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Abstract. A Lorentz cobordism between two (in general nondiffeomorphic) 3-mani-
folds Mo, Mλ is a pair (M, υ\ where M is a differentiable 4-manifold and v is a differentiable
vector field on M, such that 1) the boundary of M is the disjoint union of Mo and M l 5 2) v is
everywhere nonzero, 3) v is interior normal on Mo and exterior normal on Mx. Such a
manifold M admits a Lorentz tensor with respect to which Mo and Mι are spacelike
hypersurfaces; thus a Lorentz cobordism is a model of a portion of a spacetime in which
"the topology of spacelike hypersurfaces is changing". We discuss the form that these
changes can take, and give two methods for constructing a Lorentz cobordism between two
nondiffeomorphic 3-manifolds. We comment on the possible relevance of Lorentz cobordism
to the problem of gravitational collapse.

I. Introduction

Suppose we cut a "slab" out of a spacetime manifold by slicing along
two disjoint spacelike hypersurfaces: we are left with a 4-manifold M
with boundary M o u M l 5 where Mo and Mx are disjoint 3-manifolds
which are spacelike hypersurfaces with respect to the Lorentz structure1

induced on M by that on our original spacetime. If we do this to the model
spacetimes that have traditionally been studied in general relativity
theory (except some of those with "singularities"?), the 3-manifolds Mo

and M1 will be diffeomorphic there will be no "change of topology".
We consider here the case in which Mo and Mx are not diffeomorphic.
We shall be interested in such things as the topology of the manifold M,
the causal properties of Lorentz structures on it, the singularities of
Lorentz structures on it, and, ultimately, the solution of Einstein's field
equations on such an underlying manifold.

We shall, however, do things the other way round from the "cutting"
operation imagined above. Rather, we shall start with two non-diffeomor-
phic 3-manifolds M0,Mγ, and then consider how we can construct a
4-manifold M and a (singular or nonsingular) Lorentz tensor g on M
such that the boundary of M is the disjoint union of Mo and M 1 ? with
Mo and M1 spacelike with respect to g.

1 We shall use the terms Lorentz structure and Lorentz tensor synonymously to mean
a globally defined, second rank, symmetric tensor of Lorentz signature ( + , + , + , —).
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We give two such constructions here, one of which yields singular
Lorentz structures and the other of which yields nonsingular Lorentz
structures. Detailed properties of these constructions, and explicit
examples of them, will be treated in subsequent papers.

These manifolds are expected to exhibit causal anomalies: according
to a theorem of Geroch [1], such a manifold must either be non-iso-
chronous or contain closed timelike curves (or both). While one feels
rather strongly that a realistic spacetime should not contain closed
timelike curves, it is not entirely clear that spacetime must necessarily
be isochronous. In any case, other considerations may render these
anomalies physically innocuous. For example, in our singular case
(Section IV), any smooth timelike curve along which the sense of time
is reversed must pass through the singular point; perhaps no physical
entity could survive such a trip.

Even if some of these manifolds are in principle acceptable for doing
physics, one might not have been inclined until rather recently to take
this possibility very seriously. It is our view that the recerit results on
gravitational collapse and singularities force us to now take it seriously;
this is the primary motivation for the present work.

The "infinite density" singularity in terms of which one tends to
think of gravitational collapse poses a serious challenge to general
relativity. Of course, it is possible that general relativity will have to be
altered somehow to meet this challenge, but before attempting this we
would like to know whether the challenge can be met within the context
of the theory we have now. The notion of changes in the topology of
spacelike hypersurfaces seems to us very suggestive in this regard. For
instance, is it possible that a Kruskal-type "wormhole" can, instead of
pinching off into an infinite curvature singularity, be severed in a smooth
fashion (meaning such that spacetime remains a differentiable manifold),
after which the spacelike hypersurfaces consist of two unconnected
pieces? So far as it goes, the answer to this question is yes. Whether this
is of any relevance to gravitational collapse remains to be seen, but it is
worth finding out.

The remainder of this paper takes the following form. In Section II
we review briefly the cobordism theory of Wallace and Milnor, which
is our main mathematical tool. Our problem is posed in Section III.
Two solutions (there are undoubtedly others) are then given, a singular
one in Section IV and a nonsingular one in Section VI. Section V is a
digression on vector fields, and the Appendix contains a computation
needed for Section VI.

Implicit in this work is, of course, the assumption that spacetime
can be represented by a differentiable manifold; we consider this assump-
tion to be an integral part of general relativity theory. Throughout the
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following, all manifolds will be assumed Hausdorff and paracompact.
The word differentiate will always mean C00. We shall use the term
closed manifold to mean compact manifold without boundary. For any
manifold N, dN denotes the boundary of JV, and the symbol ~ will
occaisionally be used to denote diffeomorphism.

II. Cobordism and Morse Functions

The notion of cobordism seems to have been introduced by Thorn [2],
who studied the so-called cobordism ring of equivalence classes of
cobordant manifolds. Subsequently, a cobordism theory2 based on an
extension of Morse theory was developed independently by Wallace [4]
and Milnor [5]. We shall sketch here certain results from this theory;
for further details the reader can consult Refs. [3-7]. In particular, the
first three chapters of Ref. [6] contain an excellent, detailed exposition
of the theory. Chapters 4, 5, and 6 of Ref. [7] provide a somewhat more
elementary introduction to this material.

Let M0,Mί be n— 1 dimensional differentiable manifolds. Then Mo

and Mγ are cobordant (or cobounding) if there exists an π-manifold M
whose boundary is M o u M l 5 with MonMι = 0 . One says that M is a
cobordism between Mo and Mί. Before we can outline the Wallace-
Milnor cobordism theory, we shall need a few results from Morse theory.

Suppose N is a differentiable manifold, / : ΛΓ->R a differentiable func-
tion on N. A point p e N is called a critical point of / if the differential
of / vanishes at p. In terms of local coordinates {x1,..., xn} in a neigh-
borhood of p, this means /> α |p = 0 for <z=l,...,w, where the comma
denotes partial differentiation. If p is a critical point of /, one calls the
point / ( p ) e K a critical value of/. A critical point p is called nondegenerate
if the nullity of the Hessian of / at p is zero. In terms of local coordinates,
this means that the matrix fab p is nonsingular. A critical point which is
not nondegenerate is called degenerate.

A differentiable function which has no degenerate critical points
is called a Morse function. There exist Morse functions on every differen-
tiable manifold [8].

Let / be a Morse function on N, and let Nc = f'1(c); that is, JVC is
the set of points p e N such that f(p) = c. If Nc contains a critical point
of / it is called a critical level of / ; otherwise it is called a noncritical level
of /. A noncritical level Nc is a differentiable submanifold of N. If two
noncritical levels have no critical level between them, they are diffeomor-
phic; in fact, if there are no critical values of / in the real interval [c 1 ? c 2]
C f(N), then the set of p e N such that cί g f(p) ^ c2 is diffeomorphic to

2 This theory is closely related to Smale's "handlebodies" [3].
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NCί x [ c l 5 c 2] [8]. Any changes in the topology of the family Nc of level
surfaces of / must take place as critical levels are crossed.

One can, in fact, give a detailed description of what happens when a
critical level is crossed, using the following lemma of Morse [8]: Let p
be a nondegenerate critical point of /. Then there is a local coordinate
system {x1,..., xn} in a neighborhood U of p with xa(p) = 0 for all a and
such that the identity

f(x) = f(p)-(xΎ (xA)2 + ( x λ + 1 ) 2 + - + ( x Ϊ I ) 2 (1)

holds throughout U. One calls the integer λ the (Morse) index of the
critical point p.

It is an immediate consequence of this lemma that nondegenerate
critical points are isolated.

By a straightforward but rather lengthy study [6-8] of the orthogonal
trajectories of the family Nc, using the representation of / provided by
Morse's lemma, one can find out what is happening to the Nc when a
critical level is crossed. The main result is the following.

Let N be a differentiable manifold of dimension n, f a Morse func-
tion on n, and Nc a critical level of / with one degenerate critical point
p, of index λ, on it. Choose a and b, a<c<b, such that c is the only
critical value of / in [α, b]. Then p has a neighborhood Dn in N, an n-cell
whose boundary Sn~ * is the union of three sets A, B, C. The set A is on
Na and is diffeomorphic to Dn ~ λ x Sλ ~x, the set B is on Nb and is diffeomor-
phic to sn~λ'1 x Dλ, while C, lying between Na and Nb, is diffeomorphic
to S"'1"1 x S ^ " 1 x [α,fc]. Here a point (g, r) of 4 with qeδDn~λ and
r G 5Λ ~ : is identified with (q, r, β) in C and a point (q, r) oϊB with qeSn~λ~1

and redDλ is identified with {q,r,b) in C. Moreover, if the cell DΛ is
removed from the part of N between Na and Nbi the remainder is diffeo-
morphic to (Na — A) x [α, ί?]? where (A/̂  — A) x {α} corresponds to Na — A,
and (Na — A) x {b} corresponds to iVb — β.

It is not difficult to get an intuitive feeling for this from Morse's
representation of /. Note that the λ — 1-sphere Sa specified by (JC1)2 H —
— h (xλ)2 = c — a, xλ+1 = = xn = 0 lies on Na, and the n — λ — 1-sphere
5 6 specified by x1 = - xλ = 0, {xλ+1)2 + + (x")2 = b - c lies on Nb.
Take a tubular neighborhood Dn'λ x .S^"1 in Λ̂ α of Sa. This is the set A.
Its boundary is diffeomorphic to Sn~λ~1 x Sλ~1. Translating this
boundary to Nb along the orthogonal trajectories of the family Nd yields
the set C, which is a union of orthogonal trajectories. The intersection
of C with Nb9 which is again diffeomorphic to Sn~λ'1 x Sλ~1, is the
boundary of a tubular neighborhood S'n~λ~1 x Dλ in iVb of the n — λ — 1-
sphere Sb. This tubular neighborhood is the set B.

Thus, Nb is obtained from Na by the following operation. A set
Dn~λ x Sλ~[ is removed from JVfl. This leaves a manifold with boundary,
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the boundary being diffeomorphic to 5 " ~ λ - 1 x Sλ~ι. A new manifold
is obtained by identifying this boundary with the boundary of a set
Sn~λ~ί x Dλ (this latter boundary being also diffeomorphic to Sn'λ~1

x Sλ~*); the new manifold is Nb.
One says that in this operation a spherical modification for Morse

surgery) of type λ — 1 is performed on Na.
Now we can get back to cobordism, in particular to the close relation

between cobordism and spherical modifications pointed out by Wallace
and Milnor. The main result is the following [4-6]. Let Mo, M1 be two
cobordant closed n— 1-manifolds, and suppose the ^-manifold M is a
cobordism between them. Then there is a differentiable function / on M
which has a finite number of critical points, none of them degenerate,
and such that 1) /(M) = [0,1], 2) / " ^0) = Mo, 3)f~1{l) = M1. Thus Mγ

can be obtained from Mo by a finite number of spherical modifications.
One can, in fact, show that two closed manifolds are cobordant if and
only if one can be derived from the other by a finite number of spherical
modifications.

Given two n — 1-manifolds Mo, Mί and a sequence (this sequence is
not unique) of spherical modifications which relate them, the above
discussion of nondegenerate critical points gives a good characterization
of the topology of a cobordism M between Mo and M x . Indeed, this
characterization is enough to enable us to construct M [4-6].

Since we can always choose to do the modifications "one at a time",
it will suffice to treat the case in which Mx is obtained from Mo by a
single spherical modification, of type λ — 1, say. Remove a set B0~Dn~λ

x S*"1 from Mo, and a set B1 ~ S " " 2 " 1 x Dλ from Mγ. This can be done
such that Mo — BO~MX — Bx. Form the set (Mo — Bo) x [0,1], and
identify Mo - Bo with (Mo - Bo) x {0} and M1-Bί with (Mo - Bo) x {1}.
Form the union ((Mo — B0)x [0, 1 ] ) U J B O U B 1 , inserting Bo and Bγ in
(Mo — β 0 ) x {0} and (Mo — J50) x {1} in accordance with the identification
just made. The subset {FrB0 x [0, l ] ) u ΰ o u ΰ 1 in this space is an n — 1-
sphere. Adding a set Dn by identifying 3D" with this subset yields a
topological manifold whose boundary is M o u M 1 ( In fact, the identifica-
tion can be done in such a way3 that this topological manifold is a
differentiable manifold M which is, then, a cobordism between Mo and M x.
One can also display3 a differentiable function f on M with a single,
nondegenerate critical point, with index λ, and such that /(M) = [0,1],

The Wallace-Milnor theory is generally presented as a cobordism
theory for closed manifolds. But note that it also tells us quite a lot about
cobordism for noncompact, boundaryless manifolds. This is of interest
from the point of view of applications to general relativity. In particular,

3 For the details, see Ref. [5] or Ref. [6].
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if two noncompact, boundaryless manifolds M0,Mί are related by a
finite number of spherical modifications, then they are cobordant, and
we can construct a cobordism between them as above. The only shortcom-
ing in this approach to noncompact manifolds is that probably being
related by a finite number of spherical modifications is not a necessary
condition for two of them to be cobordant. But from the point of view
of physics (certainly at this stage), it is enough to know that it is a suf-
ficient condition.

III. Cobordism and Lorentz Structures

It is well known 4 that a differentiable manifold admits a Lorentz
structure1 if and only if it admits globally a nonsingular (meaning
everywhere nonzero) vector field. In fact, let v be such a vector field.
Then we can construct from it a Lorentz structure as follows. Every
differentiable manifold admits globally a positive definite Riemannian
metric5. Let h be such a one, and let u be the vector field obtained from v
by normalizing it to unity with repect to the metric h. Then gab = hab — cuaub,
where the function c is everywhere greater than 1, is a Lorentz tensor.
Of course, the differentiability class of g is the smallest of the differen-
tiability classes of h, w5 and c. Note also that u is timelike with repect to g.

Thus, a precise statement of the problem sketched in Section I is the
following. Let M0,M1 be cobordant differentiable 3-manifolds without
boundary. We seek a 4-manifold M and a vector field on M such that
1) the boundary of M is the disjoint union of Mo and Ml92)v is everywhere
nonzero, 3) v is interior normal on Mo and exterior normal on M x .
According to the previous paragraph, M then admits a Lorentz structure
with respect to which υ is timelike (so that Mo and M1 are spacelike).
We shall therefore call such a pair (M, υ) a Lorentz cobordism between
Mo and Mί.

The existence of a Lorentz cobordism between any two closed
3-manifolds has been proved by Reinhart [11] 6. But we seek sufficiently
explicit constructions to enable us to study the properties of Lorentz
cobordisms mentioned in Section I, and we are interested in the non-
compact case as well.

We shall consider the case in which M1 can be obtained from Mo by
a single spherical modification. This is no loss in generality for the case

4 See, for instance, Ref. [9], p. 207.
5 See, for example, Ref. [10], p. 126.
6 Geroch, in Ref. [1], proves a similar but weaker theorem: he requires only that the

vector field v is nowhere tangent to Mo or M x. Thus it could, for instance, be exterior on
both Mo and Mx. It seems to us that our requirement 3) is more in accord with what one has
in mind physically.
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in which Mo and Mx are compact, since then they are related by a finite
number of spherical modifications. Our methods can be applied also
to any two noncompact 3-manifolds which are related by a finite number
of spherical modifications.

For the sake of intuitive feeling, we list here the possible spherical
modifications of a 3-manifold. Recall that in a spherical modification of
type λ — 1, a set D 4 ~ λ x Sλ ~1 is cut out, and it is replaced by a set S3 ~ λ x Dλ.
Thus in three dimensions the possibilities are (listed by the type number
λ-1):

-1. The empty set is replaced by a 3-sphere. This may be relevant
to the problem of the "initial singularity", but can be ignored if one's
concern is cobordism.

0. The disjoint union of two 3-disks is replaced by a "tube" S2 x D 1 .
This could, for instance, correspond to the formation of a "wormhole".

1. A solid torus is replaced by another solid torus, but with the
surfaces identified differently (for example, reversing the roles of meridians
and parallels). It is difficult to have much intuitive feel for this. It is known
[4] that any compact oriented 3-manifold can be obtained from the
3-sphere by modifications of this type.

2. A "tube" D1 x S2 is replaced by the disjoint union of two 3-disks.
This could, for instance, correspond to the severing of a "wormhole".

3. A 3-sphere is replaced by the empty set. This could have something
lo do with a "final singularity", but can be ignored so far as cobordism
is concerned.

IV. A Singular Construction

Our requirement 2) of Section III, that the vector field v be non-
singular, is clearly a necessary condition for the Lorentz tensors con-
structed from v to be nonsingular. We shall drop this requirement in the
present section, since we can then give a construction which is so simple
that, as physicists, we should not ignore it: the resulting singularity in g
(which is confined to a single well defined point) may prove to be physically
innocuous.

Let Mo be a (compact or noncompact) boundaryless 3-manifold, Mι

a manifold which is obtained from Mo by a spherical modification of
type A — 1. According to the Wallace-Milnor cobordism theory outlined
in Section II, we can construct a 4-manifold M, with boundary MouMί,
and a differentiablefunction / on M such that/(M) - [0, ί],f~1(0) = M0,
f~1(l) = M1, and / has a single, nondegenerate critical point p of index
λ on M with, say, f(p) = ^.

Now the first vector field on M that one thinks of is va = />α. This is
interior normal on Mo and exterior normal on M x . It is deficient with
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regard to the discussion of Section III only in being zero at the single
point p. Nevertheless, it might be interesting to see what sort of Lorentz
structures we get if we insist upon using this vector field.

From the Morse representation of/ given in Section II (Eq. (1)), there
exist local coordinates {xa} in a neighborhood U of p in terms of which
v has the components va = 2sax

a (no sum on α), where sfl = — 1 for a ^ λ
and sa = + 1 for a > λ. Let h be a Riemannian metric on M, and assume,
for the sake of simplicity, that h is diagonal with respect to the coordinates
{xa}. Then normalizing v with respect to h yields the vector field

ua = sax
a/(hbc xb xcf (no sum on a)

in U. Now set

Gab = hab ~ CUaUb = Kb ~ CSa SbX* Xb/hcd XC Xd (llO SUIΪl On fl, b)

where c> 1 everywhere.
This has, of course, a singularity — let us call it a Morse singularity —

at p. The limit of g as we approach p from any definite direction exists,
but it is in general different as we approach p from different directions.
We feel that it is worth trying to make some physical sense of this state
of affairs, but we shall not attempt to do so here.

V. Singular Vector Fields

We want to "get rid" somehow of the singularity in the gradient field
of /, and to do so we shall have to know something about the singularities
of vector fields in general. In this section we review the standard results;
for more details, Ref. [12] can be consulted.

Let M, N be oriented π-manifolds without boundary, with M compact
and N connected, and let / : M -> N be a differentiable map. Let dfp: TMp

-> TNf{p) be the differential of / at the point peM 7 . A point pe M is
called a regular point of / if dfp is nonsingular, and a point q e N is called
a regular value of / if f~i{q) contains only regular points. Note that
(since M is assumed compact) if q is a regular value, then f~1(q) is a
finite set.

Define sgndfp to be + 1 if dfp is orientation preserving, and — 1 if
dfp is orientation reversing. Define the (Brouwer) degree deg/ to be

where q is any regular value of /. In fact, this sum does not depend on the
choice of q, so the degree is well defined.

Note that a diffeomorphism has degree + 1 if it is orientation preserv-
ing, and degree — 1 if it is orientation reversing.

7 We use TM to denote the tangent space to M at p.
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The importance of the Brouwer degree stems from the fact that it
is a homotopy invariant: if two differentiable maps f,g from M to N
are smoothly homotopic, then deg/ = degg. (The maps /, g are smoothly
homotopic if there exists a differentiable mapF M x [0,1]-*ΛΓ, with
F(p,0) = /(p) and F(p,l) = g(p) for all peM.) In particular, if M is
connected and N is the ^-sphere, the converse holds also, according to a
theorem of Hopf: If M is a connected, oriented, boundaryless differen-
tiable n-manifold, then two differentiable maps from M to Sn are smoothly
homotopic if and only if they have the same Brouwer degree.

Now let v be a differentiable vector field on some rc-manifold M,
with an isolated zero at some peM. Let va(x) be the components of
v with respect to local coordinates {xa} in a neighborhood of p. Set

ua(x) = ^α(x)/((^!(.x))2 H h (vn(x))2)*. If we evaluate u on a small sphere
centered at x(p), we can regard ua(Sn~*) as a (differentiable) mapping from
Sn ~x into 5" ~*. The Brouwer degree of this map is called the index of the
vector field v at the zero p. This definition is independent of the choice of
local coordinates about p, and of the choice of (sufficiently small) sphere
around p on which we evaluate u.

It is easy to see that if p is a nondegenerate critical point, with Morse
index A, of a differentiable function /, then the index of the gradient field
/>tpis(-l)λ.

An important application of this concept of index is the Poincare-
Hopf Theorem: Let M be a closed differentiable manifold, v a differentiable
vector field on M with isolated zeros. Then the sum of the indices of
v at all its zeros is equal to the Euler number χ(M) of M.

VI. A Nonsingular Construction

In this section, we show how to construct a nonsingular Lorentz
cobordism (M\vf) from the singular Lorentz cobordism (M, v) of
Section IV.

The general idea is the following. We remove from M an ε-ball D4

around the critical point p, leaving an additional boundary component
iS3. We also remove an ε-ball from an appropriately chosen closed
4-manifold N, leaving it with a boundary S3. We then paste M — D4

and N — D4 together by identifying these two boundaries S3; call the
resulting manifold Mf. If we have chosen N properly, we can extend v
onto N — D4 to get a nonsingular vector field v' on M'. We shall do this
in such a way that M' is a differentiable manifold and v' is a differentiable
vector field.

We now proceed to the details. Let (M, v) be as in Section IV, and
let N be a closed differentiable 4-manifold, to be specified later. It is
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known that there exists a differentiable vector field, say w, on N which
has a single, isolated singular point, say q 8 . From the Poincare-Hopf
Theorem (Section V) the index of w at q is equal to the Euler number
χ(N) of JV.

Remove an ε-ball around p in M, leaving a boundary component
V1 ~ S3 likewise cut out an ε-ball around q in N9 leaving a boundary
F 2 ~ S3. Call the manifolds that remain after these removals M and N.
Let h : Fx -> F 2 be a diffeomorphism, and denote by M (J JV the topological

h

manifold obtained from MuiVby identifying each x e V1 with h(x) e V2.
We put a differentiable structure on M (J ΛΓ as follows [6,14].

There exist neighborhoods Uu U2 of F l 9 F 2 in M, iV and diffeomor-
phisms g1: Vί x (— 1,0] -* (7^ gf2: F 2 x [0,1)-^ U2 such that gλ{x, 0) = x
for all x e F i and # 2 (>'? 0) = y for all y e F 2 . (One calls such a neighborhood
Uι a product neighborhood, or co//αr neighborhood of Fx.) Let j1j2 be the
inclusion maps ^ : M -> M (J N, j 2 : iV -> M [j N, and define a map

g(χ,t)=j1°g1(x,t) ί e ( - l , 0 ]

g(x,t)=j2og2(h(x\t) ί 6 [ 0 , l ) .

Now M^JiVis covered by ^ ( M - Vx\ j2(N- V2), and g{Vλ x ( - 1,1)).
h

We can define a differentiable structure on each of these three, and
transfer them to M (J N viaj1j2, and g. With this differentiable structure,

h

MIJ N is a differentiable manifold, which we shall call M' this differen-
h

tiable manifold is of course a cobordism between Mo and Mγ.
Henceforth we shall refer to U1 [j U2 C M' as U. The map ^ : Vί

x (— 1, l)-> U is a diffeomorphism. h

Now it remains to construct a nonsingular vector field on Mr.
Suppose z is a vector field on Vί x (— 1,1). Then we can map the

restriction of z to Vx x (— 1,0] onto the corresponding vector field zί

on L/i as follows: J -1
1 zί=dgίoZogί

1 .
Similarly, the vector field z2 on U2 corresponding to the restriction of
z t o Vί x [0,1) is , , ,_!

z2=dg2

cz°g2 ,
where g'2(x, t) = g2{h(x\ ί), x e 7 l 5 1 e [0,1). Let z l o , z 2 o denote the restric-
tions of z1, z2 to Vx, F 2 :

d 1

See, for instance, Ref. [13], p. 550.
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where the subscripts zero on the right hand side denote the restrictions
to Vί x {0}. We can then write

Now we wish to join the vector field w on N (defined at the beginning
of this section) with the vector field v on M. Divide U2 into two pieces
U'2 = g2(V2 x [0,i]), U'ϊ=g2{V2 x [ i 1)), and denote g2(V2 x {£}) by F 3 .
Of course V3~V2. Let w' be the restriction oϊwtoN—U2. Then we can
get a continuous nonsingular vector field on M' if we can get a con-
tinuous nonsingular vector field V on U'2 which is equal to W on F 3

and is equal to

on F 2 , where υ0 is the restriction of v to F^
Recall that V3~V2~S3. Normalizing w', i;2o

 t 0 unity, we can regard
them as maps of S3 into S3. So the vector field V that we seek is nothing
but a homotopy F: S3 x [0, | ] -> S3, between the maps v2o and w0, where
w0 is the restriction of w' to F 3 . From the theorem of Hopf quoted in
Section V, a smooth homotopy between ι;2o and w0 will exist if and only if,
regarded as maps from S3 to S3, they have the same Brouwer degree.
Note that the degree of w0 is equal to the index of our original vector
field w (on N) at the zero q, which is in turn equal to χ{N).

Thus, we proceed as follows. Given v0, we compute v2o from Eq. (2).
We then compute the degree of v2o regarded as a map from S3 to S3.
We choose N to have Euler number χ(N) = degt;2o; then the degree of w0

will be equal to the degree of v2o, so that a smooth homotopy F between
v2o and w0 exists. We therefore have a continuous, nonsingular vector
field z' on M': z' is equal to v on M, equal to w on N — U2, and equal to
F on U'2.

From Eq. (2), it is clear that degι;2o depends on v0 only through the
smooth homotopy class of v0, that is only through the degree of v0

regarded as a map from S3 to S3. If the spherical modification relating
Mo and M1 is of type λ — 1, the degree of v0 is (— l)λ. So we need only
consider the two cases where v0 has degree + 1 or — 1. A sample calcula-
tion of the degree of υ2o is done in the Appendix. It turns out that if v0

has degree + 1 (spherical modification of type — 1, 1, or 3) than v2o has
degree + 1, and if υ0 has degree — 1 (spherical modification of type 0 or 2)
then v2o has degree -f 3.

So if the spherical modification relating Mo and Mί is of type — 1,
1, or 3, we must choose N such that its Euler number is + 1, for instance
the four dimensional real projective space P 4 . If the spherical modifica-
tion is of type 0 or 2, we must choose N such that its Euler number is + 3,
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for instance the two dimensional complex projective space CP2 (regarded,
of course, as a four dimensional real manifold).

We are almost done. The only problem is that our nonsingular vector
field z' is continuous but (on V2 and V3) not necessarily differentiable,
whereas we want a differentiable vector field. It is, however, not difficult
to smooth z' out.

Under the map g~ι,z' induces a corresponding vector field on
Vί x (— 1,1); call it z. We shall smooth out z, and then map it back
to U via g.

Using the Weierstrass approximation theorem, it is not difficult to
show that any continuous mapping of a compact manifold into Sn

can be uniformly approximated by a differentiable mapping. So z can be
uniformly approximated by a differentiable vector field, say z". Let Λ{ή
be a differentiable function which is equal to 1 for t e [— f, f] and equal
to zero for t :g — f and for ί ^f. Define a vector field z'" on Vx x (— 1, l)by

z'"(x, 0 = A(t) z"(x, t) + (1 - Λ(ή) z(x, 0

forxe F l 5 ί e ( — 1,1). Then z'" is differentiable everywhere on Vί x (— 1,1),
and is equal to z outside Vί x (— f, f). Moreover, since z" is a uniform
approximation to z, z'" is nowhere zero. Let w" be the vector field on U
which corresponds, under the map g, to zw.

Define a vector field ι/ on M' as follows. Set t/ equal to v on M — Uί,
equal to w on JV — L/2, and equal to w" on U. Then ι/ is interior normal
on Mo, exterior normal on M l 5 and is differentiable and nonzero every-
where on M\ So (M',^') is the desired nonsingular Lorentz cobordism
between Mo and Mx.

It is unfortunate that the intuitively appealing spherical modifica-
tions of types 0 and 2 seem to be involving us in the study of so messy a
4-manifold as the two dimensional complex projective space. Perhaps
a simpler 4-manifold with Euler number 4- 3 can be found.

It would be very nice if we could first study some two dimensional
Lorentz cobordisms between 1-manifolds which are related by a spherical
modification. In this dimension there are in fact modifications analogous
to the type 0 and 2 modifications on 3-manifolds. Unfortunately, one
finds that in order to do the above construction in two dimensions one
needs a closed 2-manifold with Euler number + 3, and there does not
exist such a manifold.

VIII. Conclusions

We have sketched the way in which the topology of spacelike hyper-
surfaces in spacetime might be changing (spherical modifications), and
remarked that some of these changes (modifications of types 0 and 2)
are not without intuitive appeal.
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We have given two ways to construct a Lorentz cobordism. The
detailed study of the cobordisms of Section VI would seem to be a
formidable task. The cobordisms of Section IV are appealingly simple,
but if we are to take them seriously as models of spacetime, we shall have
to learn to live with their singularities.

It is our feeling that, if spacetime can be represented by a differentiable
manifold at all, then some sort of Lorentz cobordism may well clarify
what is going on in gravitational collapse.

Acknowledgement. I thank Dr. B. Quigley for a useful discussion.

Appendix

For the construction of Section VI, we have to compute the index of
υ2o from that of v0, using Eq. (2). This is straightforward, but one has
to pay careful attention to the orientations.

The neighborhoods U1 and U2 are both diffeomorphic to S3 x [1,2).
For the sake of computational simplicity, we will not make any distinc-
tion between U1, U2 and their representations as S3 x [1, 2).

We can then represent the maps g1:Vι x (— l,0]->S 3 x [1,2) and
g'2:V1 x [ 0 , l ) - > S 3 x [ l , 2 ) as

gr1(x,ί) = (x, 1-ί) xeVu f e ( - l , 0 ]

g'2(x, t) = (h{x\ t + 1) x e Vu t e [0,1).

So Eq. (2) becomes

v2o = d(h(x\ t + l)o 1 ° d(x, 1 - ί)o ° ô ° (*, 1 - Oo ° (M*X t + l )ό 1 .

Now v2o depends on v0 and on h. Since we are only interested in
the degree of v2o, regarded as a map from S3 to S3, we can, as remarked
in Section VI, pick any v0 with index (— 1)A. Likewise, we need only
worry about the smooth homotopy class of h. This is + 1 for an orienta-
tion preserving diffeomorphism and — 1 for an orientation reversing
diffeomorphism. So we need only do the computation for one orientation
preserving h (the identity, say) and for one orientation reversing h
(a reflection, say).

Let h be the identity. Then Eq. (3) says simply that v2o is obtained
from v0 by reversing its component normal to S3. We shall compute the
index of v2o for the case in which the index of v0 is — 1.

We can conveniently represent S3 x [1,2) as the set of points in a
Euclidean coordinate patch with 1 <Ξ (x1)2 + (x2)2 + {x3)2 + (x4)2 < 2,
where the xa are Euclidean coordinates. A v0 with index — 1 is given by
v0 = (x i ,x 2 ,x 3 , — x4). (This would correspond to a modification of
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type 0.) Reversing the radial component of v0, we find V2Q = ((1 — /) x1,

( l - / ) x 2 , ( l - / ) x 3 , ( - l - / ) x 4 ) , where / = 2 ( ( x 1 ) 2 + (x2)2 + ( * 3 ) 2 - ( * 4 ) 2 ) .
Now regarding υ2o as a map from S3 to S3, when we restrict the xa

to the sphere (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1, we pick a value of v2o and
hope it is a regular value. It happens that v2o = (1,0,0,0) is a regular value.
Solving for the points x for which v2o has this value, we find that there are
three such, which we shall call x 1 ? x 2, and x3. They are x* =(—1,0,0,0),
χa2,3 = {h®&ί(ffi) Now we must check whether v2o preserves or
reverses orientation at these three points.

An oriented set of coordinate neighborhoods on the sphere (x ι) 2 + (x2)2

+ (x3)2 + (x4)2 = 1 can be specified as follows. For x1 > 0, use x2, x3, x 4

as coordinates. For x ^ O , use x 2 ,x 3 , — x 4 (the minus sign being
necessary so that the two patches have like orientation). Define coordinates
similarly on the sets xα > 0 and xα < 0, with a = 2, 3,4.

We can use the last three components of υ2o as coordinates in a
neighborhood of v2o = (1,0,0,0) in the image space. In a neighborhood
of xί we can use x2, x3, — x 4 as coordinates, and in a neighborhood of
x 2 or x 3 we can use x 2 ,x 3 ,x 4 . With these choices of coordinates, we
calculate the determinant of dv2o at the three regular values x 1 ? x 2 , x 3 ,
and find that it is positive at all three regular values. So the index of
u 2 o i s + 3 .
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