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Abstract. In Newtonian gravitational theory a system of point charged particles
can be arranged in static equilibrium under their mutual gravitational and electrostatic
forces provided that for each particle the charge, e, is related to the mass, m, by e — G*m.
Corresponding static solutions of the coupled source free Einstein-Maxwell equations
have been given by Majumdar and Papapetrou. We show that these solutions can be
analytically extended and interpreted as a system of charged black holes in equilibrium
under their gravitational and electrical forces.

We also analyse some of stationary solutions of the Einstein-Maxwell equations
discovered by Israel and Wilson. If space is asymptotically Euclidean we find that all of
these solutions have naked singularities.

I. Introduction

In Newtonian theory a system of point charged particles can remain
in static equilibrium if the charges ei are all of the same sign and related
to the masses mi by

(1.1)

No matter how the particles are arranged, if this condition is satisfied,
the electrostatic repulsions exactly balance the gravitational attractions.
In 1947, Majumdar [1] and Papapetrou [2] independently discovered a
class of static solutions to the source free Einstein-Maxwell equations
which correspond to this Newtonian situation. The source free solutions
given by Majumdar and Papapetrou are not geodesically complete.
One way of completing them is to match the solutions to static interior
solutions of dust whose charge density equals its mass density [3]. It is
even more interesting, however, to study the analytic extension of the
source free solutions themselves in view of the fruitful studies already
carried out on the analytic extensions of the Schwarzschild [4], Reissner-
Nordstrom [5] and Kerr [6-7] geometries. These latter solutions are
all found to be asymptotically Euclidean. They each contain (for certain
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values of their parameters) event horizons which represent the boundary
of the set of all events which can be reached by observers whose paths
begin at infinity and end at infinity. Further, all the singularities of these
solutions are found to lie within the horizons. Geometries whose
singularities are all isolated from infinity in this way are said to be black
hole solutions. If there are singularities which are not contained within
event horizons then the singularities are said to be naked.

In Sections II and III the analytic extension Majumdar-Papapetrou
geometries is carried out. It is found that either the Majumdar-Papapetrou
geometries have naked singularities or correspond to systems of charged
black holes in equilibrium under their mutual gravitational and electrical
forces.

Recently, Israel and Wilson [8] have generalized the techniques of
Majumdar and Papapetrou to find a class of stationary solutions to the
source free Einstein-Maxwell equations. In Section IV some typical
solutions of this class are discussed. We find that if space-time is asymp-
totically Euclidean then all of the solutions analysed have naked
singularities. We conjecture that the only stationary solutions of the
source free Einstein-Maxwell equations with more than one black hole
and without naked singularities are those static Majumdar-Papapetrou
solutions which correspond to many black holes with charges and masses
related by Eq.(l.l).

II. Majumdar-Papapetrou Geometries

The metric of the Majumdar-Papapetrou geometries has the form

ds2 = - U~2(x} dt2 + U2(x) dx-dx. (2.1)

Here, x denotes the position vector in a flat three dimensional space
which we will call the background space. Thus for example, in Cartesian
coordinates x = (x, y, z)

d χ - d x = dx2 + dy2 + dz2. (2.2)

The only non-vanishing component of the vector potential Aμ(x) is the
electrostatic potential Φ(jc), which is related simply to the metric by1

Φ(x) = At(x)=U-1(x). (2.3)

In writing this relation we choose to normalize the electrostatic potential
to unity at infinity rather than zero. The relation could have also been

1 Here and in the following we use units in which c = G = 1. Charge and mass are
both measured in units of length so that in the Newtonian limit the force laws of Newton
and Coulomb have the form m2/r2 and e2/r2 respectively.



Black Holes 89

chosen with the opposite sign which would not affect the geometry but
reverse the sign of all charges. Remarkably, the source-free Einstein-
Maxwell equations then reduce to Laplace's equation for U(x) on the
background space.

^= + - + γ-=0. (2.4)2 2 2

In this coordinate system any solution may be extended until U has
a singularity or until it vanishes. The singularities may be of several
types corresponding to the source of U being point monopoles, point
dipoles, line charges, etc. in the background space. To begin with let us
consider the simplest examples when the sources are point monopoles,

(25)
yί)

2 + (z-z^.

From the form of the metric in the weak field region when the sources
are widely separated in the background space we may identify the mi

with the total mass enclosed by a large sphere surrounding each source.
We, therefore, require

mi > 0 . (2.6)

Thus, in the coordinate patch obtain by letting x run over a complete
background space, U(x) is non-vanishing and the metric is regular
except where -̂ = 0. The charges inside a closed surface surrounding
each source may be identified in a similar way from the electrostatic
potential [Eq. (2.3)] or by computing the flux of electric field through
such a surface. One finds

e^m,. (2.7)

In the case of a single point source one would expect to recover the
equal charge and mass Reissner-Nordstrom solution. This is indeed the
case as may be seen by expressing the metric in a more familiar form
through the coordinate transformation r-*r — m. The analytic extension
of this metric has been given by Carter [9] .

For two sources U(x) has the form

L + -UU. (2.8)

In order to facilitate discussion of this metric we shall frequently refer
to pictures of the background space such as Fig. 1. A region of space time
with this metric and coordinates ranging over a complete flat background
space will be called a Type I region.
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SINGULARITY
U'-O

(b)

Fig. 1. The background space for two black holes with equal masses and charges is shown
in a. The event horizons appear here as the points rί=Q and r2 = 0 although they have a
finite surface area. If one passes through the event horizon associated with mίt via a typical
path shown by one of the dotted lines, then one emerges in a second background space
shown in b. In this space one is prevented from reaching infinity by a real singularity
at U = 0. Once on the second sheets one can only either meet the singularities as in path

AD and BE or re-emerge through the event horizon as in BFC

As in the Reissner-Nordstrom case the singularity at 17 = 0 in the
metric is only a singularity in the choice of coordinates. To see that the
geometry is regular at rl = 0, for example, first transform the coordinates
of the background space to spherical polar coordinates about r^ = 0.
It is then easily seen that r1 = 0, t = const, does not label a point but a
surface of area 4πmJ. The regular nature of the geometry at r1 = 0 may be
seen by making the coordinate transformation

ί =

dF
(2.9)

where a is the separation of the sources in the background coordinates.
The metric then becomes

ds2 = - U'2du2 - Ίdudr^V/U)2 + [IJ2 - F2] dr2

(2.10)
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Then, since near rx = 0, U has the form

I/(rι)=l + -̂  + -?~-+0(r1), (2.11)
' i a

it is not difficult to verify that the form of the metric given in (2.10)
is nonsingular at ^=0. Further, it follows from Eq. (2.10) that ^=0
is a stationary null surface. If we write

A = -r^ r'2 = [r;2 + a2 + 2ar( cos 0]*, (2.12)

then when we continue rx through zero we reach a region which is
described by a metric of the form (2.1) but with U(x) replaced by

L/'(x') = l - - + . (2.13)

A diagram of the new background space is shown in Fig. 16. We call a
region described by this metric Type Πj.

The function U'(x') has the same form as the electrostatic potential
of a charge — m l5 at r{ = 0 and a charge -f m2 at r'2 = 0. It is varying from
large negative values near r[ = 0 to large positive values at r'2 = 0 and
must therefore vanish on some intermediate equipotential surface. On
this surface the metric is singular. Since Uf is normalized to 1 at large
values of ri,r'2, the surface U'(x')—l divides those equipotential sur-
faces which completely enclose m1 from those which completely enclose
m2. The singular surface U'(x') = Q therefore always completely encloses
ri=0.

To see that the singularity of the metric at I/'= 0 is a genuine
singularity one has only to compute the field invariant

< = F pμv=(ru'
μv

Where U' = 0, there J diverges.
While U' = 0 appears as a surface in the background coordinates, it

actually is a point. To see this, compute the area of a surface just inside
U' = 0 and let that surface tend to U' = 0. The surface area is

JCf/'ί*')]2^', (2.15)

where da' is an element of surface area in the background space. On the
surface U' = 0 this vanishes.

The metric given in Eq. (2.10) is extendable in other directions
through TΊ = 0. Following Carter in the Reissner-Nordstrom case this may
be accomplished by introducing in place of u a new variable w defined by

). (2.16)
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(a)

Fig. 2. a The most general possible extension of the two black hole Majumdar-Papapetrou
metric. The three possible types of regions described in the text are I, II1 and II2. A complete
solution may be built up by successively patching together these regions using the coordinate
transformation in Eqs. (2.9) and (2.12). b A possible completion obtained by identifying
some of the regions of a given type shown in a. In this identification two observers who fell

into separate black holes could later meet again in a replica of their original region I.

The metric one obtains has formally the same form as Eq. (2.10) with
u replaced by w. However, since the entire range of w can be obtained at
fixed u by allowing rί to vary over either positive or negative values
this is to be interpreted as two extensions of Eq. (2.10), one from the
region r1 < 0 and the other from r1 > 0. In the case we start from rv < 0
new Type I region is reached by this extension. In the case we start
from T! > 0 a new Type II: region is reached.

A Type 1̂  region is bounded by the singularity and the null surface
r{ = 0. It can only be extended by going through r( = 0 in one of the two
ways discussed above. A Type I region is bounded by rί — 0, r2 = 0
and infinity. It can be extended either by going through the null surfaces
f i = 0 or r2 = 0. Extending through r2 = 0 one reaches a region which we
will call Type II2 which clearly has the same general properties as
Typellj . In this way a complete structure of overlaping coordinate
patches can be built up as in the Reissner-Nordstrom case. The general
structure is quite complicated as is illustrated in Fig. 2 a. Less general
completions may be obtained by identifying sequences of regions of a
given type. One of the more interesting of these has single sequence of
regions of Type I as shown in Fig. 2b. By taking various two dimensional
slices of this latter space we can represent it in terms of diagrams in
which the null lines run at 45°. Such a diagram is illustrated in Fig. 3.
We can also illustrate it by more schematic perspective diagrams such
as Fig. 4.
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Fig. 3. This diagram shows the geometry of the axis of the two black hole Majumdar-
Papapetrou solutions with the coordinate patches identified as in Fig. 2b. The upward
direction is timelike and the horizontal direction spacelike. Light rays move on 45° lines.
The heavy vertical lines represent the point singularities (excepting the dotted points
which are at infinity). The projections of the typical paths shown in Fig. 1 are shown here
by corresponding dotted lines. Note that with this identification a second observer could
pass through the event horizon r2 =0 via path BGC and meet an observer who followed

BFG through ^ = 0

Fig. 4. In this diagram is a schematic portrayal of the two black hole Majumdar-Papapetrou
solution. The singularities are once again represented as heavy vertical lines. The event

horizon are cones and infinity is the outer surface
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The Majumdar-Papapetrou geometry illustrated in Figs. 2-4 is
clearly very special. Not only do its singularities have a special relation
between their masses and charges but its parts have been arranged in
such a way that by passing through r± — 0 and back again in a timelike
direction one can reach the same points as are accessible in a similar way
through r2 = 0.

Nevertheless, it illustrates a geometry in which the two null surfaces
Γ L = 0 and r2 = 0 are the boundary of the set of events which can be
reached by any observer who starts from infinity and returns there. The
surfaces rγ — 0 and r2 = 0 are thus two separate components of the event
horizon. As all the singularities are contained within these surfaces
this Majumdar-Papapetrou geometry has two distinct black holes. The
way to generalize the solution through more complicated diagrams of the
type of Fig. 2 or by adding more black holes as in Eq. (2.5) should now be
clear.

III. Majumdar-Papapetrou Geometries with Naked Singularities

There are other possible geometries which can be generated by the
Majumdar-Papapetrou prescription besides those where U has only
discrete point sources. In this section all of these alternatives will be
shown to have naked singularities.

Suppose outside of a large sphere in the background space one is given
a solution U of Laplace's equation which approaches unity. This function
U generates an asymptotically flat Majumdar-Papapetrou metric which
can be analytically extended inward in the coordinates of Eq. (2.1)
until either U vanishes or becomes infinite. In the case U vanishes 1/C7
becomes infinite. Then, along at least some curve which approaches
the point of vanishing 17, J = [P(l/t/)]2 will diverge giving a naked
singularity.

The cases where U is infinite divide naturally into those where it
is infinite at a point or a line in the background space. If the infinities
of U are not to be naked singularities then there must be no equipotential
surface of U which contains a point where 17 approaches infinity. If this
were the case approaching the point of infinity along this surface U
would be constant while (VU)2 would diverge. This would imply an
infinite value of the electromagnetic invariant J and a naked singularity.
To avoid a naked singularity U must therefore become infinite from all
directions at once if it becomes infinite at all. Put in another way, \U\
must be bounded below at a singularity. In the case of point infinities
a theorem from potential theory [10] shows that U must then be of the form

[/(*) = w(jt) + c/r (3.1)
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where c is a constant, r the distance from the singularity and w is regular
there. This, however, is the case already discussed in Section II.

In the case of line singularities, if it is assumed that the potential
close to the line approaches that of some straight line singularity, then
it is not difficult to generalize the potential theory result mentioned above
to show that if no equipotentials intersect the singularity, then U must
diverge no faster than

l/(x)«/(z)log(ρ), ρ-+0, (3.2)

close to the line. Here, ρ and z are cylindrical coordinates with axis
tangent to the line singularity at the point in question. The behavior or
Eq. (3.2), however, itself gives rise to a divergent J.

The only Majumdar-Papapetrou geometries which represent black
holes are then those for which U has only point monopoles as sources.
A consequence of this is that all these black hole solutions have event
horizons with spherical topology as is required by a theorem of Hawking
[11].

IV. The Israel- Wilson Metrics

Recently, Israel and Wilson have generalized the methods of
Majumdar and Papapetrou and found a class of stationary solutions
to the source free Einstein-Maxwell equations. Their solutions have
the metric

ds2 = - \V\~2 (dt + ω - dx)2 + \U\2 dx - dx (4.1)

where U(x) is any complex solution to Laplace's equation in the back-
ground space

F2t/ = 0. (4.2)

The vector ω is found by solving the equation

τ (4.3)

the electrostatic potential Φ and a magnetic scalar potential χ, defined
by the relations

Fti = d& (4.4)

(4.5)

are related to the function U by

Φ + iχ = l/ l7. (4.6)

For convenience U and Φ will be always taken to be normalized to 1 at
infinity in the background space and χ to be normalized to zero.
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We do not propose here to examine for black holes all of the solutions
which can be generated by the Israel- Wilson method but only some of the
more interesting examples. In particular, only those solutions will be
considered for which the sources of U in the background space are
discrete points,

u-'+?τ
The numbers mt and xt = (xi9 yiy zf) may be complex.

Israel and Wilson have examined the cases where the mi are real and
ttiQ xt complex. For the case of a single point source of U they find the
solution to be the charged Kerr metric [12] with equal charge and mass.
This solution has a naked singularity and no horizons. The singularity
occurs on the ring where r = 0 and can be seen from the divergence of the
electromagnetic invariants there. It is not difficult to see that this is also
the case if m is simultaneously complex. Superpositions of discrete
sources of U with the xf complex also generally2 result in naked singu-
larities where U is infinite. This is because the infinities arise because of the
vanishing of the η. Sufficiently near such points the geometry will behave
like that of a single source for U which is singular there. In a search
for black hole solutions of the type of Eq. (4.7) we may therefore restrict
ourselves to those cases where the xt are real and the mi are complex

m{ = Mt + iΛ/ί . (4.8)

The simplest example of this type is when U has a single discrete
source,

17=1+ M + ίN . (4.9)

Using polar coordinates for the background space, the solution of
Eq. (4.3) for ω can be taken as

If we introduce a new radial coordinate R defined by

R = r + M, (4.11)

2 The special cases where a sum of the form of Eq. (4.7) can be arranged to have no
infinites are static and have already been considered.
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then the metric takes the form

+ 4Nsin2-9-\2 +V2dR2

L / (4 12)

+ (jR2 + ΛΓ2) (dθ2 + sin2 θdφ2) ,

' + .
This is just the electromagnetic generalization of NUT space [13]
given by Brill [14] for the special case that his constant Φ has the value
8(JV2-fM2). The properties of this solution have been extensively
discussed [13-16]. The most striking fact which emerges from these
discussions is that in the r > 0 region the geometry is regular if one assumes
that the topology of the r = const, hypersurfaces is S3 while it is singular
if one assumes the usual topology R x S2. The singularity in this latter
case lies along the axis θ = π. The presence of the singularity is signaled
by an infinity in gn along this axis. The singularity on this axis may be
removed by following Misner [15] and making the coordinate trans-
formation

(4.14)

If φ is to have the interpretation of an angular coordinate, points which
differ in coordinate φ by 2π must be identified. Points which differ in
values of t or t' by 8πJV must then also necessarily be identified and
this leads directly to the topology S3 for the r = const hypersurfaces.
If one insists on preserving the topology RxS2 then the space will be
singular on the axis θ — π.

This type of singularity appears generally in the Israel-Wilson
solutions we are discussing. To see this imagine introducing a polar
coordinate system with one of the singularities of U as its center and
consider the behavior of the projection of ω along a unit vector e(φ}

of the background geometry in the φ-direction

ω(φ} = ω e(φ} (4.15)

The value of ω(φ) at one point (zx) on the polar axis may be related to the
value of ω(φ) at another point (z2) on the axis through Stokes' theorem.
Consider a circular loop of radius ρ about the axis at point z. If

I(ρ9z) = $ω'dx (4.16)

is the line integral about this loop, then

/(ρ > z 1 )-/(ρ,z 2 ) = J τ d a , (4.17)
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Fig. 5. A picture of the background space for the Israel-Wilson space with two point
sources for U showing how a loop Q around the axis at one point can be distorted to a
loop at another point C2 sweeping out a two surface S. When the loops are shrunk to

zero S will completely enclose the singularity of U at r± = 0

where S is a two surface in the background space bounded by the loop at
zx , and z2 (see Fig. 5). One therefore has

lim 2πρ[ω(φ)(ρ, zj - ω(φ)(ρ, z2)] - J d*x(V τ) (4.18)
£-»0 y

where V is the volume inside any closed surface containing the axis and
intersecting it a z± and z2. Since V τ = Q except at the singularities
of U it is not difficult to evaluate this integral to find

lim 2πρ[ω(φ)(ρ, zx) - ω(φ)(ρ, z2)] = 8π
^

The function ω(φ) will thus in general be singular along some part of
the axis. This will be reflected in the metric by a singularity in

0» = | ϊ7 | 2-|l/ |- 2ω 2 . (4.20)

As in the charged NUT case this singularity will be a real singularity of
the geometry if the space has an asymptotically Euclidean topology.

The generic situation is illustrated by the Israel- Wilson space in
which U has two point sources with imaginary strength.

C/^ + B. + JUL. (4.21)
'I r2

At large distances in the background space this solution will behave like
the charged- N L/" Γ space discussed above, unless N^ = — N2 = N. Only
with this condition can the space be asymptotically flat and non-singular.
To see this we examine the large r behavior of ω in a polar coordinate
system whose axis is the line connecting the charges in the background
space. Eq. (4.3) determines ω up to the gradient of a scalar. This reflects the
fact that the gradient of a scalar λ(x) can always be added to ω by the
coordinate transformation t-+t + λ(x). If the time coordinate is chosen
properly ω can then be arranged to have only a φ-component

ω = e(φ}ω(φ} , (4.22)
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with the asymptotic behavior

2Nasinθ I 1 \ ,. OTkω(φ} = ~2 + 0 I -^ \ . (4.23)

In these coordinates the space is clearly asymptotically flat with a total
angular momentum Na (see Ref. [17], § 103). Having chosen the large r
behavior of Eq. (4.16) for the function ω(φ} we therefore find from Eq. (4.19)
that ω(φ)(0, z) = 0 on the parts of the axis which stretch to infinity.
Between rt = 0 and r2 = 0, however, we have

lim [ρωM(ρ, z)] = 4ΛM 1 + 1+ 2 ) = P , (4.24)
ρ-+o '̂ \ a I

and ω(φ) diverges on the axis between the sources.
As in the charged NUT case this singularity can be removed by the

transformation
t = t' + Pφ. (4.25)

If, however, we are to have a consistent interpretation of our coordinates
at infinity φ must be an angular coordinate. Points which differ in values
of t and t' by 2πP must now be identified and the surfaces of constant r
will no longer have the topology R x S2.

It is straightforward to generalize this argument to the case of more
than two sources for U and show that if some of the N{ are non-zero then
the space must either be singular along some curve or asymptotically non-
Euclidean in the sense that the topology of the surfaces of constant large
r will no longer be R x S2.

We are concerned here with examining the Israel-Wilson metrics for
possible black hole solutions. For this we shall require first that space
have a well defined infinity. By this we will mean that the space is
asymptotically flat with the usual topology of RxS2 for the hyper-
surfaces of constant large r in the background space. Second, we shall
require that there are no singularities which are not hidden from infinity
by event horizons. Under these conditions the only Israel-Wilson
solutions with discrete sources for U which represent black hole solutions
are those with all the Nt = 0. These, however, are just the static Majumdar-
Papapetrou solutions discussed in Section II.

While there are no black hole Israel-Wilson metrics it is still of
interest to investigate then analytic extension through rt = 0. Wo confine
ourselves here to the case when U has two point sources of equal and
opposite imaginary strength. The extension through r1 = 0 can be
accomplished by techniques similar to those used for the Majumdar-
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Papapetrou geometries. The relevant coordinate transformation is

t=u + F ( r ί ) , (4.26)

-f- = 1-f-^-f^l2. (4.27)
dι\ r{ a I

Since ω dx is always finite it is easily checked that the metric in these
coordinates is finite as rί passes to negative values. A similar trans-
formation will also remove the singularity at r1 = 0 starting from the t'
coordinate patch.

If we write r\ = — J" l 5 r'2 = [r(2 + a2 + 2ar( cosθ^ the metric for
rl <0 can be put in a form similar to Eq. (4.1) except that now

(4.28)

By continuing from the original region through r2 — 0 one would reach a
region where U has the same form except Mΐ and M2 would be inter-
changed. Finally, by continuing the metric given in Eq. (4.29) through
r2 = 0 and defining r"2 = — r'2

A = l>22 + a2 - 2ar'2 cos Θ2Ϋ (4.29)

one finds a region where

The complete space will be built up of these three types of patches.
If all the NUT type singularities are to be removed by making the

time periodic then one must have simultaneous periodicities with periods

a )' [^ a } (4.31)

Ms = M! + M2, MD = Mt — M2,

For these to be commensurate one must have

1
Ms= l--;-U, n = 2,3,...,

V ' (4.32)
/ / Γ \

MD= 1 - - - α, f e = l , 2 , . . . , n .

With these restrictions the only remaining possibilities for singularities
are the rings

r? = rS = Ms

where 17 vanishes in a region of the type (4.30). The conditions (4.32)
show that there will always be such a ring consistent with r'[ + r'2 ^ a.
A straightforward calculation of the electromagnetic field invariants
reveals that these points are indeed singular.
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V. Conclusions

An extensive class of stationary solutions of the matter-free Einstein-
Maxwell equations has been examined for black hole solutions. Of the
enormous variety of possible metrics which can be generated by the
Majumdar-Papapetrou-Israel-Wilson techniques we were able to find
only one class in which the singularities were isolated from a reasonable
infinity by event horizons. These were the static Majumdar-Papapetrou
solutions corresponding to many black holes each with a spherical
topology, each with e = m, remaining in equilibrium by the consequent
balance of their electrostatic repulsion and gravitational attraction.
In view of ones experience with the Reissner-Nordstrom and Newman-
Kerr solutions [18,19,11] it seems reasonable conjecture that these
together with the Majumdar-Papapetrou solutions discussed above
are the only stationary asymptotically Euclidean solutions of the source
free Einstein-Maxwell equations with no naked singularities.
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