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Abstract. It is shown that the pressure is a strictly convex function of the translationally
invariant interactions (under certain mild restrictions on the long-range part of these inter-
actions) for classical and quantum lattice systems, by demonstrating that two distinct
interactions can never lead to the same translationally invariant equilibrium state. This
generalizes a previous result that the pressure is a continuous function of density at fixed
temperature.

I. Introduction

The pressure P has been shown to be a continuous function of the
density ρ, at constant temperature T, for certain classical [l]-[5] (p. 58),
and quantum [6] systems of interacting particles in equilibrium. Since
P is a convex increasing function of the chemical potential μ and
ρ = dP/dμ, it is evident that continuity of P as a function of ρ is equivalent
to the strict convexity of P as a function of μ: the graph of P(μ) has no
linear segments. It is then rather natural to ask whether P is not also
strictly convex in T (and thus a continuous function of the entropy) at
fixed μ, or in other similar "intensive" thermodynamic variables.

In this paper we shall show that for classical and quantum lattice
gases, P is a strictly convex function of any linear parameter in the
interaction Hamiltonian or potential energy, provided this interaction
possesses translational invariance and satisfies certain other mild
restrictions. The argument makes use of the relationship ([5], pp. 184ff.)
between the statistical "state" of such a system (the set of probability
distributions or reduced density matrices for finite sets of lattice sites)
and tangent planes to the pressure regarded as a function of the inter-
action Φ (further details are given below). The existence of a first-order
phase transition is characterized by the possibility of at least two distinct
planes tangent to P for a single interaction, which is to say at least two
possible states (e.g., "liquid" and "vapor"). By contrast, if P were not a
strictly convex function of the interactions, one could find two different
interactions corresponding to the same state. We shall show that for the
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lattice systems considered, different interactions necessarily lead to
different states.

While our results apply to more general interactions, there is one
sense in which they are inferior to previous "continuity of pressure"
arguments referred to above. The latter actually establish lower bounds
(depending on μ) on the curvature of P(μ), which is to say that P(ρ) satisfies
a Lipschitz condition or, in physical terms, there is a finite lower bound
to the compressibility. Our argument, by contrast, does not rule out the
possibility that P as a function of a suitable intensive parameter might
have occasional points of vanishing curvature.

II. Generalities and Statement of Results

We define a (translation invariant) interaction for a classical lattice
gas to be a real function Φ of finite subsets of Έv satisfying the conditions

(II)
(12)

(I 3) Φ(X + x) = Φ(X) for all x eZv (translation invariance).
These interactions form a Banach space B with respect to the norm

|| || . A real function P (the pressure, essentially) is defined on B by

P(Φ)= lim IΛΓMog Σ expί- £ Φ(Y)1, (2.1)
Λ^co XCΛ [ YCX J

where \Λ\ is the number of points in the finite set Λ9 which tends to infinity
in some sense, for instance a parallelipiped with all sides tending to
infinity. It is known (see [5], Ch. 2) that the limit (2.1) exists, and that P
is a continuous convex function on B, in fact1

(2.2)
and

(2.3)

We shall show that, if Φ φ Ψ9

P(iΦ + i<F)<iP(Φ) + iP(<F), (2.4)

i.e., P is strictly convex.
The strict convexity of the pressure can also be proven for quantum

lattice systems. Let Jf be a finite dimensional complex Hubert space and
Jίfx a copy of Jf for every x e Zv. For every finite X e Έv we write

«έr _ /o\ «#~
X — \^y x '

xeX

1 These results would hold also if (12) were replaced by the less restrictive condition
0, but we shall use (12) for the proof of strict convexity of P.
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and let Gx be the algebra of all bounded operators on 3fx. If Y C X, we
have j f x — Jfy® ^χ\γ and we can identify any A e GΎ with an element of
Θx by τ4 ->A (x) fl. In this manner all the 0X are subalgebras of a big algebra
Θ. We define now a (translation invariant) interaction to be a function Φ
of finite subsets of Έ satisfying the conditions

(QI 0) Φ(X) is a self-adjoint element of Θx;
(QI 1) For Y C X (finite) we let Try be the trace on jfy and thus a

partial trace on jf^: for A e 0y, 5 e 0^y,

Then for any Y C X, ΎrγΦ(X) = 0;
(QI 2) For some fixed ξ > 0,

A Γ a O

(QI3) Φ(X + x) = τxΦ(X) for all xeZ v, where TX is the canonical
isomorphism ΘX^>ΦX+X (translation in variance).

As for the classical lattice gas, the interactions form a Banach space
B with respect to the norm || || and a real function P is defined on B by

P(Φ)= im MΓMogTr^expί- £ Φ ( Y ) . (2.5)
Λ"^ L YCΛ

It is known (see [5], Ch. 2) that the limit (2.5) exists and that P satisfies
(2.2) and (2.3)2.

Theorem 1. The function P defined by (2.1) (resp. (2.5)) is strictly
convex on the Banach space B of interactions of a classical lattice gas
(resp. quantum lattice system) as defined above.

Let us say that a continuous linear functional α on B is tangent to
P over Φ if

P(Φ +Ψ)^ P(Φ) + α(!P) (2.6)

for all Ψ e B. Because of (2.2) and (2.3), there is at least one tangent
linear functional over each Φ e B.

Proposition 2. A linear functional α cannot be tangent to P over two
different points Φ and Φ'.

Theorem 1 is clearly equivalent to Proposition 2. We now sketch the
proof of Proposition 2 (the details appear in Section III for classical
lattice gases, in Section IV for quantum lattice systems). It is known that
a linear functional tangent to P corresponds uniquely to a state satisfying

2 As before, we remark that these results would still hold if (Q12) were replaced by the
condition £ ||Φ(Z)||/|J^| < oo, but (QI2) will be used in Theorem 1.

XBQ
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the variational principle of equilibrium statistical mechanics. Such a
state satisfies the equilibrium equations of Dobrushin in the classical
case, and is a KMS state in the quantum case. It remains therefore to
show that a state can satisfy the equilibrium equations or the KMS
condition for only one interaction. In the classical case this is fairly easy
to see, and in the quantum case it follows from the Tomita-Takesaki
theory.

III. The Case of Classical Lattice Gases

A state of a classical lattice gas is a probability measure σ on the set
v) of subsets of Έv, or, equivalently, a positive linear functional on the

space of continuous functions on 0>(ΈV). (The topology of 0>(ΈV) is
determined by the condition that subsets Xn converges to X when for
any finite set A,Xnc\A agrees with Xc\A for n sufficiently large; with this
topology, 0>(ΈV) is compact) Given a tangent plane to P at Φ, that is a
linear functional α on B satisfying (2.6), it follows from [5], Section 7.5,
that there is a unique state σ invariant under lattice translations and
such that

*(Ψ)=-$AΨ(Y)σ(dY), (3.1)

where AΨ is a continuous function on P(ΈV) defined by

AΨ(Y)= Σ V(W\S\ (3.2)
O e S C F

with the sum over finite subsets of Y. Furthermore, this state satisfies
equilibrium equations (Lanford and Ruelle [7] see also Dobrushin [8])

of the form

σA(X, dY) = fA(X, Y) σΛ(φ, dY) , (3.3)

where A is a finite set with XcΛ the configuration of particles (the set of
occupied sites) in Λ9 Y C ΈV\Λ9

(3.4)

and σA(X,dY) is a measure on the subsets of ΈV\A defined as follows: if
& C ̂ (ΈV\A) is measurable, then

σΛ(X, &) = σ{

The probability of finding a given configuration X in Λ is just

(3.5)



Strict Convexity 173

Of course, the sum over allX C A of σΛ(X) is 1 this fact together with
the bound

and the equation (3.3) imply that σΛ(X) is strictly positive for all X
(including X = φ) in Λ, and hence ratios of such probabilities (see (3.7)
below) make sense.

We wish to show that given the state σ we can deduce unambiguously
the interaction Φ. The procedure is most transparent in the case of an
interaction of finite range: Φ(X) vanishes whenever the maximum

Fig. i.

distance between a pair of points in X exceeds a constant, R. We suppose,
for the moment, that X is a subset of a set M C A, and A is large enough
so that the distance from a point inside M to a point outside A exceeds R
(see Fig. 1). It is then apparent from its definition that fA(X, Y) is in-
dependent of Y, and thus, combining (3.3) and (3.5),

(3.7)
sex

The state determines the left, and hence the right, side of (3.7) for every
finite X, and consequently also, by induction, Φ(X\

For interactions not restricted to finite range we note that for a
fixed M and given ε > 0, it is always possible, because of (12), to choose
Λ large enough (but still finite) so that

Σ Σ |Φ(*uY)i<ε.
XCM YCΈV\Λ

(3.8)

Thus, although fΛ(X9 Y) depends on Y, its variation with Y (for fixed
X C M) is slight, and the ratio σA(X)/σA(φ) is, within a factor of e±ε, again
given by the right side of (3.7). By letting A tend to infinity in a suitable
sense we have β->0, and the state again determines uniquely Φ(X\ This
completes the proof of Proposition 1 for classical lattice gas.
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IV. The Case of Quantum Lattice Systems

Let 0 be obtained by completing the algebra 6 = (J ΘA with respect
Λ

to its norm. Then Θ is a C*-algebra. Because of (QI 2), every interaction
Φ e B determines a one-parameter group of automorphisms of 0 :

τtA= l imexpfi ί £ Φ(X)]Aexp\-it £ Φ(X)].
Λ^co [ XCΛ \ [ XCΛ \

See Robinson [9], and [5], Section 7.6.
A state of a quantum lattice system is a positive linear functional σ

on the C*-algebra 0 such that σ(l) = 1. The state σ is an equilibrium state
if it satisfies the KMS condition: if A, Be@, there exists a bounded
continuous function F on {z: 0 ̂  Imz ̂  1}, analytic for 0 < Imz < 1 and
such that for all real t

σ(B τtA) = F(t\ σ(τtA - B) = F(t + /) .

Now let α be a linear functional on B satisfying (2.6). It follows from
[5], Section 7.5, and from Lanford and Robinson [10], that there is a
unique state σ invariant under lattice translations and such that

θL(Ψ)=-σ(AΨ)9 (4.1)

where AΨeΦ is defined by

A - y ψ(x)
ψ~λoΊϊΓ

To conclude the proof of Proposition 1 we shall now show that if σ
and σ' are equilibrium states for the interactions Φ and Φ' respectively,
then Φ Φ Φ' implies σ φ σ'. Let τ and τr be the one-parameter groups of
automorphisms of Φ corresponding to the interactions Φ and Φr, and
with respect to which the states σ and σ' are, respectively, KMS states.
It is known that if σ = σ7, then τ = 7 (see Takesaki [11], Ch. 13). There-
fore if A E ΘA for some finite A

It remains thus to prove that

Σ [ΛΪ'W]=0 (4.2)
X : X r\ Δ = φ

implies Ψ = 0.
For BCΦΛ and AcΛ WQ define



Strict Convexity 175

Then πΔ : ΘΛ -> 0Δ has norm 1 and extends by continuity to a map & -» ΘΔ

again denoted by πA. Applying πΔ to (4.2) we find

We prove now that Ψ(X) = 0 by induction on \X\. Since !P(0) = 0, it
suffices to show that \_A, Ψ(Δ)~\ = 0 for all A e ΘΛ implies Ψ(A) = 0, but
this is obvious because a traceless multiple of the identity must vanish.
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