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Abstract. In this paper, various applications of the theory of hyperdifferential operators
to quantum mechanics are discussed. A concise summary of the relevant aspects of the
theory is presented, and then used to derive a variety of operator identities, expansions,
and solutions to differential equations.

§1. Introduction

The purpose of this paper is to point out various applications of the
theory of hyperdifferential operators. In particular we will illustrate how
this theory can be used to derive a wide variety of operator identities,
expansions, and solutions to differential equations of interest in quantum
mechanics.

Hyperdifferential operators are differential operators of infinite order
with variable coefficients

The feature of these operators which is of particular relevance in applica-
tions is the possibility of defining the symbol of A,

σA(z,ξ)= £ amnz
mξ" (1.2)

m,n — 0

in terms of which we can develop a computational calculus, called the
symbolic calculus.

* This work was partially supported by N.S.F. grant GP 19614.
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We note that for a hyperdifferential operator A with symbol σA(z, ξ)

4/(x) = (2πΓ* ] eixξσA(x,iξ)f(ξ)dξ (1.3)
— oo

where

/(£) = (2πΓ*J *-'*«/(*)<**, (1.4)

is the Fourier transform of f(x). Here we must assume that / has the
proper smoothness and growth characteristics, (x is a real variable while
z and ξ are usually complex variables.)

In Sections 2 and 3, some results about analytic functionals, hyper-
differential operators, and the symbolic calculus are presented in their
most elementary form. In particular, in Section 2 we introduce several
representations of analytic functionals (the most important of which is
the Fourier-Borel transform). In Section 3, we derive formulas for the
symbol of a product of two operators and the transpose of an operator.
These formulas are the essential ingredients in the symbolic calculus.
A more detailed exposition can be found in [14, 15].

In Section 4, the results of Sections 2 and 3 are applied to WeyPs
prescription for quantizing a classical function and to the process of
normally ordering an operator. Section 5 is devoted to the solution of
a partial differential equation which arises in the theory of two photon
amplification [8].

To illustrate the basic concepts, we present the following examples.
First, if f ( ξ ) is the Fourier transform of f ( x ) and g(x, ξ) is a polynomial
in x and ξ, then

g(x, d/dx)f(x) = (2πΓ* J eίxξg(x, iξ)f(ξ) dξ (1.5)

is a hyperdifferential operator with symbol

σglx,--=g(x,ξ). (1.6)

Next, consider the initial value problem

(x,ί) = W W ί ) , ί>0 with /(x,0) = /0(x). (1.7)

The solution is given by

o(x) = f(x> 0 = (2πΓ* f eίx V^'/oK) dξ . (1.8)
where

(1.9)
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is a hyperdifferential operator with symbol

etp(ξ\ (1.10)

In the case of variable coefficients, that is, P(d/dx)^>P(x,d/dx), this
problem is much more difficult, but can be handled using our techniques
(see Section 5). In fact, this is one of the main differences between our
theory and for instance [3].

The material found in Section 2 is well-known. The material pres-
ented in Section 3 is a special case of the material in [15, 16, Section 21].
However, the proofs in [15, 16] use the theory of topological tensor
products and consequently are far more complicated than our presen-
tation.

The formulas derived in Section 4 appear in the physics literature.
What is new is the use of the symbolic calculus to derive them. In par-
ticular, the important Formulas (3.4), (3.8), (3.10), and (3.15) which we
use extensively in Section 4 appear in the physics literature, [12, 17] but
are not used in the extensive way we use them. In addition, our deriva-
tion of the formulas (4.4), (4.11), (4.14), (4.15), etc. show that these expres-
sions are valid for a wide class of analytic functions. Previously, it was
only known that these expressions were valid for the trivial case of
polynomials.

Equations like the equation in Section 5 have been discussed exten-
sively [2, 7, 8, 10, 11, 13]. We include this example here to illustrate the
general applicability of our technique.

The main point of this paper is to present the precise mathematical
theory of hyperdifferential operators and the symbolic calculus in a very
elementary form and to then show its general applicability to quantum
mechanical problems.

In Section 6 we discuss generalizations of this theory and some of its
relationships to other theories.

We remark that the theory of hyperdifferential operators is formally
similar to the theory of pseudo-differential operators and Fourier inte-
gral operators (see [5, 6]). However, there are many important dif-
ferences, in particular, pseudo-differential operators are assumed to be
of finite order. The functions appearing in the definition of Fourier
integral operators, which in our case correspond to the symbol, must
satisfy conditions which our symbol usually does not satisfy. These dif-
ferences come from the fact that pseudo-differential and Fourier integral
operators are designed to operate on Sobolov spaces, that is spaces of
functions with a finite number of square integrable derivatives, while
hyperdifferential operators are designed to operate on spaces of analytic
functions.

Although we only discuss the case of one variable z, everything easily
generalizes to n variables z = (zl9 ...,zn), (see [13, 15, 16]).
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§ 2. Analytic Functionals and the Γourier-Borel Transform

Let C be the complex numbers and let E be the set of entire functions
mapping C into <C. That is

γ(Z)J(Z) L nl

 Z >f dznl ( - )

where the power series is assumed to converge uniformly on any compact
set. Let E' be the dual space of E, see [14, p. 231], i.e.

E' = {μ = μ(z); μ maps E into <C and is linear and continuous}. (2.2)

We write

Remark. E and E' are obviously linear spaces. If we define

\\f\\R= sup|/(z)|, (2.3)
\z\<R

then the countable set of norms || ||π define a topology on E. In fact,
E is a complete metric space, see [14, p. 57, 89]. In this topology,
/n(z)-»/(z) if and only if fn(z) converges to /(z) uniformly on compact
sets. Also in this topology μ is a continuous linear functional if and only if

(z)| (2.4)
\z\£N

for some C and N. Finally there are the usual topologies on E' defined
by duality.

Remark. We can now consider certain spaces of functions and dis-
tributions μ belonging to E'. Suppose that g(z) maps C into C (not
analytic) and

i) 0(z) = 0 if \z\>R for some R, (2.5)

ii) J \g(x + iy)\ dxdy<co.

If

<μ>f>=S 0(x + '» f(x + iy) dx dy (2.6)

then clearly μ e E'. In fact if μ is any distribution on the complex plane
with compact support, (see [14, p. 255]) then the restriction of μ to the
entire functions belongs to E'.

At this point we will discuss several representations for elements of
E' and then prove the necessary details in a later theorem.

Definition.
00 (n zn\ Fn u En

μ(ξ) = </φ), S*y = Σ '̂ ,K = Σ -̂
π = 0 ^ ^
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where μ(ξ) is called the Fourier-Borel transform of μ. If

μn=<μ,z"y, (2.8)

then μn is called the nth moment of μ.
if we set

(_ 1)",, <$(«)

" "= Σ „,

then we see that vn = μn and as the polynomials are dense in E, we have
μ = v.

Remark. If μ is given by a distribution with support on the real line,
then μ( — ίξ) is the Fourier transform of μ.

We now give μ a representation as a contour integral. In fact, we have

(2.9)

where C is any curve enclosing 0 once. Consequently

/}(n)(YV) /•(«)(()) 1
<μ,/> = Σ μ ( ) J ( > =—KΣflM(0)λ-"-1)f(λ)dλ, (2.10)

n \ .Z7ΓΪ £

providing the series converges.

Definition.

μ(λ)=μ(z), -— =Σμnλ-"'ί (2.11)
\ A — Z /

and is called the Cauchy (or Fantappie) representation of μ.

Definition.

Exp = {/(z);/(z) is entire, |/(z)| ̂  CeN^ for some C and N} . (2.12)

,4 = {/(z);/(z) is analytic for |z| > R for some # > 0, and

where if two functions are equal in some neighborhood of oo, then they
are to give the same element of A.

Remark. Exp and A can be made into topological linear spaces in
a standard way (see [14, p. 232, ex. 22.5; 15, p. 19-01]).
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Theorem 1. The following maps are 1—1 and onto:

i i ) 0 ( £ H μ = Σ - > ( 0 ) < 5 < « > , Exp^F,

iii) μ
" λ-z

iv)
(n!):

v)

vi)

where h( n)(oo) = \\—r-} — h\— Moreover, i) and ii), iii) and iv),
\\dzl \z \ z j / j z = 0.

and v) and vi) are inverses. That is,

vii) μ = Σ —μ(n)(0)<5(ϊl) = Σ 2 μ(~n)(oo) δ(n}.

Also, we have representations:

viϋ) <μ, /> = Σ — ,

ix) <\/^?/)=^—r j μ(λ)f(λ)dλ, R sufficiently large,

1
x) /^(ί) = -T -T ί ^W ^Aξ^^' Λ sufficiently large.

Z7ΓZ | A | = Λ

Proof. As ez<^ = Σ —— and the series converges uniformly on com-
n\

pact sets in z we have μ(ξ) = Σ " is entire. From (2.4), \μ(ξ)\ ^C\\ezξ\\N

^CeNlξl. For i), if μ(ξ) = Q, then β(n} (0) = μΛ - <μ, z"> = 0. But as the
polynomials are dense in E, we have μ = 0.

Next, if ^ e Exp, then define v = Σ > * ^ > . If gf e Exp, then

from Cauchy's formula we have

SR
\g(n)(0)\£Cn\ -—^CS". (2.14)
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Also, if / e E, then

l/ ( π )(0)|^Cn! [R for all #>0. (2.15)

Consequently
uM/Yyv! i f(M)(YY|l

K y\ i -̂̂  v li? \ / I IJ v /I /<Λ ι ^"\v,/>|^Σ j (2.16)

^C\\f\\RΣ(S/R)n^Cί\\f\\R

if R is sufficiently large. Thus v e Ef and v = μ or v = μ. This shows that
ii) is the inverse of i) and maps Exp into E' completing i) and ii).

For iii), we have Σμ n λ~ n ~ 1 converges for λ>S because μn = μ(π)(0)
satisfies (2.14). We get the same result if we note that (2.4) implies that μ
can be extended to continuous linear functional on the space of functions

analytic in |z| < S and bounded for |z| ̂ 5. If λ > S, then is such

a function. Clearly μ(oo) = 0, i.e., μ e A. Again, if μ(λ) = 0, then μn = 0 and
00

thus μ = 0. Next, suppose h(λ)eA, i.e., h(λ)= Σ anλ~n~l converges for
n = 0

\λ\>S. Using 2.15, we see that \an\ g CS~n and as in (2.16)

If h(λ) = μ(λ\ then v(λ) = μ(λ\ i.e. v = μ. This completes iii) and iv). Also,
v) and vi) are easy.

For vii), compute μ and μ and then compare to the expressions in
i) and iii). For viii), write / in a power series. For ix), substitute expression
2.9 into vii) and check the uniform convergence of the series. For x) set
f = eλξ in ix).

§ 3. Hyperdifferential Operators

We wish to introduce a class of operators on E or E' which includes
differential operators and operators such as

Also, we want the differential operators we will consider to be allowed
to have variable coefficients which include at least the polynomials.
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First, in the standard way we define for μ e E' and / e E

> = <μ, */(*)> (3.1)

and, then note that, for example, δ(n}= —— δ as we defined δ(n} in
\dz]

Section 2. Now we want a hyperdifferential operator on E or E' to be
given by an expression of the form

/ // \n

(3.2)

Definition. If A is a bounded operator mapping E into £ or E' into
E', then A is said to be hyperdifferential if

A f ( z ) = Σamnz
mf(n\z) or Aμ = Σamnz

mμ(n} (3.3)

for some sequence αmπ e (C.

Proposition. Every partial differential operator with polynomial coef-
ficients is a hyperdifferential operator.

d f \ \ _o m-Proof. | |z/| |Λ^R||/ | |Λ and if S>R, etc.
<M* '

We now wish to define two symbols for A and derive some of their
properties.

I d\n

Definition. If A = Σamnz
m [-—] , then

V dz

dw / λ — w

where σ is called the symbol (or Fourier-Borel symbol) of A and σ is
called the Cauchy Symbol of A.

Remark. If A = P I—— | is a differential operator with constant coef-
\dz)

ficients, then σA = P(ξ).

Theorem 3.1. The following are equivalent

i) 4 = 0,
ϋ) *(4) = 0,

iii) σ(A) = 09

if A is a hyperdifferential operator on E.
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I d\n

Proof. IϊA=Σamnz
m — - =0, then A(ί) = Σαm 0z" = 0 and conse-

\dz)
quently αm0 = 0, mΞ>0. Similarly A(zn) = Q implies amn = Q for all m, n.
Thus i) => ii).

Next, if σ(A) = 0, then Aeξz = 0 = Σ A(Z ^ *° . Hence A(zn) = 0. How-

ever {zn} form a basis for E and consequently ,4 = 0 so that ϋ)=>i).
Obviously ii) and iii) are equivalent.

Theorem 3.2. The following conditions are equivalent:

i) A is a hyper differential operator on E,
ii) σ(z, ξ) is entire in z and ξ and

sup \σA(z,ξ)\^CRes^ for all R>0
\z\*R

and some S>R.
iii) σ(z,ξ)=Σamnz

mξn and

\amn\^CRR-™Sn(n\Γl for all R>U

and some S> R.
iv) σ(z, λ) is entire in z and if \z\ rg R, then there is an S> R such that

σ(z, λ) is analytic in λ for \λ\ > S and σ(z, oo) = 0.

Proof. If A is a bounded operator on £, then

Res\ξ\ which shows i)^>ii).
From Cauchy's theorem we obtain

which shows ii) => iii). Clearly iii) => iv).
Next we see that λ~1σ(z,λ~1) is entire in z and if \z\<R, then

λ~lσ(z,λ~l) is analytic for \λ\<S~ί. Again from Cauchy's theorem
\nlamn\ ^ CRR~mSn. This shows iv)=>iii).

Λ = sup \Of(z)\£CRίΣRϊmSUn\r1Rm(S-RΓnnl \ \ f \ \ s .
\z\<R

Choosing R1 > R and S > R + S1 we have iii) => i).

Corollary 3.1. If A is a bounded operator on £, then A is a hyper-
differential operator with σA(z, ξ) = e~ξzAeξz.

Proof. This is clear from Theorem 3.1 and Eq. (3.4).

At this point we want to write any hyperdifferential operator A as
an integral operator with kernel α(z, w).
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We define in the usual way

</ϊ,/> = <μ(- z),/(z)> - <μ(z),/(- z)> (3.5)

<μ(z-w>,/(z)> = <μ(z),/(z + w)>

μ */(z) - <μ(z - w), /(w)> = <μ(w), /(z - w)>

and μ * v by

<μ * v, /> - <μ, v */> = <v, μ * Λ>

where / e £ and μ, v e E'. The last definition makes sense because of:

Proposition. // μ E E', f e E then μ*feE.

P f f( ^ v/ ( n )(w)(-z)» v (-!)>„/<"»
Proo/. / (w — z) = Σ - - - or μ *j (w) = Σ - - - .

Now \\f(n}(w)\\R^C\\f\\2RR-nnl and \μn\<CSn for some S (see (2.14)
and (2.15)) so that the series converges for all w.

Corollary. // fc(z, w) = Σft(z) μf (w) wiίft α ̂ nίίe swm αnJ /f e £, μf e £',

) = <fe(z, z - w),/(w)> = Σ/£(z) μt */(z)

αr^ hyper differential operators with

σA(z,ξ)=Σfi(z)μi(-ξ).

Proof. Clear.

Remark. We can allow fe(z, w) to be an infinite sum (see [15]).

/ d \n

Definition. If A = Σ amnz
m —— is a hyperdifferential operator, then

\dz]
we set

a(z,w)=Σamnz
mδ^(w) (3.6)

and call α(z, w) the kernel of ^4. We then define

fe */(z) - <fe(z, w - z), /(w)> - Σ ̂ z-δW */(z) - Σ αmπz-/(n) (z)

fc * μ(z) = Σ amnz
mδ^ * μ(z) = Σ amnz

mμ^ (z) .

Proposition. If feE, μeE' and A is hyperdifferential operator, then

Af — k *fAμ = k * μ

σ(A) = <fe(z, w), <Γ^>, σμ) = <fc(z, w), (1 - w)'1) . (3'?)

Proposition. 7/^4 is a hyperdifferential operator, then its kernel is unique.

Proof. This follows from Theorem 3.1.

4 Commun. math. Phys., Vol. 24
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We note that we can find a hyperdifferential operator from its symbol
via its kernel. There are other interesting formulas in [15, 16]. We will
give the following very useful representation.

Theorem 3.3. // A is a hyperdifferential operator on E' and if μ e E is
given by a function with support on the real axis (i.e.,

<μ, /> - J μ(x)f(x) dx, z = x + iy,

where μ(x) is an ίntegrable function with compact support), then

= (2πΓ1 f e'^σ(x, iξ)μ(- iξ)dξ . (3.8)

Proof.

' = (~ 1}" j μ(x) "/(z) dx = J " μ(x)f(x) dx

The rest is now clear from the kernel formula.

Theorem 3.3 holds for distributions with compact support with the
obvious modifications.

We now consider some algebraic properties of hyperdifferential
operators.

I d\n

Definition. If Af= Σ amnz
m - / is a hyperdifferential operator,
\dzj

then the transpose of A is A*f= Σ (- l)namn I — 1 (zm/).

Theorem 3.4. If A is a hyperdifferential operator on E and for some M

sup \σA(z9 ξ)\ ^ CR exp(MRa\ξ\) 0 ̂  a < 1 , R large , (3.9)

then At is a hyperdifferential operator in E with

, dξ=-^ . (3.10)

Proof. From Hormander [4, p. 10] we have Leibniz's rule

'Al
M.

= (edzθξzmξn)eξz .
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If we sum over n, m we get the result, provided eθzdξ σA(z, ξ) is in fact
the symbol of some bounded operator. To check this we compute:

sup\d«d«ξσA(z,ξ)\
\z\<R

όA&ξJ
J (-7 _ Viα+1 / £ _

^ C(α !)2 exp(MK? (\ξ\ + S)) (R1 - RΓ'S'"

^ (α !) exp(MK? \ξ\) (a !) ̂ (MKft'a-'fo - R)

£ (a !) exp(MK? \ξ\) (MR^R, - R))« .

Thus the series for σA'(z, ξ) converges for J^ = 2R, R1~°^2a+1M and
thus

sup \σA'(z, ξ)\ ^ CR exp(MRa\ξ\) for R sufficiently large
|z|<* (3.12)

^ CR e
eκm for any ε and all R .

Remark. Consider

d^ pZξ Y"1 1 1 / fl2 \m 1
— — _ _ (7.fv= v _

m! π! zδξ - »! ml (n-m)l

For z and ξ, small and positive (or negative), this is a series of positive
terms and can be summed any way we wish. Summing n first we obtain
edzdξezξ. Summing n = mwe obtain oo. Thus eδzdξezξ is not an analytic
function near (0, 0).

Definition. If A is a bounded operator on E, then the operator A*
operating on E' and defined by

<A*μ,fy = <μ,Afy (3.13)

is called the adjoint of A. Similarly if A is defined on E', then A* is
defined by

>. (3.14)

Theorem 3.5. If A is a hyperdifferential operator on E and σ(A) satis-
fies 3.5, then A* is a hyperdifferential operator and A* = A1. A similar
result holds if A operates on E'.

Proof Clear.

Theorem 3.6. // A and B are hyperdifferential operators on E (or E'),
then AB (A composed with B) is a hyperdifferential operator on E (or E')
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with

σ(AB) (z, ξ) = Σ -1- (δξr σ,4(z, £) (dz)«σB(z, ξ)

Proof. We compute

sup |<j(Λl o B) (z, <J)| ̂  Σ (p !) CaSΓ

which is finite if we choose R1 large enough. The rest is clear from
Leibniz's rule.

Remark. For a more complete discussion of hyperdifferential oper-
ators see [13, 15, 16].

4. Applications to Quantum Mechanics

We wish to consider the process of quantizing a classical function of
the dynamical variables q and p

f(p,q)=Σamnp
mq\ (4.1)

It is well known that the formation of the corresponding quantum
mechanical function presents difficulties because the coordinate and
momentum operators Q and P do not commute. For convenience in

what follows, we will take P = — - , 0 = z so that [Q, P] = - 1. If in [17]
dz

one sets h = i, one easily sees that the formulas there are the same as ours.
One particular way of quantizing functions is the Weyl prescrip-

tion [17]

/(P, β) = j J/(σ, τ) el<σp+*<» dσ dτ (4.2)

(4.3)

In the case P = — — , Q = z, we can formally compute the symbol of

σ(f(P, Q)) (z, ξ) = e~^ \ f/(σ, τ) e° ̂ +" e^ dσ dτ

i<7 —

= e~ zξ ί ί f(σ> τ) e>" dz ei" e"τ/2 e*ξ dσ dτ (4 4)

= e*» a* f ( ξ , z )
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where we have used the Zassenhaus [17, Eq. (4.55)] formula in the
second step.

If we write

(7(2, ξ) = σf(P, Q) (z, ξ)=ΐbmnz
mξ«, (4.5)

then

f(P,Q)=Σbmnz
ml~J (4.6)

as our symbolic calculus indicates. If we wish to compute the symbol of
the transpose

z™ (4.7)

of/(P,ρ),then

σ(f(P9 Q)) (z, ξ) = <?•** σ(f(P, Q)) (z, - ξ)

= es*β* + *Wsf(-ξ9z) (4.8)

= e*d>d*f(-ξ,z).

If we were to quantize the function

g(p,q) = ed*6«f(-p,q), (4.9)

Remark. We consider the Weyl quantization /(P, Q) of /(p, q) as
having been arrived at by substituting P for p and Q for q in /(p, q) with
/(P><?) written in a certain way, i.e. f(p,q)= Σ amnp

mι q"1 . . . pmiq"1 with
M! + +mi = mnΐ+ +nt = n. If in /(P, Q) we move all P to the right
of Q using [P, g] = 1, we obtain an operator that is the same as substi-
tuting P for p and Q for q in e*dpdqf(p, q) with all p written to the right
of q as indicated by Formula (4.4). On the other hand, if we wish to write
P to the left of β, we substitute into eiδpdqf(p, q) with p written to the
right of q. This is the theorem of McCoy (see [17, p. 968]).

Remark. For additional methods of quantizing functions see [12].

Proposition. Suppose C(P, Q\ F(P, Q\ G(P, Q} are the Weyl quantiza-
tions of c(p, q) f(p, q) and g(p, q) respectively and

)], (4.10)
then

|, ιaBJ>2=|,. (4.11)
«1=92 = «

Remark. This is the theorem of Moyal (see [17, p. 968]).
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Proof. We have

^_r ί (dkσF 8kσG 8kσG 3kσF
(z'ζ)~f ki ( dξk δzk ~^ξ^~dzk~ (412)

-,,-i δpa,
= g ΎVpVq

= 2 sinh P / - p 2 ι ι 2 2 P , =P2=P
41=42 = 4

Next, if we consider quantizing the function paφ(q) to the operator 0,
we see that σ(0) = e^δ^6χ ξ"φ(x). On the other hand, if we define

[A, B}a = {A, BY~1B + B{A9 B}^1 a > 1

{A, B}1 = {A,B} = AB + BA,

then one can easily compute by induction that

<*{P, Φ(Q)Γ = 2α e*d*d* ξ«φ(x) . (4.14)
Consequently

0 = 2-«{P,φ(Q)}«. (4.15)

This is a theorem of Daughady and Nigam (see [17, p. 967]).
At this point we see how easily we can derive certain results in quan-

tum mechanics. We now present some new results. It is clear that one
can quantize any polynomial /(p, q) using the Weyl prescription because

e*d'd'f(p,q) (4.16)

is a finite sum. On the other hand the Remark after Theorem 3.4 shows
that one cannot quantize e2zξ as an operator with a symbol.

We see from Theorem 3.4 that if

\q\<R

for some M, a, O r g α < 1, then /(p, q) can be quantized as an operator
with a symbol. Also, in the proof of Theorem 5.1 in [13], there are given
additional conditions under which a function f(p, q) can be quantized
with a symbol. These conditions essentially say that if one restricts the
growth of /(/?, q) in the variable, say p, then one can allow /(p, q) to
grow fast in the variable q or vice versa.
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At first these results seem to depend heavily on the choice of the
space E. However, if one compares our theory to the theory in [13, 16]
one sees that essentially for any choice of space in place of E, e2zξ cannot
be quantized as an operator with a symbol which is analytic near zero.

We now consider the problem of normally ordering an operator.
Suppose

F(P,Q) = ΣanP
nίQ"2...Pnk-ίQnk (4.17)

where the sum ranges over all fc-tuples of non-negative integers for all
non-negative values of k. We now want to find an expression

F(P9Q)=ΣaiJQ
ίPj (4.18)

for F which is called the normally ordered form of F(P, β), see Section 10
and Footnote 62 in [17]. Now we have

σ(F(P, Q)) (x, ξ) = σF(x, ξ)=Σ a^ξ* . (4.19)

Consequently, if we have an operator not in normal form and if we can
compute σF = σF(P,Q)= Σb ί J x

ίf /, then the normally ordered form of
F is given by

)=ΣbijQ
lpJ. (4.20)

Remark. Putting an operator such as (4.17) into normal form consists
of moving all of the P's to the right of the Q's in expression (4.17) using
the commutation rule [P, Q] = 1.

As an example, consider the operator Pm Qn which we consider as the
compose of Pm and Qn. Now σPm = ξm and σQn = x" and using the for-
mulas for the symbol of a compose (3.15) we have

n\ _,

0 ϋ (m-iV. (n-i)l
or

min(m,n) | n f
PmΠn = V _ ' _ Γin - i pm - i

^ y '

In fact, if we have the two operators F = F(P, Q) and G = G(P, Q) in
normally ordered form, then FG is not normally ordered. However our
formula for the symbol of a compose gives

i / d v / a
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which will put FG in normally ordered form. Now, if we consider

σFlx,ξ+~σG(x,ξ)

where we have expanded F(x, ξ) in a power series in the variable ξ about
the point ξ, we see that

σ(FG) (x, ξ) = σF L ξ + - σG(x, ξ)

which is equivalent to the Formula (10.6) in [17].
Next we observe that

where again we have used the Zassenhaus formula [17, Eq. (4.55)]. If

A =

we see that

Also if f ( x ) is a linear combination of etx, then clearly

and in particular

XJL+ i °2

σ(P + Q)n = eXjt+^~^ ξn

n-2k [k/2]

s 0 k slkl(n-2k-s)\

which gives the Formulas (10.42b) and (10.43) in [17].
Thus we see that the process of computing a symbol of an operator

is very useful but does not seem to be used in physics literature.
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§ 5. Applications to Differential Equations

In this section we want to solve differential equations of the form

9 t ) 9 (5.1)

P(x9y90) = PQ(x9y) (5.2)

where A is a differential operator with variable coefficients (i.e., depending
on x and y). This technique, called the symbolic calculus, has very general
applications, and generalizes the Fourier transform techniques that may
be used when A has constant coefficients.

The solution to (5.1) can be written, at least formally, as exp(^ί) P0.
We call exp(^4ί) the resolvent operator of problem (5.1). In general, the
resolvent is an integral operator and the symbolic calculus allows us to
calculate its kernel (sometimes called the time dependent Green's func-
tion) independent of the initial data. We obtain our solution as an
integral of the Fourier transform of the initial data and the kernel of the
resolvent. We remark that once the resolvent kernel is obtained (i.e., the
Green's function) much information can be read out of it, such as which
class of initial data the problem can be solved for and for how long the
solution exists as a classical function.

We are now going to work in two variables. That is, we will replace z
by x and y, and ξ by ξ and η. We now write formulas (3.4) and (3.15)
in this notation:

σ(H) (x, y, ξ, η) = Qxp(-ξx- ηy) H exp(ξx + ηy) (5.3)

,„ ~w , ,
σ(H o K) (x, y, ζ, η) =

where H and K are two hyperdifferential and operators and H ° K is H
composed with K. Also, if A is a differential operator, then the symbol
of the resolvent of exp(^4ί) is

R(t, x, y, ξ, η) = σ(QXp(At)) (x, y, ξ, η) = e~ξx~ηy eAt eξx+ηy

and satisfies the following differential equation:

d
A [exp(ξx + ηy) R(t9 x, y, ξ, η)] = 0 (5.5)

R(09x9y9ξ9η)=l.
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Finally, if in problem (5.1) we can compute σ(exp(^ί)), then the
solution of problem (5.1) is given by Eq. (3.8) in the form

P(x, y, f) = (2πΓ2 f exp(i(£x + ηy)) R(t, x, y, iξ, ίη) P0(ξ, η)dξdη (5.6)

JP0(ί, η) = f exp(- i(ξx + ηy)) P0(x, y) dx dy .

We now proceed to solve problem (5.1) for a particular case. Consider
the problem

dP d2P d d
-T— - = — — - -- h ax — -- h by — -- h c (a, b. c are constants) (5.7)
ot oxoy ox oy

If we set
d2 9 ι d

A = + ax — — + b y ^— + c ,
oxoy dx oy

we need to compute σ(exp(,4f)). We first note that if [X, Y] = XY— YX,
then

d2 d Ί d } , 7 X d2

- a , ax-r-+by — +c\ = (a + b)
dxdy dx dy \ dxdy

dx " dy

From [17] we find that if [_X, Y] = α Y, then

Consequently,

From (5.3) we obtain
(5.10)

Also, σlatx—— satisfies a first order differential equation given by
\ uχ I

(5.5), and this can be solved using the method of characteristics. However,
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we can use (5.8) to obtain the same result as follows:

σίexplαίx— \ \ ( x , y 9 ξ 9 η )

-?τr= e ζx exp atx
\

(
\ \ dx 1 — exp(-βf)

= e~ξxQ\Ό(eat f x) exp (atx

(5.12)

dx

We now apply (5.4) to (5.10) obtaining

d ί ί , d \\ ί (ea+b-l d2

(5.13)
{ £>(« + &)_ 1

= expjcί + (eat -l)ξx + (ebt -l)ηy + t g + fc

The solution to problem (5.11) is now given by (5.6).

Remark. It is clear that eAt for our operator A is not a hyperdifferential
operator on E as σeAt does not have the correct growth properties.
However eAt is a hyperdifferential operator on the spaces given in [13]
and on those spaces has the symbol just calculated. Also the spaces used
in [13] give the correct initial data for which problem (5.1) can be solved,
see [3], Chapter 3.

We note that the above techniques solve the problems studied in
[2, 6, 8, 10, 11]. An exposition of a general theory of the solution of
problems like (5.7) appears in [13]. We remark that these techniques can
be used to study equations whose coefficients also depend on time.

§ 6. Summary

At this point we have clearly demonstrated the usefulness of the
theory of hyperdifferential operators and the symbolic calculus. The
critical formulas that we use are the formula for the symbol (3.4), the
integral representation (3.8), the symbol of the adjoint (3.10) and the sym-
bol of the compose (3.15).

The choice of the space E is not critical in this development. In fact,
for discussing various problems it is essential to choose different spaces.
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In [13, 15, 16] certain spaces of analytic or entire functions are chosen
and particular applications are made to scales of Banach Spaces of func-
tions. It is also possible to choose the spaces of type WΩ in [3] or spaces
of infinitely differentiable non-analytic functions of Gevrey type [1]. For
each choice of space many technical changes must be made in the theory
but the general aspects remain the same. Also, in [3] the Fourier dual
corresponds to the Fourier-Borel transform of our dual spaces.

The solvability of the Cauchy problem for differential equations with
constant coefficients is very well developed [3]. However, the theory
presented here is specifically designed to handle the variable coefficient
case. Compare the solution (5.6), (5.13) of Eqs. (5.1), (5.2) and the solution
of the heat equation [3, p. 31, 37, 61, 111, 121, 164].

Another pleasant aspect of this theory is that the Formula (3.4) for
the symbol of A can be written σ(A) = e~BAeB where B is the multi-
plication operator ξz. This equation is in an advantageous form for
applying Baker-Campbell-Housdorff [17] type formulas which we did
extensively.
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