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Abstract. We concentrate on the mathematical aspects connected with the derivation
of the model independent information one can get on the pion electromagnetic form
factor F(t) inside the analyticity region (the cut f-plane) from the knowledge of upper and
lower bounds of its modulus on the cut t ^ 4m2 using analyticity, reality, and the normaliza-
tion F(0) = 1. It turns out that (in a certain sense) this information depends only on the
upper bound, whereas the lower one is irrelevant.

1. Introduction

We consider in this paper the mathematical steps involved in the
derivation of the model independent information on the pion electro-
magnetic form factor F(t\ contained in the e+ e~ — >π + π~ scattering data.

The cross section of this process is given, up to a kinematic factor, by
the square of the modulus of F(f):

= K(ί)|F(ί)|2, ί ^ 4 m 2 , (1.1)

where t has the meaning of the total energy squared in the c.m. system
and m that of the pion mass.

We admit that F(t) is a real analytic function in the complex ί-plane
cut along t ̂  4m2, normalized at t = 0 to F(0) = 1. The cross section (1.1)
then provides us with data on the boundary values of the modulus of this
function on the cut. These data take, due to the experimental errors, the
form of upper and lower bounds,

|/(0| ̂  \F(t)\ ^ \S(t)\9 t^4m2. (1.3)

* Work performed under contract with the Romanian Nuclear Energy Committee.
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So far experiment covers only part of the cut and we therefore supplement
(1.3) for the rest with a hypothesis of the same kind. The (experimental or
theoretical) origin of our knowledge of the functions \S(t)\ and |/(ί)| is,
however, ultimately important only for the physical aspect of the problem,
which has been discussed in Ref. [1, 2]. There also references to earlier
work on the subject are given.

The questions we want to answer are:
a) if there is (at least) one function real analytic in the cut ί-plane and

normalized to F(0) = 1, such that its boundary values satisfy (1.3),
b) if there are more such functions than one, which are, for a given ί

inside the analyticity region, their possible values,
c) how do the results of (a) and) b) depend on the information

given by (1.3).
The answers will be given by reducing the problem to an inter-

polation problem of the Pick-Nevanlinna type, its solution, and the
discussion of some properties of the solution.

2. The Interpolation Problem

We perform a conformal mapping of the cut ί-plane onto the unit
disc |z| < 1,

\ ±

by which we get the real analytic function f(z) = F(t) normalized to
/(O) = 1 and with the boundary values satisfying

|i(τ)| ^ |/(τ)| ̂  |s(τ)|, τ = exp(iθ), -π ̂  θ ̂  π . (2.2)

Temporarily we will ignore the information contained in the l.h.s.
of (2.2) (i.e. we put |i(τ)| = 0) and proceed with the condition

|/(τ)| ^ \s(τ)\ (2.3)

instead of (2.2). Later we will come back and investigate, as part of the
answer to c), the implications of i(τ)| φ 0.

To tackle the so modified problem we first make use of a theorem of
Szegό [3]:

For any function |s(τ)| (nonnegatίve and) of period 2π, which is such
that ln|s(τ)| and \s(τ)\δ, δ>0, are summable, there exists a function g(z\
unique up to a constant factor of modulus 1, belonging to the class Hδ

and maximal for |s(τ)|, i.e. such that |0(τ)| = s(τ)| almost everywhere and
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for z| < 1, if /(z) is a function of class Hδ which satisfies
almost everywhere.

The function is given by

g(z) = exp(^- J ln|s(τ)| -^-dθ], (2.4)
\ z π _ π τ — z /

if we make an appropriate choice for the phase. It has evidently no zeros
in z <1 and therefore also g ί(z) is analytic.

We suppose that the pion form factor is of class Hδ and that the
upper bound (2.3) obeys the requirements of the theorem. Then from it we
get the result that

φ ( z ) = f ( z ) g ' 1 ( z ) (2.5)

is analytic and bounded, i.e.

\φ(z)\^l z |<l (2.6)

and that the equality sign is valid only for/(z) = eiλg(z) with g(z) given by
(2.4) and λ = a real constant. From the reality of /(z) and from |s(τ)|
= |s(τ*)|, which implies the reality of 0(z), it follows that φ(z) is also real.

To φ(z) we apply the Pick-Nevanlinna interpolation technique in its
simplest form: To find all functions φ(z) (real) analytic in |z < 1 (if they
exist), satisfying (2.6) and taking the value

φ(0) = Sf-1(0) (2.7)

which is a consequence of the normalization of the form factor.
The existence of at least one function φ(z) with the required properties

depends on the value of 0(0). If g(0) < 1, then (2.6) and (2.7) contradict
each other and no function φ(z) exists. The value 0(0) = 1 determines
φ(z) uniquely: φ(z) = 1. For values 0(0) >1 φ(z) is not uniquely deter-
mined. To construct for this case all allowed functions φ(z) we apply
the Schwarz lemma in the form given by Pick [4] (essentially the basis of
the Pick-Nevanlinna interpolation procedure) which asserts that if
φ(z) takes for z = z0 (|z0 < 1) the value φ(z0) (|φ(z0)| < 1), then

φ(z)-φ(z0) z-z0

l-φ*(z0)φ(z) Λ V ' l - z * z '

where χ(z) is analytic and bounded in the unit disc,

|χ(z)|^l, z < l (2.9)

but is otherwise undetermined. Those χ(z) which satisfy the sign of
equality in one point necessarily have the form χ(z) = eίλ and give rise to
functions φ(z) performing a conformal mapping of the unit disc onto
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φ(z)-φ(z0)

l-z*
(210)l ' J

The solutions of the problem take thus in this case, with z0 = 0 and
= gf"1(0), the form

The condition that an upper bound |s(τ)| does not contradict the
normalization of the form factor is thus given by

0(0) = exp J \n\s(τ)\dθ ^ 1 .
-π /

(2.12)

Admissible bounds, i.e. those which satisfy (2.12), give possible form
factors

"-' "w l+g-1(Q)zχ(z)'

whose values, for a given z, lie all, if χ(z) covers the whole unit disc, in a
disc ί$(g, z), as it follows from the linearity of the (conformal) trans-
formation from χ to /.

In our case χ(z) has, however, to be real and this does not allow it to
take, for a given z (|z| < 1) all values in the unit disc. For instance, of all
the functions χ(z) = eiλ taking their values on the boundary, only
χ(z) = ±1 are real. So the domain of values of /(z), ££(g,z\ lies inside
S>(g, z) and only the images of the two points χ(z) = ± 1 touch its boundary.
The region ££(g, z) will be determined in the next Section.

3. Consequences of Reality

We investigate first the implications of reality on the values allowed
for w = χ(z) satisfying (2.9) and thus start by requiring that for — 1 < z
= a < 1 it takes the values — 1 ̂  χ(α) = b ̂  1 (the signs of equality allowed
only for χ(z) = ± 1). Then, following Caratheodory [5], we apply again
the lemma of Pick, (2.8), in a form convenient for this purpose. Namely if

then

z — a

1-αz

w —b

1-bw

= Q ,

g ρ,

(3.1)

(3.2)
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i.e. if a value of z lies on a circle of (noneuclidean) radius ρ and centre a,
then the values of χ(z) (with χ(ά) = b) lie inside or on a circle of the same
(noneuclidean) radius with centre b.

We consider now the family of all circles (3.1) of constant (non-
euclidean) radius ρ with centres on ( — 1,1). They cover the area between
their envelope?, the two lines of constant (noneuclidean) distance ρ from
the diameter (— 1,1), which are arcs of circles going through ± 1. If fe goes
through the values — 1 ̂  b ̂  1 the family (3.2) covers the same area.
It follows then that for a given z (\z < 1) the values of the real function
χ(z) are allowed to lie inside or on the boundary of the lens S?(z) deter-
mined by the arcs of circle passing through the points — 1,1, z and
— 1,1, — z, respectively. For further convenience we note that the first
of these circles passes through the point z"1 and the second through
— z"1, as can be easily verified with the anharmonic ratio. The extremal
functions, i.e. those, whose values lie on the boundary, are given according
to the lemma of Pick by

' (3.3)
1 — f e w 1 — az

Their geometric meaning is particularly simple:

w — fe z — a
1 — few 1 — az

are hyperbolic transformations with fix points ±1 and thus leave all
circles passing through these points, i.e. all distance lines of the diameter
(—1,1), invariant; the other functions (3.3) are hyperbolic transforma-
tions of the same kind combined with reflections,

w — f e v+a
1 — f e w l + av

Coming now back to (2.11) we notice that, with χ(z) taking values in
£P(z\ zχ(z) will take values in a lens determined by the two circles
passing through the points z, — z, z2 (and 1) and z, — z, — z2 (and —1),
respectively. The transformation (2.11) from zχ(z) to φ(z) being again
linear and parabolic, it follows that the values of φ(z) also lie in a lens,

g-1(Q)±z
±<r1(o)z

"1(Q)±z
ι±g-1(Q)z

boundary of the lens &(z). The value of/(z), finally, lie in the lens «£?(#, z),
the image of the region of values of φ(z) by the transformation

f(z) = g(z) φ(z). (3.6)

bounded by the two circles passing through the points _ ~ , 1
(

anc[ _ — , —1, respectively, and that these points lie on the
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4. Influence of the Lower Bound

Now we come back to the information

i(τ)| ̂  |/(τ)| (4.1)

which we have so far ignored in deriving the above given results. It
restricts the set of functions χ(z) entering (2.13) by imposing on their
boundary values χ(τ) (|χ(τ)| rg 1) the condition

, i(τ)|
+ 0 (0)τχ(τ) s(τ)

(almost everywhere) (4.2)

which forces χ(τ) to lie on or outside the circle of noneuclidean radius

— — and centre — 0~1(0)τ~1. In investigating its consequences we first
s(τ)

observe that the boundary of &(g,z) is given by functions /(z), (2.13),
which are the images of the boundary points

(4.3)
ί±bz

of 3?(z) (which follow from (3.3) by putting, without loss of generality,
a — 0). Since (4.3) satisfies |χ(τ)| — 1, these functions /(z) have boundary
values |/(τ)| = s(τ)| almost everywhere. Further we show that also for
any inner point of ££(z) there exist functions χ(z) with the property
|χ(τ)| = 1, which implies that the whole region J^(g, z) is covered already
by functions with |/(τ)| = |s(τ)| almost everywhere and proves that the
information (4.1) is, in fact, useless.

Such functions χ(z) we construct in the following way: From z on the
oc + z

boundary of 5f(z) we get, by multiplication with - - (— l<α<l) ,

the point

u = z α + Z ( - l < α < l ) (4.4)
1 H-αz

inside ££(z\ on the arc of circle defined by the points z, — z and 1. The
(noneuclidean) distance of this point to the diameter (—1,1) depends
on the value of α. To it we apply the parabolic transformation

and move it on a distance line of the diameter (—1, 1). For a given z we
can thus reach with (4.5), by a suitable choice of the parameters α and β,
all inner points of <£(z\ Because of u(τ)\ = 1 we also have for the func-
tions (4.5) |χ(τ)| = l.
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5. Region without Zeros

The representation (2.13) with χ(z)eJS?(z) enables us to deduce
immediately the region J?(0), where zeros of /(z) are not allowed to exist
according to the information |/(τ)| ^ |s(τ)|. This consists of the set of all
points z for which — gΓ^O) φ zJSf (z). The boundary of the region is given
by the solutions of the equation

g-1(0) + zχ(z) = Q , (5.1)

where χ(z) is a boundary point of JS?(z). But of these points only

χ(z) = - - , for which zχ(z) = z- - ( — !<«<!) intersects the

real diameter at negative values, can satisfy (5.1). The corresponding
points z are the solutions zv , z2 of the equation

z2 + a(l+g-1(0))z + g-1(0) = Q. (5.2)

For a2 < a2, where

they are complex and situated, since zlz2 = g~l(fy, on the circle of radius
g~ ^(0) and centre z = 0. If a = ± αc, we have zί = z2 = +g~*(0), whereas
for a2

c < a2 ^ 1 they are real and different. For — 1 rg a < — ac we have
^~i(0)<z1 g l and #~ 1 (0) ^z2<0~*(0), whereas for α c < α ^ l -0~*(0)
< z, < -g-*(Q) and - 1 ̂  z2 < -g~*(0).

The region ^Γ(gf) consists thus of the disc |z <^~^(0) except the
intervals -g~^(0)<z^ -g'1^) and ^-1(0) ̂  z<^~-(0).

6. Dependence of ̂ ( ,̂ z) on s(τ)|

The shape of the region «£?(#, z) depends through the values of g(z)
on the detailed information one possesses on |s(τ)|, so it has to change if
one changes this information. Suppose we have, instead of (2.3), a more
detailed knowledge

the function \Si(τ)\ satisfying

|sf(τ)| g |s(τ)| (almost everywhere) (6.2)

with the sign of inequality valid on a set of positive length. We denote
by gt(z) and ^(gh z) the analogs, for \st(t)\, of g(z) and &(g, z), and look
for the comparison of JS?(#, z) and ^(g^ z). It is evident that ^(gh z)
C «£?(#, z). What we want to show is that, if the condition we have im-
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posed on the inequality (6.2) holds, the boundary of t£(Qi, z) lies com-
pletely inside £f(g, z). In order to give the proof we use the more detailed
notation

. + g - 1 ( Q ) z χ ( z ) >

1 i „ — 1 / A\ _ £ / _Λ ' V ' /

for the functions / obtained with the informations (2.3) and (6.1), respec-
tively. It then consists in showing that f ( g i \ z) can be written as

z7 (6.5)

with χ(gιi z) e ^£(z), and that χ^ z) corresponds to inner points of
3?(z) if ξ(z) is a boundary point of cSf(z).

We have, indeed, χ(^ z) completely defined by

ί̂T^—^ΓT" (6-6)

Taking the limit z->τ for the absolute value of (6.6) we get on the r.h.s.
|sf(τ)| ^(τ)!"1, which proves that χ(gt; z) is an inner point of <£(z).

An immediate consequence of importance for comparison with
experiment are the (strict) inequalities

for the upper and lower bounds of f(x) at z = x (real), and the inequalities

(0) + flfί(0)-flfΓ1(0), (6.9)

(0)-^(0) + ̂ Γ1(0) (6.10)

for the upper and lower bounds of/'(0), which follow from (6.3) and (6.4).

7. Conclusions

We have shown that if one possesses information only on the modulus
of the pion electromagnetic form factor on the cut ί §: 4m2, in the form
of upper and lower bounds (1.3), it turns out that the bound 15(01 alone
proves useful for the derivation of information on F(ί) inside the analy-
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ticity region, whereas the lower bound |/(ί)| is irrelevant. In particular,
one derives the same information from the function \S(i)\ in both cases
where it represents the exact value of \F(t)\ at t ^ 4m2 or only an upper
bound. The information consists in the indication of the region (&(S, t),
the conformal image in the cut ί-plane of ^(g, z)) which is covered by the
values at a given ί of all functions F(t) compatible with F(0) = 1 and
\I(t)\ ^ |F(ί)| ^ |S(ί)| (t ̂  4m2). For real values of t it leads to upper and
lower bounds for F(t). It provides also (upper and lower) bounds for
F(0). The irrelevance of |/(ί)| consists in the fact that, although it affects
the set of admissible functions F(t\ it is of no consequence on the region

The information implies that in the region around t = 0 which is the
conformal image in the cut ί-plane of ¥£(g) there can be no zeros of F(t).

We mention that these results, being obtained by extremal methods,
are the best ones under the stated assumptions.

Finally we have shown that if we have an improved upper bound of
\F(t)\ (t ̂  4m2) given by a function |Sr (ί)| (^ |S(ί)|, but inequivalent with
it) the corresponding region ^(Sht) is strictly included in $(S,t), i.e.
they have no common boundary points. For real values of t this implies
that the corresponding upper (lower) bounds both for F(t) and F(0) are
strictly lower (higher) for |Sf(ί)| than for \S(t)\.
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