measures. Under this mapping a G-factorial linear
functional corresponds to a complex ergodic measure, so an application
of Theorem 1 in [1] gives Theorem 4.4.

A final remark: In one respect the result in [1] is more general, since
it holds also if \m is supposed to be only σ-finite instead of finite, as we
have assumed here. This would correspond to unbounded linear func-
tionals on the C*-algebra j/, a concept which has been studied by
Pedersen in a series of papers [7].
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