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Abstract. The exact solution of the Schrodinger equation is derived for the case of
a central potential under rather weak restriction on it. The solution is given in a form of
a simple series which converges strongly and it is suitable for calculation of phase shifts
and eigenvalues. Also, as the derivation of the solution is purely algebraic its analytical
continuation in the energy or angular momentum complex plane is straightforward.

Introduction

In Ref. [1] an "integro-iteration" method was used to obtain the
solution of any second order linear differential equation. This method
when applied to the Schrodinger equation gives the solution under
rather weak restrictions on the potential V(r).

The procedure starts with the usual transformation of the differential
equation into an integral one. Then the function is split in two com-
ponents, thus obtaining two coupled integral equations. At this point an
integration step is inserted and then a two component iteration is per-
formed. The solution is obtained in terms of a simple series which is
strongly convergent for a large class of potentials.

Although the modification of the procedure for solving the integral
equation by a simple iteration looks to be slight, its effect on the result
is quite remarkable. To be more explicit: the simple iteration method
leads to the Born's expansion. However, as, for I > 0, the kernel has two
components, the iteration gives multiple series, i.e. the nth term of it has
2" components. Besides one has to face difficulties with its convergence.
On the other hand the Fredholm method is too powerful to be used in
the case of a simple second order linear differential equation and bears
comparatively too much complexity. For example one has to compute
two series in each of which the nth term has n\ components. Moreover
it seems to demand stronger limitations on the potential than the present
method, i.e. as one can see in [2] the minimum conditions on V(r) using
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Fredholm's method are

J dr r\V(r)\<oo (a)

μr-r2\V(r)\< oo (b)
0

while in the present method even condition (a) is more than enough.
In Part I we give briefly the results we need here from Ref. [1]. In

Part II the solution for the bound state problem is given and the eigen-
value equation derived. It is found that for both types of solutions the
sufficient conditions on the potential for their convergence are

]r\V{r)\dr <ao
o

]\V{r)\dr<oo
a

for any 0 < α < oo. The same conditions we have in case of scattering
problems for the Type I solution. The second condition just leaves out
the Coulomb potential. In Part III we treat the case of continuum spec-
trum. In this case the problem is an initial value one and the only con-
dition which is imposed on the solution is that the radial part of the
wave function is regular at the origin. This is enough to define the solution
apart from an arbitrary multiplier which is irrelevant. The asymptotic
behaviour of the radial part is derived. Therefore one obtains the ex-
pressions for phase shifts and the scattering amplitude directly without
introducing the Jost functions [3].

I. Formulation

Let z" + B(x) z = C(x) z (1)

be the equation to be solved.

If uγ and u2 are two independent solutions of

u" + B(x)u = 0 (2)

and W(μx, u2) = ux u'2 — u[ u2 = \ (3)
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then one solution of (1) is given by
(i) Type I

z = Uίe~f^Φ1(
X)+u2e™ J Cu\e~^Φ,I *' ) dx' (4)

\a9 a) J

a {a, a)

X

where f(x) = J Cux u2 dx' (5)

and ΦΛ a simple series generated by:
\a,a/

φAx\=\- ]cu\ e2fdx']cule-2fφ1 ( X"\dx" (6)
\a,a) i J

a \a,a)
or

(ii) Type II
F

provided that
M!(fl) = 0 . (8)

Here F t f
 % ) = 1 + f Cu\dx' J — ^ - dx" (9)

/ X \ / X \

Φ, and F, are connected through the relation
\a, a) \a, a)

x

I χ \ SCuίUldξ I χ \

ΦA )=ea FA*). (10)
\a9 a) \a, a)

For the convergence of the series given by (6) and (9) we shall be
satisfied with the sufficient conditions:

q= J \Cu\ e2f\ dx'] \Cu2 e~2f\dx"<M< oo , (11)

1
dx"<N <oo (12)

for any x in the region of interest.

Initial Value Problems

If we seek for a solution for which

z(α) = 0 (13)
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it is enough to choose ux such that

(13 a)

With this one condition the solution is defined apart from a constant
factor which is irrelevant.

Boundary Value Problems

If we want a solution z with the conditions

φ ) = 0 (14)

and z(b) = Q

we choose uγ and u2 such that

M1(α) = u2(fe) = 0 (14a)

and we find as eigenvalue equation either

F.fM-O. (15a)
\a,a)

Note that, because of (10), (15) and (15 a) are equivalent.

II. Bound State Problems

1. The radial part of the Schrodinger equation, after putting wz(r)
= rR^r) becomes

d2

 2 1(1+1)
K 2dr2 K r

where κ2=^-f U{r)=^-V(r).

(16)

^

We choose two independent solutions of the unperturbed equation

(17)

= S/(r)=l/-y-/I+4(icr)

π

where Iι+± and Kι+± are modified Bessel functions defined as in [4].
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Then we have

Uί (0) = S,(0) = 0, u2(oo) = Q(oo) = 0

and { b ι )

The wave function is given either by

(a) Wι(r) = S, e™Φ, ^ - Q β " ™ f ί/(r')S2(r')e2/(''>Φ1

(18)
or by

(b) W j(r) = - C,{r) f ^ ' , 7 dr' (18a)

where

( i 9 a )

and /(r) = J[/S ίC idί / (19b)

2. The eigenvalue equation is either

φ >(o?o)= 0 ' (20)

^ ( o Γ o ) = o (20a)

Here we can use both expressions for the wave function or the eigenvalue
/ r \

equation, as Fx is well defined, because Kι+i.(κr) has no zeros for
\u, uy

/ > - \ and r > 0, [4] p. 62.

3. Sufficient condition for the convergence of Φ1 or Fx

A sufficient condition for the convergence oϊ F1i I is that

oo r Λ i oo
p — Γ = j | L / S / C / | d r < o o . (21)
0 Q 0
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If we take into account the behaviour of S^r) C^r) at r->0 and r-»oo,
see f.e. [4] pp. 5, 85 and 86, we can express (21) as

] r\V(r)\ dr < oo (22a)

and ]\V(r)\dr<oo (22 b)
a

for any 0 < a < oo.
On the other hand from (10) we have:

/ OO \ _5 USiCidr

Therefore condition (21), or (22 a) and (22 b), is also sufficient for the

convergence of Φx

One potential satisfying (22a) and (22b) is:

-^τ> o<s<i. (23)

Indeed for this potential we have, [5],

< 00.

III. Scattering Problems

1. In that case the problem is an initial and not a boundary value
problem. Thus the only condition we need is that the solution is regular
at the origin, i.e.

Therefore it is enough to choose

(24)
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while u2(r) = Q(r) will be chosen properly, for each type of solution, so that

(25)

The solutions then are obtained from (4) or (7) by putting

C=-U(r), a = 0.

For the Type I solution we take

Q ( r ) = l / ~ τ γ ί + i ( / c r ) (26)

while for the Type II we choose

ψ^kr) ill)

so the central function Fί is well defined, as HPJL(kr) has no zeros

for / > - | a n d r>0, [4], p! 62.
2. Phase shift: We use the formula:

(28)

and we obtain

Type I:

e-2fM$U(r)Sf(r)e

tan,f = 2 j ^ - ^ — . (29)

Type II:
, FA

(30)

F I
** 1 \0 0

3. Scattering amplitude:

Type I:

α(l,k)=~ Γ - ~ ^ 5 ^ ' 0 / (31)

^ D ( ' )
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τ y p e I I :

4
F I I00 — r 10 0/

J U(ή S,(r) C,(r) άr j ' ' ' dr1

F'(o,o
( 3 2 )

4. Sufficient conditions for the convergence of Φx I and Fx I

(a) If conditions (22a) and (22b), for the potential U(r) are valid, then
it is easy to show that:

q= J|l7(r)| Cf{r) e'2f dr } |[/(rθ| ^ 2 (r ')^ 2 / dr'< oo
o o

/ r \
and therefore Φx is convergent for any 0 ̂  r ^ oo.

We first remark that, under conditions (22 a) and (22 b),

is bound for 0 ^ r ^ oo.
Then,if|/(r)|<μ

q ^ e 4" j IU(r)\ Cf(r) dr] \U(r')\ Sf(r') dr'
0 0

= e*» \]\U{r)\ Cf(r)dr ] \U(r)\ Sf(r')dr'
Lo o

+ ]\U(r)\Cf(r)dr]\U(r')\Sf(r')dr'
a 0

^ " [ ί |l/(r)| Cf(r)dr] \U{r')\ Sf(r')dr'

+ ]\U(r)\Cf(r)dr]\U(r')\Sf(r')\dr'}.
a 0 J

For any 0<a< oo, condition (22a) guarantees the convergence of the
first term in the bracket, while both conditions are enough for the con-
vergence of the second term.

Therefore Φ1 is convergent for any potential U(r) which fulfills
\U, \jj

conditions (22a) and (22b).
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/ r \
(b) For the convergence of F1 I 1 it is sufficient to demand:

\U, U/

or, from (27)

p = ] \ U ( r ) \ r { J l + Y Ϊ ) d r \ . ( f 2 y v = / + ± .
o o ' Wv "Γ"

 J v

For v = \ (I = 0) it is obvious that

p^]r\U(r)\dr.
o

For v > j (I > 0), r [/J + 7 j ] is a decreasing function, [6]. Therefore

So for the convergence of F J it is enough to have,
\u, U/

(35)

IV. Concluding Remarks

In spite of the fact that we accepted a rather strong sufficient condition
for the convergence of the series, which form the central functions

and FA we arrived at a loose restriction on the potential.

In the case of Type I solutions the restrictions on the potential are:

$r\V(r)\dr<oo (22a)
o

and ]\V(r)\dr < oo (22b)
a

for any 0 < α < o o . These conditions, to our knowledge, seem to be
weaker than any previous one imposed in similar problems [2, 7]. In the
case of Type II solutions, we derive the restriction on the potential

]r\V(r)\dr<oo (35)
o

for scattering problems, and the conditions (22) for bound state problems.
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The solution of Type II is preferable in the case of a discrete spectrum,
while for the continuum, solution of Type I is preferable.

Numerical applications of the method to various problems is the
subject of a forthcoming paper.
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