The b-Boundary of Tensor Bundles over a Space-Time

P. HÁJÍČEK*
Institut für Theoretische Physik, Universität Bern
B. G. Schmidt
Institut für Theoretische Physik, Universität Hamburg

Received August 3, 1971

Abstract

In [1] it was shown how to attach a boundary to any space-time. In the present paper a boundary is constructed for any bundle associated with the frame bundle of a space time. In such a way limits of tensor fields at boundary points of a space-time are defined. Using this we show that the Lorentz metric has always a unique continuous extension to the b-boundary of the space-time.

1. Introduction

In a recent paper [1], one of the present authors described a construction of a boundary \dot{M} to any incomplete space-time M. The construction determines the point-set and topological structure of \dot{M} uniquely. The question, if the notion of vectors, tensors, metric, ect., could be given a good sense at the points of \dot{M}, remained open. We shall show that there is a natural and very general way to do this. The notation of [1] will be used throughout.

Tensors can be considered as objects determined by their components in a linear frame and a transformation law of these components. Now, the construction of b-boundary yield a useful by-product - the boundary $\dot{L}(M)$ of the linear bundle. The idea is to regard the points of $\dot{L}(M)$ as generalized frames and to define tensors by means of their components therein. When the manifold is extendable beyond the boundary, this definition of boundary tensors coincide with the usual one. We have, moreover, a topology on the space of all such tensors: two "near" tensors must have "near" components in "near" frames. More generally, all associated bundles of $L(M)$ can be completed in this way.

Some simple applications to the tangent bundle of two-dimensional space-times is given in Section 3.

[^0]In Section 4, the Lorentz metric is defined in the boundary points. The Lorentz metric on M can be regarded as a differentiable function $g: T(M) \rightarrow R$ such that its restriction $\left.g\right|_{T_{p}(M)}$ to the tangent space $T_{p}(M)$ is a quadratic function of signature $(+,-,-,-)$ for every $p \in M$. Then, natural generalisation would be a continuous extension \bar{g} of the function g to $\overline{T(M)}$, where $\overline{T(M)}$ is the completition of the tangent bundle $T(M)$ as defined in Section 2. $T(M)$ is dense in $\overline{T(M)}$, so if \bar{g} exists, it is unique. We shall show that \bar{g} always exists, and that its restriction $\left.g\right|_{\underline{T}_{p}}$ to T_{p} is a quadratic function of signature $(+,-,-,-)$ for every $p \in \bar{M}$ such that T_{p} is a linear space.

2. Associated Bundles

Let Z be a differentiable manifold, on which G acts differentiably to the left. Then, G acts as a topological group on $\overline{L(M)} \times Z$ to the right by the rule $(u, z) \cdot g=\left(u \cdot g, g^{-1} \cdot z\right)$. Denote $\overline{Z(M)}$ the set of all orbits of G in $\overline{L(M)} \times Z$. The map $\pi_{1}: \overline{L(M)} \times Z \rightarrow \overline{Z(M)}$ sends every element of $\overline{L(M)} \times Z$ into its prbit. The requirement, that π_{1} be continuous and open defines a topology on $\overline{Z(M)}$. The topological space $\overline{Z(M)}$ contains the Z associated bundle $Z(M)$ of $L(M)$ as a subspace; $\overline{Z(M)}$ will be called b-completition of $Z(M)$. The map $\pi_{2}: \overline{L(M)} \times Z \rightarrow \overline{L(M)}$ sending every pair (u, z) into u is continuous and open [3]. Let $X \in \overline{Z(M)} . \pi_{1}^{-1}(X)$ is a class of elements of $\overline{L(M)} \times Z$ having the form $\left(u \cdot g, g^{-1} \cdot z\right)$, where $u \in \overline{L(M)}$ and $z \in Z$ are fixed, while g runs through G; therefore $\pi_{2}\left(\pi_{1}^{-1}(X)\right)$ $=u \cdot G$ and $\pi\left(\pi_{2}\left(\pi_{1}^{-1}(X)\right)\right)$ is exactly one element of \bar{M}. If we define $\pi_{Z}=\pi \circ \pi_{2} \circ \pi_{1}^{-1}, \pi_{Z}: \overline{Z(M)} \rightarrow \bar{M}$ is a map, and π_{Z} must be continuous and open, because π, π_{2}, and π_{1} are. π_{z} is called projection of $\overline{Z(M)}$ onto \bar{M}. The restriction of π_{Z} to $Z(M)$ is the bundle projection of $Z(M)$.

Lemma 1. It holds

$$
\begin{align*}
& \pi_{z}\left(\pi_{1}(x)\right)=\pi\left(\pi_{2}(x)\right), \tag{1}\\
& \pi^{-1}\left(\pi_{z}(x)\right)=\pi_{2}\left(\pi_{1}^{-1}(x)\right), \tag{2}\\
& \pi_{2}^{-1}\left(\pi^{-1}(x)\right)=\pi_{1}^{-1}\left(\pi_{z}^{-1}(x)\right), \tag{3}\\
& \pi_{1}\left(\pi_{2}^{-1}(x)\right)=\pi_{z}^{-1}(\pi(x)) . \tag{4}\\
& \overline{L(M)} \times Z \\
& \pi_{2} \\
& \pi_{1} \downarrow \\
& \overline{L(M)} \\
& \overline{Z(M)} \underset{\pi_{z}}{ } \bar{M}
\end{align*}
$$

Fig. 1

Proof. (1) follows directly from the definition of π_{Z}. (2) follows from the relation $\pi_{2}\left(\pi_{1}^{-1}(X)\right)=u \cdot G$. (3) follows from the definition of π_{Z}.

If $u \in \pi^{-1}(p)$, then $\pi_{1}(u x Z) \subset \pi_{Z}^{-1}(p)$, because of (1), $\pi_{2}(u \times Z)=u$, and $\pi(u)=p$. Let $X \in \pi_{z}^{-1}(p)$ and $(v, z) \in \pi_{1}^{-1}(X)$. Then there is $g \in G$ such that $v=u \cdot g$ and this implies $(u, g \cdot z) \in \pi_{1}^{-1}(X)$. From this, we obtain even $\pi_{1}(u \times Z)=\pi_{Z}^{-1}(p)$, that is to say, (4).

Let $u \in \overline{L(M)}$ and G_{u} be the set of all $x \in G$ such that $u \cdot x=u . G_{u}$ is a subgroup of G, called fix-group of u. If $u \in L(M), G_{u}$ contains only identity e. If $v=u \cdot g, g \in G$, then $G_{v}=g^{-1} \cdot G_{u} \cdot g$. If G_{u} is non-trivial, $\pi(u)$ is called a degenerate point of $\bar{M} . G$ acts freely on the fibre of any non-degenerate point p, and there is a unique matrix $a(v, u) \in G$ such that $v=u \cdot a(v, u)$ for every two $u, v \in \pi^{-1}(p)$. The map $a: \pi^{-1}(p) \times \pi^{-1}(p) \rightarrow G$ is continuous, for $p \in M$ even differentiable.

The following two Lemmas show what the sets $\pi_{z}^{-1}(p)$ look like.
Lemma 2. Let $p \in \bar{M}, u \in \pi^{-1}(p)$ and Z / G_{u} be the topological space, whose elements are orbits of the group G_{u} in Z and whose topology is determined by the requirement, that the map $\pi_{u}: Z \rightarrow Z / G_{u}$ sending every point of Z into its orbit be continuous and open.

Then, $\pi_{Z}^{-1}(p)$ is homeomorph to Z / G_{u}.
Proof. Eq. (4) implies that the $\operatorname{map} \varphi_{u}: Z \rightarrow \pi_{z}^{-1}(p)$ defined by $\varphi_{u}(z)$ $=\pi_{1}(u, z)$ is onto. φ_{u} is continuous and open, because π_{1} is. Let z_{1}, z_{2} be two elements of Z satisfying $\varphi_{u}\left(z_{1}\right)=\varphi_{u}\left(z_{2}\right)$. Hence, there is $g \in G$ such that $\left(u \cdot g, g^{-1} \cdot z_{1}\right)=\left(u, z_{2}\right)$, i.e., $g \in G_{u}$ and $z_{2} \in G_{u} \cdot z_{1}$. The map $\varphi_{u}^{\prime}: Z / G_{u}$ $\rightarrow \pi_{z}^{-1}(p)$ given by $\varphi_{u}^{\prime}=\varphi_{u} \circ \pi_{u}^{-1}$ is, therefore, one-to-one, and furthermore continuous and open, so φ_{u}^{\prime} is a homeomorphism, q.e.d.

Lemma 3. Let p be a non-degenerate point of \bar{M} and Z be a vector space, on which G acts linearly to the left. Then $\pi_{z}^{-1}(p)$ is a vector space isomorph to Z.

Proof. The map φ_{u} is a homeomorphism of Z onto $\pi_{z}^{-1}(p)$; hence, φ_{u} defines a linear structure on $\pi_{z}^{-1}(p)$ by the rules:

If $\lambda \in R, X, Y \in \pi_{z}^{-1}(p)$, then

$$
\lambda \cdot X=\varphi_{u}\left(\lambda \cdot \varphi_{u}^{-1}(X)\right), \quad X+Y=\varphi_{u}\left(\varphi_{u}^{-1}(X)+\varphi_{u}^{-1}(Y)\right) .
$$

It is easily verified that all the corresponding axioms are satisfied. Moreover, the structure does not depend on the particular choice of $u \in \pi^{-1}(p)$: choose $v \in \pi^{-1}(p)$; then $\varphi_{v}(z)=\varphi_{u}\left(a^{-1}(u, v) \cdot z\right)$, so that $\varphi_{v}^{-1}(X)=a(u, v)$ - $\varphi_{u}^{-1}(X)$. This implies

$$
\begin{aligned}
& \varphi_{v}\left(\lambda \cdot \varphi_{v}^{-1}(X)\right)=\varphi_{u}\left(a^{-1}(u, v) \cdot \lambda \cdot a(u, v) \cdot \varphi_{u}^{-1}(X)\right)=\varphi_{u}\left(\lambda \cdot \varphi_{u}^{-1}(X)\right) \\
& \begin{aligned}
\varphi_{v}\left(\varphi_{v}^{-1}(X)+\varphi_{v}^{-1}(Y)\right) & =\varphi_{u}\left(a^{-1}(u, v)\left(a(u, v) \cdot \varphi_{u}^{-1}(X)+a(u, v) \varphi_{u}^{-1}(Y)\right)\right. \\
& =\varphi_{u}\left(\varphi_{u}^{-1}(X)+\varphi_{u}^{-1}(Y)\right),
\end{aligned}
\end{aligned}
$$

q.e.d.

At this stage, it can be already recognized, to what extent our main goal is reached. If $\overline{Z(M)}$ is a b-completition of a tensor bundle $Z(M)$, then $\pi_{z}^{-1}(p)$ is a tensor space if and only if p is non-degenerate. There is no natural way to define tensors in degenerate points.

An example of degenerate point is the cusp point of the ordinary conus: define the positive definite metric

$$
d s^{2}=d r^{2}+r^{2} d \varphi^{2}
$$

on a two-dimensional manifold M with coordinates $r, \varphi, 0<r, 0 \leqq \varphi<\varphi_{0}$, φ_{0} identified with 0 . Then the b-boundary consists just of one point $r=0$. The series of frames u_{n} in points defined by their components $r_{n}=1 / n$, $\varphi_{n}=0$ with frame vectors $X_{n}=(1,0), Y_{n}=(0, n)$ converges and defines a boundary point of $\overline{L(M)}$. Now, take the series v_{n} of frames in the same points obtained by parallel transfer of u_{n} along the line $r=r_{n}$. The length of the line in $L(M)$ is φ_{0} / n, whereas v_{n} is always rotated by the same angle of φ_{0} relative to u_{n}. Thus, u_{n} and v_{n} define the same point of $\overline{L(M)}$, but $v_{n}=u_{n} \cdot g$, where g is non-trivial.

In order to vizualize, what a geometrical meaning the boundary points of $\overline{Z(M)}$ have, let us state the

Lemma 4. Given a curve $C:(0,1] \rightarrow M$ in $M, C((0,1)) \subset M, p=C(1) \in \dot{M}$ and an arbitrary continuous field $u(t)$ of linear frames along C (i.e., $\pi(u(t))=C(t))$ defining an end point $u \in \pi^{-1}(p)$. Let a curve $z:(0,1) \rightarrow Z$ in Z have the property: there is $z \in Z$ such that, for every neighbourhood U of the set $G_{u} \cdot z$ in $Z, a \delta$ can be found satisfying: $\delta>0$ and $z((1-\delta, 1)) \subset U$.

Then the Z-field $X:(0,1) \rightarrow Z(M)$ along C defined by

$$
X(t)=\pi_{1}(u(t), z(t))
$$

has a well defined limit $\lim _{t \rightarrow 1} X(t)=\pi_{1}(u, z)$ in $\overline{Z(M)}$.
Proof. Choose a neighbourhood V of X in $\overline{Z(M)} . \pi_{1}$ is continuous, so $\pi_{1}^{-1}(V)$ is a neighbourhood of $\left(u \times G_{u} \cdot z\right)$. Now, there is $\delta>0$ such that the curve $(u(t), z(t))$ lies entirely in $\pi_{1}^{-1}(V)$ for $t>1-\delta$; then

$$
X((1-\delta, 1)) \subset V,
$$

q.e.d.

Lemma 4 implies in particular that a tensor field along a curve terminating in a non-degenerate boundary point has a limit, if its components in a parallelly propagated frame have a well-defined limits when approaching the boundary. And conversely, to every boundary tensor such a field can be constructed, taking, e.g., the components constant.

3. Accessibility

We choose now $Z=T=R^{4}$, so that every $z \in Z$ has four components $z^{i}, i=0, \ldots, 3$, and define the action of G on Z as follows

$$
z^{\prime i}=\left(a^{-1}\right)_{k}^{i} z^{k}
$$

The corresponding Z associated bundle is the tangent bundle $T(M)$. The tangent space $T_{p}(\bar{M})$ to \bar{M} in p is defined by $T_{p}(\bar{M})=\pi_{T}^{-1}(p)$. The tangent vectors to \bar{M} in p are defined by their components in linear frames. This definition is convenient, if we know what a linear frame is before we know what a tangent vector is, as in the case of the boundary \dot{M}. For points of M, another definition is usually used (cf. [2], p. 69) - a tangent vector is a class of smooth curves and a linear frame is an ordered four-tuple of linearly independent tangent vectors. This reversed approach emphasizes that property of tangent vectors which is basic for applications: every smooth curve through $p \in M$ has a tangent vector at p and, for any tangent vector X at p, there is at least one smooth curve having X as its tangent vector.

It is, therefore, of some interest to know what relation the smooth curves have to the tangent vectors at the boundary points as they were defined in the preceding Section. The following approach seems us to be natural. Let $C:(0,1] \rightarrow \bar{M}$ be a map with properties:

1) $C((0,1)) \subset M, p=C(1) \in \dot{M}$,
2) C is continuous on $(0,1]$ and smooth on $(0,1)$. We shall say that the curve C has a tangent vector $X \in T_{p}$ at p, if there is a continuous map $C^{\prime}:(0,1] \rightarrow \overline{T(M)}$ such that $C(t)$ is tangent to C for all $t \in(0,1)$ and $C^{\prime}(1)=X$.

The set $A_{p} \subset T_{p}$ consisting of all tangent vectors X at p such that at least one curve C exists having X as its tangent vector at p will be called accessibility of the point p.

The following simple Lemma enable us to illustrate the meaning of our construction.

Lemma 5. Denote \mathscr{M} the two-dimensional Minkowski space-time with the metric $d s^{2}=d t^{2}-d x^{2}$ in some coordinate system $t, x, L(\mathscr{M})$ its linear bundle with the projection π and $T(\mathscr{M})$ its tangent bundle with the projection π_{T}. Let M be a subspace of \mathscr{M} such that the boundary of M in \mathscr{M} is a piece-wise C^{1}-differentiable curve C. Then $\dot{M}=C, \dot{L}(M)=\pi^{-1}(C)$, $\dot{T}(M)=\pi_{T}^{-1}(C)$.

By means of Lemma 5, the accessibility can easily be determined in the following cases as listed in the Table 1.

We observe that the point p of M, at which the boundary M is C^{1}, satisfies the following condition: Let \dot{A}_{p} be the boundary of A_{p} in T_{p};
then, for every neighbourhood U of \dot{A}_{p} in $\overline{T(M)}$, there is a neighbourhood U_{p} of p in M such that $\dot{A}_{q} \subset U$ for any $q \in U_{p} \cap \dot{M}$.

These examples suggest that accessibility provides information about C^{1}-differentiability of M in regular, piece-wise differentiable cases. More detailed analysis goes beyond the aim of the present paper.

Table 1

M	$p \in \dot{M}$	A_{p}
$t-\|x\|<0$	$x(p)>0$	$t-x \leqq 0$
$t-\|x\|<0$	$x(p)<0$	$t+x \leqq 0$
$t-\|x\|<0$	$x=0$	$x(p)=0$
$t<-1$	$x(p) \neq 0$	$t-\|x\| \leqq 0$
$t-\sin (1 / x)<0$	$x \neq 0$	$x(p)=0$
$t<-1$	$x=0$	
$t-\sin (1 / x)<0$	$x \neq 0$	$\left((x-x(p)) / x^{2}(p)\right) \cos (1 / x(p))$

In the first column, the condition is given that is satisfied by the points of M. In the second column, the condition is given that is satisfied by the coordinates of the point $p \in \dot{M}$, whose accessibility A_{p} is described in the third column by means of a relation between the coordinates of a point of $A_{p} . A_{p}$ is regarded as a sub-set of \mathscr{M}, because T_{p} is isomorph to \mathscr{M} for every $p \in M$.

4. Lorentz Metric

A Lorentz metric on M can be considered as a differentiable function $g: T(M) \rightarrow R$ such that the restriction $\left.g\right|_{T_{p}}$ of g to T_{p} is a quadratic form of signature (,,,+---) for every $p \in M$.

Definition. Lorentz metric on \bar{M} is the continuous extension \bar{g} of the function g to $\overline{T(M)}$.

Theorem. Continuous extension $\bar{g}: \overline{T(M)} \rightarrow R$ of the function $g: T(M) \rightarrow R$ is in every point of M well-defined. If T_{p} is a linear space, then $\left.\bar{g}\right|_{T_{p}}$ is a quadratic form of signature $(+,-,-,-)$.

We show some Lemmas before approaching the proof of the Theorem.
Consider a positive definite Riemannian space V^{n} on which an involutive k-dimensional distribution S is given. Suppose that the set Q of all maximal integral manifolds is a differentiable manifold and that the projection π_{Q} mapping a point of V^{n} into the integral manifold passing through it is differentiable. Because V^{n} has a positive definite metric, S determines uniquely an orthogonal distribution S^{\perp}. Clearly $T_{u}\left(V^{n}\right)$ $=S_{u} \oplus S_{u}^{\perp}$ holds and $\left(\pi_{Q}\right)_{*}$ induces a vector space isomorphismus $S_{u}^{\perp} \rightarrow T_{\pi(u)}(Q)$. Therefore a tangent vector $Z \in T_{\alpha}(Q)$ defines uniquely a vector field \tilde{Z} along the integral manifold α, which is orthogonal to α at
any point, by the condition $\left(\pi_{Q}\right)_{*} \tilde{Z}=Z$. Now we can formulate
Lemma 6. If $g(\tilde{Z}, \tilde{Z})$ is constant along $\pi_{Q}^{-1}(\alpha)$ for any $Z \in T_{\alpha}(Q)$, then $g_{Q}(Z, Z):=g(\tilde{Z}, \tilde{Z})$ defines a positive definite metric on Q, called the quotient metric, which satisfies

$$
\begin{equation*}
g_{Q}\left(\left(\pi_{Q}\right)_{*} X,\left(\pi_{Q}\right)_{*} X\right) \leqq g(X, X), \quad X \in T_{u}\left(V^{n}\right) . \tag{5}
\end{equation*}
$$

Furthermore
holds.

$$
\begin{gather*}
d_{Q}(\alpha, \beta)=d\left(x, \pi_{Q}^{-1}(\beta)\right)=d\left(\pi^{-1}(\alpha), y\right)=d\left(\pi_{Q}^{-1}(\alpha), \pi_{Q}^{-1}(\beta)\right), \tag{6}\\
x \in \pi_{Q}^{-1}(\alpha), \quad y \in \pi_{Q}^{-1}(\beta)
\end{gather*}
$$

Remark. Eq. (6) means that the integral manifolds are equidistant and that the distance is given by the quotient metric.

Proof. From the definition of \tilde{Z} corresponding to Z it is clear that g_{Q} is well defined. To prove (5) we decompose $X \in T_{u}\left(V^{n}\right)$ into its components in S_{u} and S_{u}^{\perp}. Then

$$
g(X, X) \geqq g\left(X^{\perp}, X^{\perp}\right)=g_{Q}\left(\left(\pi_{Q}\right)_{*} X,\left(\pi_{Q}\right)_{*} X\right)
$$

implies (5). To prove (6) consider a curve $q(t)$ joining α and β. This curve defines a 1 -parameter family of integral manifolds of S. The orthogonal curves have the same length as $q(t)$ and this together with (5) implies (6).

Let us now turn to the frame bundle.
In general, $L(M)$ consists of several components, which are isometric. Choose arbitrary one of them and denote it by $L_{c}(M)$. Let $O_{c}(M)$ be the set of all orthonormal frames in $L_{c}(M) . O_{c}(M)$ is a component of the set of all orthonormal frames in $L(M)$. Furthermore, it is a closed, tendimensional sub-manifold of $L_{\mathrm{c}}(M)$. Denote by G_{c} the fix-group of $L_{c}(M)$ in $L(M)$. Elements of G_{c} act on $L_{c}(M)$ as diffeomorphisms, thus every set of the form $O_{c}(M) \cdot g, g \in G_{c}$, is a closed, ten-dimensional sub-manifold of $L_{c}(M)$, called Lorentz sub-manifold. Denote by \mathscr{L}_{c} the fix-group of $O_{c}(M)$ in $L_{c}(M) . \mathscr{L}_{c}$ is a sub-group of the Lorentz group \mathscr{L} including the component of identity of \mathscr{L}. The coset space $\mathscr{L} / \mathscr{L}_{c}$ gives the type of orientability of M [1].

Lemma 7. The Lorentz sub-manifolds form a differentiable tenparametric congruence of ten-dimensional equidistant closed sub-manifolds.

Fig. 2

Proof. Denote by Q the set of all Lorentz sub-manifolds of $L_{c}(M)$. The map $\pi_{Q}: L_{c}(M) \rightarrow Q$ sends every $u \in L_{c}(M)$ in the Lorentz sub-manifold $\alpha \in Q$ including u. The requirement, that π_{Q} be continuous and open, defines a topology on Q.

Choose $p \in M$. There is a neighbourhood U of p in M and a differentiable and open map $\eta: \pi^{-1}(U) \rightarrow G_{c}$ with the following properties:

The map $\psi: \pi^{-1}(U) \rightarrow U \times G_{c}$ defined by

$$
\begin{equation*}
\psi(u)=(\pi(u), \eta(u)) \tag{8}
\end{equation*}
$$

is a diffeomorphism onto.

$$
\begin{gather*}
\eta(u \cdot g)=\eta(u) \cdot g . \tag{9}\\
\eta\left(\pi^{-1}(U) \cap O_{c}(M)\right)=\mathscr{L}_{c} . \tag{10}
\end{gather*}
$$

The properties (8) and (9) follow immediately from the definition of a principal bundle (cf. [2], p. 294); since $O_{c}(M)$ includes the holonomy bundle, the "Reduction Theorem" ([4], p. 83) implies that there is a local orthonormal cross section in $L_{c}(M)$ from which we easily have (10).

The inclusion map $i_{U}: \pi^{-1}(U) \rightarrow L_{c}(M)$ is a differentiable open map, because $\pi^{-1}(U)$ is open.

Every $\alpha \in Q$ defines a non-empty set $\alpha_{U}=\pi^{-1}(U) \cap \pi_{Q}^{-1}(\alpha)$. If α and β are two distinct elements of Q, then the sets α_{U} and β_{U} are disjoint. Moreover, $\pi^{-1}(U)=\bigcup_{\alpha \in Q} \alpha_{U}$, because $L_{c}(M)=\bigcup_{\alpha \in Q} \pi_{Q}^{-1}(\alpha)$. Denote by Q_{U} the set of all α_{U} and $\pi_{U}: \pi^{-1}(U) \rightarrow Q_{U}$ the map sending every $u \in \pi^{-1}(U)$ in the set α_{U}, in which u lies. The requirement, that π_{U} be continuous and open, defines a topology on Q_{U}. It is easily seen that φ_{1} defined by $\varphi_{1}=\pi_{Q} \circ i_{U} \circ \pi_{U}^{-1}$ is a map, $\varphi_{1}: Q_{U} \rightarrow Q ; \varphi_{1}$ is one-to-one, continuous and open, so φ_{1} is a homeomorphism.
\mathscr{L}_{c} is a closed sub-group of G_{c}; the set G_{c} / \mathscr{L}_{c} of all left cosets $\mathscr{L}_{c} \cdot g$ is, therefore, a differentiable manifold, and the projection map $\pi_{\mathscr{L}}: G_{c}$ $\rightarrow G_{c} / \mathscr{L}_{c}$ is differentiable and open. From (9) and (10) follows that φ_{2} defined by $\varphi_{2}=\pi_{\mathscr{L}} \circ \eta^{\circ} \pi_{U}^{-1}$ is a map, $\varphi_{2}: Q_{U} \rightarrow G_{c} / \mathscr{L}_{c}$ is one-to-one, continuous and open, hence φ_{2} is a homeomorphism.

Denote by $\varphi: Q \rightarrow G_{c} / \mathscr{L}_{e}$ the homeomorphism defined by $\varphi=\varphi_{2}{ }^{\circ} \varphi_{1}^{-1}$. From the construction, it may easily be seen that

$$
\varphi\left(\pi_{Q}\left(O_{c}(M) \cdot g\right)\right)=\pi_{\mathscr{L}}(g)
$$

Therefore, φ does not depend on U. The map φ defines a differentiable structure on Q by the requirement that φ be a diffeomorphism. Furthermore, we have

$$
\begin{equation*}
\left.\pi_{Q}\right|_{\pi^{-1}(U)}=\varphi^{-1 \circ} \pi_{\mathscr{L}} \circ \eta, \tag{11}
\end{equation*}
$$

i.e., every point $u \in L_{c}(M)$ has a neighbourhood, on which π_{Q} is differentiable, because $\varphi^{-1}, \pi_{\mathscr{L}}$ and η are. This implies that π_{Q} is differentiable.

Now, it is clear that the Lorentz sub-manifolds form a differentiable ten-parametric congruence $\left(G_{c} / \mathscr{L}_{c}\right.$ is ten-dimensional).

The group G_{c} acts on G_{c} / \mathscr{L}_{c} to the right as a group of diffeomorphisms ([2], p. 230) by the rule $\left(\mathscr{L}_{c} \cdot x\right) \cdot g=\mathscr{L}_{c} \cdot x g$, so

$$
\begin{equation*}
\pi_{\mathscr{L}}(x g)=\pi_{\mathscr{L}}(x) \cdot g \tag{12}
\end{equation*}
$$

This action can be carried over to Q in the following way:

$$
\alpha \cdot g=\varphi^{-1}(\varphi(\alpha) \cdot g),
$$

i.e.,

$$
\begin{equation*}
\varphi^{-1}(\varphi(\alpha)) \cdot g=\varphi^{-1}(\varphi(\alpha) \cdot g) \tag{13}
\end{equation*}
$$

With regard to the differentiability of φ, the action is differentiable. From (9), (11), (12) and (13) we have

$$
\begin{equation*}
\pi_{Q}(u \cdot g)=\pi_{Q}(u) \cdot g . \tag{14}
\end{equation*}
$$

We will now show, that a quotient metric g_{Q} in the sense of Lemma 6 exists. Choose $\alpha \in Q$ and consider the corresponding Lorentz submanifold $\pi_{Q}^{-1}(\alpha)$. Take any E of the Lie algebra of G_{c} such that the vector field ${ }^{*}$ is orthogonal to $\pi_{Q}^{-1}(\alpha)$ at one point. Because the tangent space of $\pi_{Q}^{-1}(\alpha)$ is spanned at any point by B_{i} and $c_{\alpha k}^{i} \stackrel{*}{E}_{i}^{k}$ with $c_{\alpha k}^{i}=$ const, ${ }_{E}^{*}$ is orthogonal to $\pi_{Q}^{-1}(\alpha)$ at any point. The field ${ }_{E}^{*}$ determines uniquely a 1-parameter sub-group $g(t)$ of G and (14) implies that $\left(\pi_{Q}\right)_{*}{ }_{*}^{*}$ is the same tangent vector in $T_{\alpha}(Q)$ for all points $v \in \pi_{Q}^{-1}(\alpha)$. Conversely every vector in $T_{\alpha}(Q)$ can be constructed in this way. As by the definition of the bundle metric $g\left(E, E^{*}\right)=$ const, we can apply Lemma 6 and conclude that on Q a quotient metric exists with the properties (5) and (6). Hence the Lorentz submanifolds are equidistant.

Lemma 8. Let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be two Cauchy sequences of points from $O_{c}(M), u=\lim _{n \rightarrow \infty} u_{n}, v=\lim _{n \rightarrow \infty} v_{n}$, and $x \in G_{c}$ exists such that $v=u \cdot x$. Then $x \in \mathscr{L}_{c}$.

Proof. Suppose that $x \notin \mathscr{L}_{c} .\left\{u_{n} \cdot x\right\}$ is a Cauchy sequence and $\lim _{n \rightarrow \infty}\left(u_{n} \cdot x\right)=v$ [1]. The points $u_{n} \cdot x$ lie in the Lorentz sub-manifold $O_{c}(M) \cdot x \neq O_{c}(M)$, which contradicts Lemma 7.

Proof of the Theorem:
Let us denote by $\overline{O_{c}(M)}$ the closure and by $\dot{O}_{c}(M)$ the boundary of $O_{c}(M)$ in $\overline{L_{c}(M)}$. The Theorem 4.2 in [1] implies that $\pi^{-1}(p) \cap \overline{O_{c}(M)} \neq \emptyset$ for every $p \in \bar{M}$. As G_{c} is a topological transformation group on $\overline{L_{c}(M)}$, we have then $u \cdot \mathscr{L}_{c} \subset \pi^{-1}(p) \cap \overline{O_{c}(M)}$ for every $u \in \pi^{-1}(p) \cap \overline{O_{c}(M)}$. But
from the Lemma 8 it follows that, at the same time, $u \cdot \mathscr{L}_{c} \supset \pi^{-1}(p)$ $\cap O_{c}(M)$. So, if $p=\pi(u)$,

$$
\begin{equation*}
u \cdot \mathscr{L}_{c}=\pi^{-1}(p) \cap \overline{O_{c}(M)} \tag{15}
\end{equation*}
$$

for any $u \in \overline{O_{c}(M)}$.
Let $p \in \bar{M}$ and $X \in \pi_{T}^{-1}(p)$. The class $\pi_{1}^{-1}(X)$ includes at least one pair $(u, z), u \in \pi^{-1}(p) \cap \overline{O_{c}(M)}$. If ($\left.u^{\prime}, z^{\prime}\right)$ is another such pair, then, because of (15),

$$
\begin{aligned}
u^{\prime} & =u \cdot x \\
z^{\prime} & =x^{-1} \cdot y \cdot z
\end{aligned}
$$

where $x \in \mathscr{L}_{c}$ and $y \in G_{u}$. Suppose $y \notin \mathscr{L}_{c}$ and choose a sequence $\left\{u_{n}\right\}$ in $O_{c}(M)$ converging to u. The sequence $\left\{u_{n} \cdot y\right\}$ lies in the Lorentz submanifold $O_{c}(M) \cdot y \neq O_{c}(M)$, but it has the same limit as $\left\{u_{n}\right\}$ has. According to the proof of Lemma 6, this is impossible. Therefore, we have always $G_{u} \subset \mathscr{L}_{c}$ and

$$
\begin{aligned}
& u^{\prime}=u \cdot x_{1}, \\
& z^{\prime}=x_{2} \cdot z
\end{aligned}
$$

where $x_{1}, x_{2} \in \mathscr{L}_{c}$. It follows that every $X \in \pi_{T}^{-1}(p)$ is, in this way, mapped in a class $\mathscr{L}_{c} \cdot z$ of T / \mathscr{L}_{c}. Let us denote this map by $\mu: \pi_{T}^{-1}(p) \rightarrow T / \mathscr{L}_{c}$. Now, define the function $f: T \rightarrow R$ by $f(z)=\left(z^{0}\right)^{2}-\left(z^{1}\right)^{2}-\left(z^{2}\right)^{2}-\left(z^{3}\right)^{2}$; clearly $f(x \cdot z)=f(z)$ for any $x \in \mathscr{L}_{c}$; then, $\bar{g}=f \circ \mu$ is a well-defined map of $\pi_{T}^{-1}(p)$ in R. This construction can be performed in every point p of \bar{M}, so the function \bar{g} is well-defined on $\overline{T(M)}$. Obviously, on $T(M), \bar{g}$ coincides with the Lorentz metric g on M. If T_{p} is isomorph to T, then \bar{g} is a quadratic form on T_{p} with just the right signature. It remains to show, that \bar{g} is continuous.

Let $X \in \overline{T(M)}$ and $\pi_{1}(u, z)=X$. Choose a sequence $\left\{X_{n}\right\}$ in $T(M)$ converging to X, and a sequence $\left\{U_{k}\right\}$ of open neighbourhoods U_{k} of the point $(u, z) \in \overline{L(M)} \times T$ converging to (u, z). Then $\pi_{1}\left(U_{k}\right)$ is a neighbourhood of X in $\overline{T(M)}$ and there is N_{k} such that, for any $n>N_{k}, X_{n} \in \pi_{1}\left(U_{k}\right)$, and $\left\{N_{k}\right\}$ is a non-decreasing integer sequence. This means that $\pi_{1}^{-1}\left(X_{n}\right)$ $\cap U_{k} \neq \emptyset$. Choose $\left(u_{n}, z_{n}\right) \in\left(\pi_{1}^{-1}\left(X_{n}\right) \cap U_{k}\right)$ for $N_{k}<n \leqq N_{k+1}$. The sequence $\left(u_{n}, z_{n}\right)$ converges in $\overline{L(M)} \times T$ to (u, z) and $\pi_{1}\left(u_{n}, z_{n}\right)=X_{n}$. According to [1], there is a sequence $\left\{v_{n}\right\}$ with the following properties

$$
\begin{aligned}
& \pi_{1}\left(v_{n}, z_{n}^{\prime}\right)=X_{n}, \quad \text { if } \quad z_{n}^{\prime}=a\left(u_{n}, v_{n}\right) \cdot z_{n} \\
& \quad v_{n} \in O_{c}(M) \\
& \quad \lim _{n \rightarrow \infty} v_{n}=u, \quad \lim _{n \rightarrow \infty} a\left(\mathrm{u}_{n}, v_{n}\right)=e
\end{aligned}
$$

But then $\lim _{n \rightarrow \infty} z_{n}^{\prime}=z$ and we have $\lim _{n \rightarrow \infty} \bar{g}\left(X_{n}, X_{n}\right)=\bar{g}(X, X)$. This implies that, for any $\varepsilon>0$, there is a neighbourhood U_{X} of the point $X \in \overline{T(M)}$ such that

$$
\begin{equation*}
|\bar{g}(Y, Y)-\bar{g}(X, X)|<\varepsilon \tag{16}
\end{equation*}
$$

for every $Y \in\left(U_{X} \cap T(M)\right)$. From this it easily follows that (16) holds for any $Y \in U_{X}$, because $T(M)$ is dense in $\overline{T(M)}$.

References

1. Schmidt, B. G.: General relativity and gravitation 1, 269 (1971).
2. Sternberg, S.: Lectures on differential geometry. Englewood Cliffs New Jersey: Prentice Hall 1964.
3. Hocking, J. G., Young, G. S.: Topology. Reading, Mass.: Addison-Wesley 1961.
4. Kobayashi, S., Nomizu, K.: Foundation of differential geometry, Vol. 1. New York: Interscience 1963.

B. G. Schmidt
Institut f. Theoret. Physik der Universität
D-2000 Hamburg 36, Jungiusstr. 9
Germany
P. Hajicek
Institut f. theoret. Physik der Universität
CH-3012 Bern, Switzerland

[^0]: * Supported by Alexander von Humboldt-Stiftung.

