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Abstract. We construct a new realization of lightlike particle states. The realization
considered corresponds to objects which form partially localized wave packets in the space
dimensions transverse to the direction of the lightlike momentum. The states of the trans-
verse motion are classified by the representations of an algebra SU(1,1) constructed of the
generators of the conformal group. It is conjectured that this realization is suitable for the
formulation of the "parton"-model of hadrons.

1. Introduction

Lightlike particle states play an ever-increasing role in physics. Apart
from classical objects (photons, neutrinos), the hypothesis has been
recently put forward that hadrons may consist of elementary constituents
and when viewed from a reference frame moving with — approximately —
the velocity of light, a hadron may well be represented as a "beam" of
free "partons" [1].

With these applications in mind, we studied the various realizations
of lightlike states. Clearly, from the mathematical point of view, this
problem reduces to the study of the linear spaces spanned by all lightlike
states on which a representation of a — physically reasonable — invariance
group can be realized. Within the framework of the Poincare group, the
problem has been solved in the classical paper by Wigner [2]. Intuitively
one expects, however, that a lightlike state should be essentially un-
changed (i.e. brought over into another lightlike state) by certain con-
formal transformations (uniform accelerations and dilations) as well.
This turns out to be indeed the case. By studying these additional trans-
formations one discovers a somewhat unusual and - to the present
author's knowledge — hitherto unknown type of states. These have the
interesting property that they are partially localized - they form "trans-
verse wave packets" — in the two space dimensions perpendicular to the
direction in which the "particle" moves with light velocity. (The "trans-
verse space".) One may thus speculate that such a set of states is probably
appropriate for the description of the "almost free" constituents of the
hadrons and/or the physical hadron states themselves. The purpose of
this paper is to exhibit the states just mentioned by means of an elemen-
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tary algebraic construction and to study some of their properties, in
particular, their physical interpretation.

After this investigation was finished, we learned that in an attempt to
give a mathematically consistent formulation of the droplet model of
hadrons, Gύrsey and Orfanidis constructed a set of particle states [3] 1 ,
which for lightlike momenta are the same as the states described here.

The construction described in this paper seems to have the advantage
that it can be easily generalized to quantum field theories with inter-
action2. We are grateful to Professor Gursey for communicating to us
his results prior to publication and also for stimulating discussions.

This paper was completed during the author's stay at the Aspen
Center for Physics. He wishes to thank the Center for the hospitality
extended to him.

2. Lightlike States and the Transformations which Leave them Invariant

A lightlike single particle state without intrinsic spin is entirely
characterized by its momentum, which — in a Cartesian basis — satisfies
the condition: , 9 9 ,, , ^ _

Po = (P2i+P22 + Pί)*. (2.1)
By a rotation we can always achieve that p1 = p2 = 0. It is convenient to
introduce a different basis (the "lightlike basis" or L-basis) in Minkowski
space adapted to the standardized lightlike momentum (px = p2 = 0,
p3 =Po) a s follows [4]. Define:

Pz =

Pt = γ^(Po-Pz) = h> (2.2)

P= {PnPi}

In the L-basis the nonvanishing components of the metric tensor, gμv are:

Qik = δik (ί,fc = l,2),

A general spinless lightlike state can be characterized by the numbers,
p, fc, and from (2.1) through (2.2) the fourth component of the momentum,
h satisfies: 2

1 Wave packet states have been known for some time for timelike and spacelike
momenta, cf. F. Gursey, report C NAEM 53, Istanbul, 1965; unpublished.

2 This is due to the circumstance that our construction proceeds via the generators
of the conformal group, whereas the works quoted in Ref. [3] use position operators of the
Newton-Wigner type. The generalization of the present construction to a quantum field
theory with interaction will be considered in a separate paper.
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We shall call k the color of the state (borrowing the name from the
description of a light wave propagating in the 3-direction) and p its
transverse momentum.

Next, we list the commutation relations of the generators of the con-
formal group in the L-basis. It will be convenient to introduce special
symbols for some of the generators. Let Mμ v, Pμ, Kμ, D denote the gener-
ators of homogeneous Lorentz transformations, translations, uniform
accelerations and dilations, respectively, where μ, v run through the
values 1, 2, z, t. Introduce the notation:

Mzt - N, Mzi - Et

Mί2 = M, Mti = Fi

(Operators will be denoted by capitals, the corresponding eigenvalues by
lower case letters.)

The commutation relations in question read as follows:

[N,£ ί] = - i £ i [#,£,] = if,

[£„£,]=<) ίFi,FJ-] = 0

(2.5a)

[F t, JEΠ = 0 [M,H] = 0

[£;, H] = iPi IN, H] = iH

ίKz, P(] = - 2 ί £ ; [X,, Pi] = -2iFi

\Kt, /ΓJ = 0 [ϋC(, X J = 2/(2) + TV) "

[Λfμ¥, J5] = 0
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Here εtj is the Levi-Civita tensor in two dimensions. The group (2.5a)
involves the commutators of the Poincare algebra only, whereas those in
group (2.5b) contain the generators Kμ,D as well.

A standard, spinless, lightlike state is defined by:

Pi\k) = 0,

k\k}
y (2.6)

where W is the Wigner operator (the generator of the little group),

w2 = wμ w
μ.

We are going to look for transformations which leave the color
invariant, i.e. for the - linear combinations of- generators which commute
with K. By inspecting the commutation relations (2.5), we find that the
operators satisfying this requirement are the following:

Pi9 H,M, Eh KZ,A = D-N . (2.7)

(Had we considered the group of commutators (2.5 a) only, the last two
operators would have been left out; they are those additional operators
we mentioned in the introduction.)

The commutators of the operators with each other can be read off
from (2.5). Evidently, Et,M span the algebra of E(2\ generating the
Wigner little group of the standard momentum. The operators (2.7) have
the property that they commute with K even if the state is non-standard.
Evidently this is a generalization of the concept of a little group.

One verifies with the help of (2.5) that the operators H, Kz, A form a
sub-algebra which is isomorphic to SU(1,1). In order to be able to
construct dimensionsless operators, one has to introduce a characteristic
energy, say ω. The existence of a characteristic energy is an intrinsic
property of the representations considered. It is easy to check that the
linear combinations:

ω 2 z ' 2 ? 3 ω 2

satisfy the commutation relations of SU(1,1) in the standard form, viz.:

[ Λ , J 1 ] = iJ2 (2.9)

In the next section we construct a realization of the algebra of the
operators (2.7) (based on a discrete representation of SU (1,1)) which
seems to have a particular intuitive appeal.
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3. Construction of the Transverse Wave Packet States

The algebra spanned by the generators (2.7) can be realized on the
universal enveloping algebra of the operators (2.5 a). Indeed, the com-
mutator between Et and Pt suggests to introduce the operator:

X^K-'E^EtK-^j^E^ (3.1)

which satisfies:
£Xi,P,] = i δ y . (3.2)

(We exclude states with k = 0.)
Notice further that the kinematics in the transverse space is Galilean

[5]: M, Et, Pi9 A generate the direct product of the Galilei group in two
dimensions with dilatations. (The operator H and K play the role of the
Ήamiltonian" and the "mass", respectively.) Therefore X{ can be called
the position operator in transverse space.

One readily verifies that the operators:

Et = KXh M=-εijPiXj,

KZ=-KX\ A = -~{XP + PX), (3.3)

P2

H = 2K

realize the algebra spanned by the generators (2.7); the abstract generators
and their realizations (3.3) are denoted by the same symbols. The in-
tuitive meaning of this realization becomes evident if one observes that
the operator

acts on the lightlike states of color k just as the 'Ήamiltonian" of a non-
relativistic two dimensional oscillator does. The vectors in the space of
lightlike states belonging to this particular realization can be con-
veniently labelled by the eigenvalues of J 3 , K and M. In order to see this,
one has to resort only to the apparatus of elementary quantum mechanics.
Introduce the operators B, # f by the relations:

(3.4)
I / Km

P = i
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which diagonalize J 3 :

J = - ί B 1

3 2 v

The operator M will be diagonalized by going over to a "spherical"
basis, viz.

1 1
Ώ (Ώ ~~Γ Ί Ώ \ Ώ\ (DT _L ί DT \ C\ ^\\
D 4- == ~7=:~ \-D-[ ~τ~ ^ ^ 2 / ' ^ + — T"^ \ ^ 1 — ̂ ^i) ' \ )

In this basis the generators of the subalgebra SU{1,1) and M are written
as follows:

(3 6 )

The states so characterized will be denoted by \kj3m). Eigenstates of
the position and momentum operators are coherent states of the fictious
oscillator. For example, one immediately verifies that

P(exp ipX) \k, 00> = p exp ipX |fc, 00> .

The representation of the "quasispin" algebra (3.6) can be readily
extended to a representation to the full stability algebra of the color, (2.7),
by means of the relations (3.3), (3.4) and remembering that the states
|fc/3m> can be constructed by

(βt)i(i3+m-l)(Bt)i0 3-»-l)

|fc>. (3-7)
3 + m - l \ / j 3 - m - l

The calculation of the matrix elements of the operators (2.7) can be done
in an elementary way using the commutators

[ β m , B ; . ] = δmm,, [Bm,Bm.] = [ β ; , S i ] = 0 (m,m = ± ) . (3.8)

We shall not go through this elementary exercise, but point out that the
states (3.7) span a reducible, infinite spin representation of the integer type
of the Wigner little group. This can be seen by noticing that the Casimir,
E2, is not an invariant of (2.7) and the operators Et are not nilpotent.

Orthogonality and Completeness

In order to construct a suitable scalar product, we need the represen-
tation of a generator affecting k. Choose for instance the generator N.
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Using (2.5), (3.3) we establish the relations:

IN, F] = [N, X] = 0.

Further, using (2.5) and the identity:

0 - [JV, KK-'I = K[N, K" 1 ] + [N, K] K~ι,

we derive:

[N,iC" 1] = iX" 1 .

This gives the commutators:

[N,J 2 ] = 0, (3.9)

This shows that N acts on the quasispin as — J 2. Using (2.5) again (notice
that iV acts on the color as a dilatation operator), we finally get:

N\kj3m) =(-ίk~ -J2)\kj3m} . (3.10)

Thus we find that the orthogonality and completeness relations (with
respect to which the operators (3.3), (3.10) are self-adjoint) read:

dk
Σ \-jr \kh™> <kj3m\ = 1, (kj3m\k'j'3m

fy = kδ(k-k')δhjϊδmm..

It is easy to extend these considerations to representations of the half-
integer type of the little group. Notice that the "ground state" of the
fictious oscillator in (3.7) is a lightlike state with standard momentum
and vanishing intrinsic spin. One could, however, choose instead any
state transforming according to a finite spin representation of the
Wigner little group to build up the "tower" (3.7). Let such a state be
|fc,λ>Ol = 0,±l/2,...).

Based on these states, one builds up towers:

ίβt \ϊ(J3 + m-λ-l)Sβϊ\i(j3-m + λ-l)

The analog of the realization (3.3) is:

M = -SijPi

the other operators being unchanged.
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4. Physical Interpretation and Discussion

The physical interpretation of the states just constructed involves
elementary calculations not going beyond the apparatus of a first course
in quantum mechanics. Indeed, one verifies immediately that the pro-
jection of \kj3mλ} onto an eigenstate of the transverse position or
mementum operator, e.g. (kx | fc/3>, is just the Schrodinger wave function
of a two dimensional harmonic oscillator. Therefore these projections
are proportional - both in coordinate and momentum space - to a
Gaussian multiplied by an associated Laguerre polynomial; thus these
states form wave packets of "minimum uncertainty" compatible with the
given quantum numbers. (Hence the terminology used in Section 3.)
This indeed was the starting point of the work of Gύrsey and Orfanidis
[3], referred to in the Introduction. The typical spread of the wave
packet is governed by the characteristic energy scale, ω, we have intro-
duced.

In order to see this point more clearly, let us consider briefly the
reduction properties of product representations. Consider e.g. a "two-
particle" system. The operators (3.3) now become direct sums of single
particle operators:

etc. By introducing the operator analogs of the Jacobi coordinates, viz

P(D - A P + O P{2) - — P - O

V(l) — γ_ι I? V(2)_γ

Q =

one splits the representation into what - in the language of quantum
mechanics - corresponds to the motion of the center of mass and the
relative motion. It can be shown by an elementary calculation that in a
mixed representation, (where the center of mass is in a momentum eigen-
state) the size of the wave packet of the relative motion is governed by the
same scale, ω, as in the single particle case. This circumstance provides
a further motivation for the existence of the characteristic energy, ω,.
Indeed, had we attempted to construct dimensionless "oscillator opera-
tors" by taking e.g.
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these simple reduction properties of the product states would have been
lost entirely.

We emphasize that the classification of this new type of states becomes
possible only due to the existence of the enlarged stability group of the
color; had we restricted ourselves to Lorentz transformations alone, the
wave packet states could have not been given a simple algebraic descrip-
tion.

Two immediate generalizations of the construction given here seem
to be possible. First, in view of an equivalence theorem proved by
Leutwyler et ah [6], there should be no difficulty in including a rest mass
parameter. Second, one can study the representations of the stability
algebra of the color based on other realizations of the subalgebra
SU(1, 1). It would be interesting to see whether these generalizations
have as simple a physical interpretation as the states described here.
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