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Abstract. Standard geometric techniques of differential equation theory are employed
to determine the qualitative behaviour of a set of non-rotating perfect-fluid cosmologies,
whose spatially homogeneous hypersurfaces admit a 3-parameter group of isometries
of Bianchi types I, II, III, V, or VI. In this way we are led to some new exact solutions
of the field equations.

The field equations for a broad class of cosmological models are presented in a regu-
larised form, limitations on the use of this procedure are examined, and some suggestions are
made of ways of avoiding the difficulties that arise.

1. Qualitative Methods

It may be readily shown [5] that, for a certain class of perfect-fluid
non-rotating and spatially homogeneous (but usually anisotropic)
cosmological models, the Einstein field equations can be written in the
form
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with the first integral

β'2 = 4 - 4x -%Az-ze^iV, -δ£). (1.6)

In this system of equations, β[ and β'2 are quantities which measure the
rate of shear (i.e. anisotropy) in terms of the expansion, θ, of the models,
β/2 = βι+βf

2\z = 9θ~2,x=^μz (where μ is the total energy density)
measures the dynamical importance of the matter content and
Vί = V1{βuβ2) = δli-lR*e-2Ω is an effective potential for the model's
anisotropy, R* being the Ricci curvature of the hypersurfaces of homo-
geneity [20]. A barotropic equation of state of the form p = (γ-l)μ
has been assumed, where p is the pressure and γ is a constant satisfying
1 ^ y ̂  2. This inequality is necessary for the existence of local mechanical
stability and for the speed of sound in the fluid to be no greater than
the speed of light [8]. Whether or not matter exists with the limiting
"stiff equation of state p — μ is a controversial question ([11,39],

cf. [30]); many authors prefer to assume 1 ̂ y ^f. It will be found later
that for each model considered, the nature of many solutions is quali-
tatively the same for all values of y satisfying 1 ̂  y < 2, but that the
case y = 2 leads to a highly exceptional behaviour. This statement can
be reformulated in the context of the theory of differential equations:
the system (1.1)—(1.5) is structurally stable against variations of y(l ^ y < 2).

The equations of our system have been expressed in terms of de-
rivatives with respect to a new time-variable, Ω, which can always be
usefully defined for expanding models by the equation / = e~Ω, where zf
is the "representative length scale", or "radius of the universe". Misner
[23-26] first used this Ω-time with the variable β = (β1,β2) to formulate
the field equations for models of Bianchi types I and IX. MacCallum
[20] (c.f. Jacobs and Hughston [13]) has generalized this work to an
entire family of models: in the notation of Ellis and MacCallum [9]
this family consists of all Class A models, and the set of Class B with
na

a = 0 (α = l,2, 3). It is this family to which we will later restrict our
attention. The remaining set of models, Class B with nα

α + 0, is highly
intractable. In Class B with rfa = 0, the Eqs. (1.5) are modified, because
]/3βi=kβo for some constant k. If β be defined by -βj/(3 + fc2)
= kβί + |/3jβ2, we obtain the equation

in which V± is replaced by F Ξ ^ + ^ Λ where V2=%b2e2VJβ and
b = 0 except in case Bbίί (see [20]).

The equations have now been "regularised", in the sense that the
right-hand sides of (1.1)—(1.5) are analytic functions of quantities whose
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derivatives appear on the left, although they do explicitly contain the
time-variable, Ω, and so form a "non-autonomous system". They may
be regularised in the sense of Oszvath [29], i.e. regularised to form an
analytic autonomous system, either by adjoining a further equation

dΩ \
e.g. —— = 1 cf. [34] to the system, or by using the first integral

dΩ )
Eq. (1.6) to eliminate the time-dependence, or by a further change of
variable. The first method, while formally valid, is of little practical
consequence. The second method, elimination of Ω, renders the system
autonomous, but generally non-analytic, although some exceptional cases
can be studied (see Section 2). Oszvath's scheme, which uses new
variables, unfortunately seems to necessitate an increase in the number
of equations: Oszvath (op. cit.) has examined axisymmetric (β2 = 0) dust-
filled {y = 1) non-rotating Bianchi types I, II, VIII and IX with A = 0, and
has obtained a system of equations which is analytic, autonomous and
with the additional property that the functions appearing on the right-
hand sides are bounded for finite values of the variables. This representa-
tion is analogous to the regularisation procedure (which appears to
have been initiated by Levi-Civita [17,18]) used in the three-body
problem of classical mechanics. For instance, Waldvogel [38] and
Arenstorf [1] study the elliptic restricted three-body problem in three
dimensions: that is, the motion in & of a mass point P in the Newtonian
gravitational field of two other mass points, Pγ and P2, which move in
elliptic orbits about their centre of mass, with P having negligible effect
on this motion. The aim is to find suitable transformations of the distance-,
velocity-, and time-variables which yield differential equations whose
right-hand sides are holomorphic on that part of phase-space containing
all trajectories of P (whereas in the original notation, infinite values of
the potential would occur at a collision of P with Pγ or P2). A new time-
variable is defined which corresponds to Oszvath's transformation £->τ:

(where B is a representative length) and the existence of a "collision
path" to Px or P2 (corresponding to B^O as £->ί* + 0) can be demon-
strated. Further, the "Sundman integral" (1.7) converges along such a
path (i.e. t* > — oo). The advantage of regularisation is now apparent:
the behaviour of the new dependent variables at a collision is known
(they all tend to finite limits) and so the solution is holomorphic in some
neighbourhood of the collision, i.e. a Taylor series expansion exists (with
some non-zero radius of convergence) for the new variables in positive
integral powers of τ — τ*, where τ* = τ(f*). On transforming back to
the original coordinates, we obtain a series in powers of t — t*, the



140 C. B.Collins:

dominant term of which may involve fractional or inverse powers, or
both. Knowledge of the motion "through" the collision is obtained, and
any further collisions can be treated similarly.

The situation in cosmology appears to be somewhat more compli-
cated. Firstly, we must examine the Sundman integral, and possibly
make a further change of variable to ensure its convergence (this question is
related to that of the existence of particle horizons, cf. [19]). Secondly, the
behaviour of our dependent variables at the singularity does not in general
seem to be immediately evident (thus the solutions do not appear to be
necessarily holomorphic at the singularity: for instance, Oszvath's varia-
bles x9 y9 z and B may a priori become infinite, or oscillate infinitely often
on approaching the singularity). We should like a change of variables so

dx
that the field equations are of the form —— = X(x)9 where X(x) is analytic

dT
and bounded for all finite x = (xl9x29 ...,xm)e&m

9 with the additional
conditions x-+x0 as T^>T0, where To is a finite T-time at which the
singularity occurs and x0 is finite. If this cannot be done we could seek
the existence of a theorem giving conditions under which "singularities"
(strictly, points beyond which analytic continuation is impossible) do or
do not occur in a finite time in normal algebraic autonomous systems

dx
(i.e., in systems of the form —— = P(x\ where P is a vector with m

dt
polynomial components), and if they occur in a finite time, some in-
formation on the manner in which they do so (cf. the work of Boutroux
[3] and Hardy [10], who have examined the behaviour of solutions of
a single polynomial equation (m = 1); it is immediately clear from phase
plane methods such as those described in this section that when m = 1
any singularity necessarily occurs within a finite time whenever the degree
of P is greater than 1, and that the singularity behaves as an inverse
fractional power of the time variable). It is possible that this result could
be extended to more general systems, but so far the problem appears to
have received little attention (cf. [21]).

Oszvath's regularisation can be readily extended to models which
contain a perfect fluid with an equation of state p = (y — 1) μ(l :g y ̂  2)
and which are of Class A or Class B (nα

α = 0, not Bbίi). The equations
for these models are given in [9] (Eqs. (4.9) and (6.7)), and with the change of

X 2 IT Z'\ 4 [X' 1 / r Z'
1 / r Z'\ Λ_ dτ (YZ)1/2dt .

q = —j- — — L dτ = —2- = ^ > a n d m Class A with
x \ Y Z J x X
N2Y N3Z N2Y N3Z Έ . Λ . J

r = — ——, s = — 1 — - , we can obtain regularised equa-
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tions for both classes. For Class A models we have the system

x' = \x3y-\x2z,

y' = i(γ - ί)xyz +|(2 - γ)x2y2 + £(2 - γ)x2q2

z> = i(y - l)χ V + i(2 - y)x3y2 + (2 - γ)x3q2

+ (2-y)N?x5 + 2(γ-l)N1x
3s-yxr2

9

q' = \xzq — rs-\-Nίx
2r,

and

r' = x2qs.

s' = x2qr,

with the "first integrals"

and

: = V 7 — Y v — Y/7 -I- 0 ΛΓ Y S Λ7" Y

while for Class B {rfa = 0, not Bbii) models,

x' = \x3y — \x2z,

2 - y)x2y2 + i(2 - y)x2q2

/ = i(y - l)x2yz + i(2 - y)x3>;2 + (2 - y)x V

and

^ =

with the "first integrals"

1 z q0

y-

and

2 x a o

q

AM 1 1
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In the above, a dash (') denotes differentiation with respect to τ, the
notation and convention of [20] are employed (thus q0 is not directly
related to the variable q), and the phrase "first integral" is used rather
imprecisely, since in each pair of such equations, the second involves
quantities not expressed in terms of the variables of the system to which
it belongs. The systems hold for zero cosmological constant, Λ, no
progress having been made in attempts to find a regularized system
either when Λ + 0 or when models of Class B (nα

αΦ0 or Bbίί) are
considered. For models of Class A with q = r = 0, γ = 1 and Y = Z,

we obtain Oszvath's system [29], with —— = x2 —r-.
dτ dτ

Of course, this is not the only possible regularisation. For instance,
we find that for all1 axisymmetric dust models (Y = Z, γ = 1) of Class A,
the transformations x = x/Y, y = y/Y, z = z/Y2,s = s/Y2 give the regu-
larised system

x = \xy-\z,

and

with "first integrals"

s = (JV2+JV3)/Y2

and

4M _ 1 __ 1 __ 2 __ 2 _ 3

γ4 ~y^ z τ X } ; iXS~ ί X '
where a dot (') denotes differentiation with respect to the original time-
variable, t. This might be preferable to the previous regularisation,
because there is now no need to consider the question of convergence
of the Sundman integral.

It may be advantageous to study the field equations in the form of
an autonomous analytic system, because they are then more amenable
to the application both of numerical methods and of qualitative methods
in the theory of differential equations. We shall use the latter approach.
The qualitative theory is well understood for autonomous systems of
two first-order equations, for in this case the types of "singular-points"
(where the right-hand sides vanish simultaneously) are rather limited,
and the various behaviours possible may be readily classified (see e.g.

1 The type VII0 model of this set admits a group of type I [9], and is here considered
as such.
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[27, 32, 37]). The entire qualitative features of the solutions may then be
mapped out by trajectories in a two-dimensional phase-space (giving rise
to the phrase "plane autonomous systems"), provided that this space
does not have the global topology of the torus Sf1 x ^ 1 , i.e. provided
that the two unknown variables do not both behave as angles. Much
difficulty is encountered in attempting to extend the general theory to
more complicated systems, owing to the great variety of possibilities in
the types of singular points, and to the fact that the Jordan curve theory,
on which a considerable part of the plane theory depends, has no direct
analogue in higher dimensions: intersection properties of curves in
three dimensions are greatly different from those in two. Numerical or
computer methods will generally require the system to be bounded in
the region of (JC, t) space considered, where x refers to the dependent
variables and t the independent variable in the system of equations
whose solutions are being investigated. Consequently the singularity i = 0
cannot be examined by such methods using the β — Ω notation (Ω-» + oo),
although attempts at discovering the behaviour up to finite Ώ-values
have been made (see e.g. [4,22,28, 31]).

Although Oszvath's system and its above extension may have all
the properties required for computational purpose, it seems that there
is no immediate subsystem which also has these properties, and which
lends itself to other methods of analysis. For this reason, we consider
henceforth the system of equations in the form (1.1)—(1.5), bearing in
mind that the method of regularisation may yet yield further systems
amenable to geometric study.

2. A Tractable Subsystem

We will now investigate the possibility of obtaining autonomous
analytic subsystems from Eqs. (1.1)—(1.6), with Λ = 0. The form of the
potential Vί will be taken from the results quoted in [20]. In the case
of Class B with na

a = 0 (types V and VIΛ,Λ+ -£), (1.1) and (1.5b) give
such a subsystem, because Vί is a purely exponential function of β. (1.6)
can then be used to eliminate ze2Ω, and a plane autonomous system,
[x, /?'], results for the variables x and β'. For models of Class A, we can
form a subsystem [x, β'{] of the required type whenever β'2 = 0 (which
corresponds to axisymmetry), and V1 is purely exponential (types I, II,
VI0 and VΠ0), by considering (1.1) and (1.5) together and eliminating
ze2Ω by means of (1.6). Other special subsystems which also yield to
qualitative analysis include the general type II models with Λ = 0, and
the type I model with A Φ 0. These models are discussed in Section 3.

For models of type I (Fi = 0), the motion is always rectilinear in the
β-plane, even when Λ + 0, as can be seen from (1.5a). Thus β[ and β'2
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are proportional: either β[ = 0 or β'2 = λβ[ for some constant λ. If A = 0,
we obtain from (1.1), (1.5a) and (1.6) a system of two independent
equations which can be solved exactly (see e.g. [12] and references
therein), or can be treated qualitatively in a manner depicted in Fig. 1
(the A = 0 solutions are depicted on the curved part of the boundary of
the D-shaped region), from which we can read off the pattern of the
behaviour of the solutions2. The diagrams are drawn in ί2-time, that is,
arrows indicate the behaviour approaching the singularity (increasing Ω,
decreasing £), and β' = β'2 or β[ according as β[ = 0 or β'2 =λβ[. From
(1.5 a), β" has the same sign as β' for γ Φ 2, and ~β" = 0 when γ = 2. From
Fig. 1 we see that for 1 ̂  γ < 2 there are certain special cases: the Robert-
son-Walker solution for spatial hypersurfaces of homogeneity with zero
curvature (x = 1, β' = 0), and two empty solutions with β' = ± d [36]. It
can be seen that there are no "bounces": β' is of constant sign [20,26].
Matter effects are generally unimportant in the early stages (in that
x^O as β-» + oo), the only exception being the Robertson-Walker
solution. The models "isotropize" away from the singularity, that is
β'ocσ/Θ^O as ί2-> - oo (cf. [20]). When γ = 2, x and β' are identically
constant. Solutions have been obtained in closed form by, for example,
Jacobs [12]. They do not isotropize, and matter effects are important at
all times for all such models. Again, there is no change of direction of
motion in the /?-plane.

We can examine the nature of the types of singularities that can
occur by using the information contained in the diagrams. For type I
models, the question has been extensively investigated [12,20]; in
general, there are pancake or cigar singularities with the 1-, 2- or 3-axes
distinguished. The only exceptional case is the Robertson-Walker model,
which has a point singularity.

For the remaining models dealt with in this section, V1 is purely
exponential, i.e. Vx = DeCβ for constants D φ 0 and C, and for β = βι in

= f )* " f2

|/( + /c
(1.6) now give the system

Class A and β = f ) * " f2 in Class B {n\ = 0). Eqs. (1.1), (1.5) and
|/(3 + /c )

dx

~dΩ

2 Figs. 1-7 are drawn schematically: for instance, no distinction is made in Fig. 5(ai)
between the general behaviour and the case in which 2C = 3y —2, where a "star-like"
node occurs at (0,2), i.e. trajectories approach this point from all possible directions, and
not just along the boundary. The boundary of the D-shaped region in Figs. 2-5 intersects
the line x = 0 at ^'-values + 2, whereas in Fig. 1 the appropriate values are + d, where
d = 2 for β[ = 0 and d = 2(1 + λ2)'1'2 for β'2 = λβ\. In Fig. 7, the appropriate ^'-values are
± c, where c = [&(2 + γ) (10 - 3y)]1/2.
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and

This pair of equations is now analysed using qualitative methods, with
the values of C taken as 4, - 2,0 and 2fc/]/(3 + k2) for types II, VI0, V
and VIΛ respectively. The case VΠ0 with β2 = 0 admits a group of type I
[9], and so has already been discussed; it is "locally rotationally sym-
metric" (LRS), in the sense of Ellis [7] and of Stewart and Ellis [33].
For each value of C, we proceed by calculating the singular points and
then use standard techniques to evaluate their nature. Because of (1.6)
we need consider only the region β'2 + 4x ^ 4, x ^ 0. The results of the
qualitative analysis are depicted schematically in Figs. 2-5. In the
type II, VI0 and VIΛ models for 1 ̂ y <2 a "focus" can occur: there is
some point in the region under consideration out of which trajectories
spiral infinitely many times. In such cases, "limit cycles", or closed
trajectories, can possibly occur, corresponding to periodic solutions.
There are certain theorems which give conditions for the existence or
non-existence of such behaviour. We have used a theorem due to Dulac
[6], which generalises a result of Bendixson [2]: we exhibit the function
f(x,β') = x~3/2(4 — 4x — β'2)~1 which, on the singly-connected region
β'2 +4x<4, x>0 of the x—β' phase plane is continuous with continuous

derivatives, and satisfies ——{fX)+ -—-(/£)> 0. It follows that there
OX 0 fj

can be no closed trajectories, and that the motion is as shown in our
diagrams. We now give a brief discussion of the main properties relating
to these diagrams.

For type II models the typical behaviour is that the model "starts"
(Ω^ — oo) at a non-zero value of β\ (and so does not isotropize in ί-time),
executes one bounce (where β[ = 0) and as Ω^> + oo, β[ -» — 2 and x->0,
indicating that matter effects are negligible near the singularity (which,
in this general case, is a pancake with the 1-axis distinguished [20]).
This behaviour agrees with that predicted in [13] and [20], where the
analyses were based on the concept of a receding potential wall (described
by the function V) which in type II is parallel to the β2 axis: the universe-
point bounces exactly once off this wall, and "ultimately" (Ω^> + oo) β[
is negative. However, it is shown in Fig. 2 that certain exceptional cases
arise, whose anomalous behaviour is not accounted for in the previous
works. For 1 ̂  γ < 2, there is one solution for which x and β[ are
identically constant, and another for which x->l and β'->0 on ap-
proaching the singularity. Both solutions have point singularities. The
former is given in closed form in the appendix, and has already been
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(b)y=2

Figs. 1 and 2

Figs. 1-7 depict the evolution of a set of models (in general with zero cosmological
constant) in terms of the variables x — \μz and β\, β'2 or β'. x is a measure of the importance
of matter, and βi, β'2 and /?' measure the importance of shear anisotropy. The axes are
drawn in the conventional sense (e.g. x increases from left to right in Fig. 1-5, 7) but the
directions are not marked, to prevent confusion with trajectories. Arrows refer to evolution
in Ω-time (£?-• +oo indicates ί->0, or approach to the singularity). Diagrams (a) refer
to values of the parameter γ lying in the range 1 ̂  y < 2, and (b) to γ = 2. In Fig. 1, trajectories
are drawn for the general Bianchi type I model with a yl-term. Fig. 2 describes the LRS
(β2 = 0) type II model, Fig. 3 the (na

a = 0) type V model (note the resemblance between
the evolution in this case and the type I case with A > 0), Fig. 4 the axisymmetric (β2 = 0)
type VI0 model, and Fig. 5 the na

a = 0 type VIft (h φ 0) model, whose behaviour differs
according as (ai) C 2 ^ 3 y — 2 or (aii) C2>3γ — 2. The general type II vacuum solution
is depicted in Fig. 6, and a special type II solution with ft = J(3y — 2) in Fig. 7. New exact
solutions are denoted by JV, and those already known by E — M, Ja, Jo, K,R — W and Γ,
which refer respectively to the authors Ellis and MacCallum, Jacobs, Joseph, Kantowski
and Sachs, Robertson and Walker, and Taub.
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Figs. 3 and 4

referred to in [5]. The latter solution has properties similar to those of
a special exact radiation solution of Kantowski [15] (see Fig. 5 (a)),
having a point singularity and with matter dynamically important at
early times. When γ = 2, matter is always dynamically important, in
that x is bounded away from zero at all times; the singularity is a point
singularity. Further, certain of these models fail to bounce against the
potential wall, their trajectories remaining in the region β[ > 0 for all
time (Fig. 2(b)). The equations may be integrated exactly (see appendix).
All the type II models considered here are LRS [9].

The type V models (k = 0) of our set are all known up to a quadrature
[9]. Joseph [14] has presented the empty solution, and Ellis and
MacCallum [9] have determined the solutions for y = l,f,f and 2 in
terms of elliptic functions. From Fig. 3, there are no bounces, the models
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2

Kfor 7=1, j and O1 E ' M

/Nfor2C=3y-2,Cφ1 N C

E M

NforCφ1jKforC=1

-2

Figs. 5, 6 and 7
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isotropize (/?'-•() as Ω-> — oo), and x->0 as Ω-> + oo in all cases except
for the Robertson-Walker (point-singularity) models and for the γ = 2
solutions, and so matter is generally dynamically unimportant in the
early stages. Cigar singularities, with the 2- or 3-axes preferred, occur
for 1 :g γ < 2; for y = 2, we obtain barrels or cigars (with the 2- or 3-axis
preferred), or points. These statements accord with those of MacCallum
[20].

Ellis and MacCallum [9] have integrated the equations for axisym-
metric type VI0 models which are empty or which contain matter
obeying the equation of state p = μ. For all models with 1 ̂  γ < 2, we
see from Fig. 4(a) that the behaviour of the solutions is qualitatively
similar to that of type II. The singularity is cigar-shaped, with the 1-axis
preferred [20]. For each value of γ two exceptional cases (both with
point singularities) occur in which x does not tend to zero as Ω-> + oo,
and so matter effects are not negligible in these models. The special case
of x and β\ identically constant can be integrated exactly, giving solu-
tions which, except for the dust case [9], are new (see appendix). In the case
when y = 2, there is also some similarity between Figs. 2(b) and 4(b); a
cigar or barrel singularity, with the 1-axis preferred, or a point singularity
will occur.

New solutions (see appendix) may be obtained for those models of
type VIΛ (h Φ 0, — ̂ ) which contain a fluid whose equation of state is
p = μ. For the type YIΛ models with which we can deal, we have 0 < k < + oo,
k φ 3 (0 < C < 2, C Φ j/3) and k = C = 1 for Bianchi type III, which is of
type VIΛ in the classification of Ellis and MacCallum [9]. Kantowski
[15] has discussed the case C = l, giving all solutions except that in
which β' = 1, which corresponds to a formally infinite value of his param-
eter a. Matter is never negligible in the early stages, and for some
solutions the sign of β' changes exactly once, corresponding to a collision
against the potential wall. These models do not isotropize. When y < 2,
the behaviour falls naturally into two cases. When C2^3y — 2 (which
always holds for Bianchi type III) x->0 as Ω^> — oo for all cases, and
x->0 as Ω-* + oo except for one case, which for C— 1 and y = § corre-
sponds to the Kantowski radiation solution referred to earlier, in which
matter is initially (in ί-time) dynamically important and in which there
is a point-singularity. Some solutions bounce against the wall (βf changes
sign). We have obtained solutions for all cases where 2C = 3y — 2, which
apart from the case C = l , y = f are new. Kantowski (op.cit.) has also
given the vacuum solution for C = l , and Ellis and MacCallum [9]
have extended this to the case C Φ 1, giving those solutions for which β'
is not identically equal to C. This exceptional case is given as a new
exact solution in the appendix. Kantowski and Sachs [16] have given
exact solutions for the case C = y = l. When C2>3y — 2, we obtain a
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focus, from which all non-empty solutions "start" (in Ω-time). Most
solutions bounce against the potential wall, and in general matter is
dynamically negligible at early times. A new exact solution is given for
the case where x and β' are identically constant (cf. Types II and VI0),
including the vacuum case (β' = C). None of the VIA (h φ 0) models of
our set isotropizes in ί-time. For k> 1 (respectively, k < 1) a cigar-
singularity with the 1- or 3-axis (respectively, 2- or 3-axis) preferred will
occur for γ<2 [20]. For k = 1, there is a pancake or a cigar, with the
3-axis preferred. If C2 > 3y — 2, the solution at the focus can have a cigar
or a barrel singularity (with the 3-axis distinguished), or a point-
singularity. When y = 2, there is a point singularity, or for k> 1 (re-
spectively, fc=l, fc<l) there can be cigar or barrel singularities with
the 1- or 3-axis (respectively, 3-axis, 2- or 3-axis) distinguished. The
special vacuum solution β' = C has a cigar or barrel (with the 3-axis
distinguished) singularity, according as k>l or k=ί9 or a point
singularity (for k < 1).

The Figs. 1-5 provide us with a unified view of the solutions of our
set. A cursory inspection gives information concerning the qualitative
nature of the solutions, in particular about asymptotic (ί2-» + oo)
behaviour. To what extent a solution is typical may be readily assessed.
Further, the diagrams are suggestive of which solutions may next be
most easily obtained in exact form: exact solutions are still unknown
for those types II, VI0 and VIΛ models which spiral around a focus, and
if one were found it might readily lead to a solution for all cases, in
view of the similarity of the behaviour in the different types. The other
remaining solutions not yet solved in closed form are of type VIΛ with
C ^ γ(3γ - 2) < 2,0 < C < 2, C φ |/3,2C φ 3y - 2, and because these are
the only unknown solutions which do not spiral, it is likely that they will
be the next to be obtained, if further exact integrations are possible.

3. Special Subsystems

Because the type I models have several simplifying features, we can
still obtain a pictorial description of the solutions for these models when
ΛφO. With β defined as before we obtain Figs. l(a),(b). When Λ>0,
Eq. (1.6) implies β'2 + 4x<4, and all models isotropize in ί-time (i.e.
/?'->0 as JΩ-> — oo). When 1 = y <2, matter effects are unimportant in
the early stages, except for the Robertson-Walker model (β' = 0, x-» 1 as
Ω^+ + oo); when γ = 2 matter is important in all cases. As for all type I
models, β' is of constant sign; there are no "bounces". The nature of
the singularity is essentially independent of the Λ-term (see Fig. 1). If
Λ<0, a recollapse occurs in finite time [20]. From (1.6), β'2 + 4x>4,
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and the recollapse in our diagrams is represented by the trajectories
going out (in ί-time) to infinity, where z = 0, in a finite time. Matter is
important in the early stages only when γ = 2. A discussion of certain
type I models with A φ 0 has been given by Stewart and Ellis [35] and
by Saunders [33].

The evolution of the general (β2 Φ 0) type II model with A = 0 can
also be visualised, but a three-dimensional picture is necessary. We write
(1.5 a) in intrinsic coordinates (s, ψ), where s' = β' and ψ is the angle that
the direction of motion makes with the positive ft-axis. The acceleration
of a point in the β-plane which has non-zero velocity is β" = s"t + s'ψ'n,
where t and n are respectively unit tangent and normal directions to the

motion. Then (ft', βT2) = - ^ (ft, ft,) + y/(-β'2, ft) implies
s

(3.1)

, _ 2 z

with

ψ, (3.2)
5

2 i

*' =4-4x- yze 2 β + 4^<4. (3.3)

We ^dopt the convention that s' ̂  0 and 0 ̂  i/; < 2π, and assume that
t/> and ψ' are continuous functions of Ω except possibly when ψ = 0. This
means that except for when the universe-point is moving directly towards
the potential wall, any deflection of the point's direction takes place
gradually; only when ψ = 0 can φ change discontinuously, to π. From
(1.5aii) or (3.2) we see that if β'2 is ever zero, this always holds. This
corresponds to the axisymmetric (LRS) case, which has already been
mentioned. From now on, we can thus assume φφO, π. From (3.2),
s' > 0, for if s' were zero in finite Ω-time, ψf would be infinite. Further,
ψr has the same sign as π — ψ, and so if 0 < ψ < π at some time, this
occurs thereafter (in Ω-time), and therefore ψ tends to some limit, ψ0.
If ψo = π, (3.1) and (3.2) give

^ 1 r A /-» /-»x /2Λ , c o s ε

where φ = π — s9 s>0 and ε-*0 as Ω-> + oo. Integrating, we have
1 Ω

ln(5/tanβ)= — J {4 - (3 y-2)x-sf2}dΩ+constant. Because s;is bounded
2

above, hφ'tanε)-* — oo as.Ω-> + oo, yet the integrand is positive, a
contradiction.

11 Commun. math. Phys., Vol. 23
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If ψ0 < π, the integrand must tend to zero (in a sense to be defined)
because if ψ = ψ0 - ε, (3.1) and (3.2) give

s^ _1^ {4_ (37_2)x- s} +
2

for sufficiently small ε. On integration,

lns'~ 1 ?{4 - (3y - 2)x - s'2} dΩ +
2 J

Because the integrand is positive (and s' is bounded above), given any
ε > 0 there exists a time Ωo such that the integrand is less than ε for
Ω > Ωθ9 except possibly on a set of Ω-intervals the sum of whose lengths
is less than 1 (we will say that the integrand is "arbitrarily close to zero
except on a set of zero measure"). When 1 ̂  γ < 2, this is possible only
if x and sf are arbitrarily close to 0 and 2, respectively, except on a set
of zero measure, because of the restriction (3.3). When y = 2, (3.1)—(3.3)
give

2 sinφ [2

and, since ψ' > 0, if s' — 4 cos ψ is ever positive, s" > 0 and so sf — 4cosψ>
is thenceforth (in Ω-time) positive. Consequently s' — 4 cos ψ is eventually
one-signed, implying that s' is eventually strictly increasing, strictly
decreasing, or constant. In all cases sf tends to a limit, s'o, as Ω-> + oo,
and because 4 — 4x — s'2 converges to zero by the above argument,
x tends to a limit, XO = 1—^S'Q, as Ω-» + oo. In common with the
axisymmetric case it appears that x0 can take arbitrary values in the
interval (0,1]. If π<ψ<2π, the same results hold, as follows by the
substitution φ = 2π — ψ.

The vacuum case, x = 0, is particularly easy to describe. Eqs. (1.5 a)
and (1.6) give

dΩ l ^ 1 / v >* ' β'2
 y r i ' dΩ '

and so β'2 = κ(4 — β[) for some constant K. The nature of the solutions
(due to Taub [36]) is depicted in Fig. 6. It is seen that β'2 is of constant
sign, and that β[ changes sign exactly once or never at all. This corre-
sponds, in terms of the "receding potential wall" description, to the
universe-point rebounding once off the wall, or having a direction of
motion inclined at such a large angle to the normals of the wall that it
never reaches it. No vacuum model isotropizes. The singularity is in
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general cigar-shaped with the 2- or 3-axis distinguished; the only
exception is the LRS case (β'2 = 0) in which there is a pancake singularity
[20].

There is another special case in type II with which we can readily
deal: there exist solutions in which /?'2=l=0 and β[ is constant. From
(1.5ai) and (1.6) we have, putting μ = Me3γΩ with M constant,

Equating coefficients of x, βλ =i(3y — 2)Ω + β0, for some constant β0

which satisfies (2 — γ)(3γ — 2)M = (6 — y)e4βo. Now for Bianchi type II
models, we can rescale according to the scheme βί->βί+λ,Ω^Ω — 2λ,
where λ = 2βoβγ. This preserves the scaling which has made ^ = 1
(for notation, see [9], [20]), i.e. it preserves the invariant nί = e2βl+Ω,
and it has the effect of transforming β0 to zero. The remaining Eqs. (1.1),
(1.5aii) and (1.6) (which of course show that (3.4) is preserved in time)
give the exact solution described in the appendix, and illustrated in
Fig. 7. This solution is a generalisation of the nonempty LRS solution
found earlier [5], which appears as the point x = τβ(6 — y), β'2 = 0 in the
diagram. We note that matter effects are in general dynamically negligible
(:x->0) as Ω^> + oo, and that the models do not isotropize. The model
will in general have a cigar singularity with the 2- or 3-axis preferred [20],
but the particular case of β'2 = 0 has a point singularity (Section 2).

4. Conclusion

By using geometric techniques, we have been able to determine the
precise behaviour of a certain set of non-rotating spatially-homogeneous
cosmological models. These models are filled with a perfect fluid with
an equation of state p = (γ — l)μ, where p is the isotropic pressure, μ the
total energy density and γ a constant satisfying 1 :g γ ^ 2. The models
are further restricted because, in order to employ the methods of this
paper, the potential function Vγ must satisfy a relationship of the form
dV

1 =DVt (where D is a constant and β a, quantity specifying the shear
dβ

(see Section 1)). The necessity of this last restriction appears to be the
only serious limitation from which the qualitative treatment suffers.
The diagrams that we have obtained may be easily interpreted and the
various patterns of evolution assessed. In particular, we have determined
the asymptotic (towards or away from the singularity) behaviour of the
variables occurring in the field equations, and thus the degree of an-
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isotropy or the dynamical importance of matter in the early or late stages
of expansion of the models.

We have presented in a regularised form the field equations for a
large family of cosmological models (Class A and Class B (rfa = 0)). The
limitations implicit in the procedure of regularisation have been dis-
cussed, and suggestions have been made of ways of avoiding these
difficulties.

It is quite possible that a combination of the two methods discussed
in this paper will prove useful: by applying geometric techniques to
regularised systems of the field equations, detailed information con-
cerning the behaviour of the solutions could then be obtained.
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Appendix of New Exact Solutions

If y = 2, the equations of Section 1 may be solved simultaneously for
the models admitting groups of type II and type VIΛ (h Φ 0), for which
exact solutions were hitherto unknown. We note that x = K(βf — C)2,
where K is constant, is a first integral of the system of equations. Sub-
stitution of this into the β'-equation yields a first-order ordinary differ-
ential equation for /?', whose solution is

4-C2

C{l+Bcoth[a(|8-CO)]} '

where

BC , 2

±

unless B = 0 in which case β' = C + A, where

A l(4K + 1)A2 + 2 A C - (4 - C2)] = 0.

If B Φ 0, further integration yields
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1 Me6Ω

where E is constant. Also x = K(β' — C)2 = —2— implies

I M \1 / 2

β-CΩ=±be3Ω, where μ = Me6Ω and b=[-— . Putting C = l ,

we regain the solution of Kantowski [15]. If we let u = β — CΩ, the
equation

ύ=±

gives t = t(u). From the above results we then obtain Ω = Ω(u) and
β = u + CΩ(u). If βf is constant (B = 0), so also is x. This implies either
x = 0 or 4 — Ax — β'2 = 0, both of which lead to contradictions.

We now quote all new exact solutions obtained, using the coordinate
systems of [9].

1. TypeII (a) l ^ y < 2 .

1 3 E2e3{2~y)Ω

fi (32)Qfi (2 + ) ( 1 0 3 )

'— I -a-
The metric is

ds2 = - Λ 2 + e-2Ω+2^(dx + zdyf + e~2a-^(en»Hy2 + e

(b) y = 2.

The metric is as in l(a).

2. Type VI0 (a) 1 ̂  y < 2. ^ = - ±(3γ - 2). We may rescale according
to β1 -> j8x + Λ, Ω -+Ω + A, which leaves invariant π 2 = — n3 = eΩ " / ? 1

without loss of generality we can therefore assume β1 = —j(3γ —

o 2vί 4^
We obtain β2 = 0, e 2 = γ { ( 2 _ γ ) { 3 y _ 2 ) } and μ= ^ ^ l the
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metric is

ds2 = -dt2 i

3. TypeVIh (a) ί^γ<2.
k IcR

(i) μ φ 0 , Cβ = ( 3 y - 2 ) Ω + A,Λconstant,ft = — ^ β 2 =
 μ

and

e - 4 I « = 2 γkaoe
λ/2t

K«2-7)(3y-2)} '

The metric for the space-time is

ds2 = -dt2 + X2(ήdx2 + Y2(ήe~2a^ +»xdy2 + Z 2

where

-Ω-
, = ̂ β + ^ / ? 2 and Z =

and α0 are constants.

(ii) μφO, 2C = 3y-2. Let v = β"Ω, A 2 = ^ " 2 Ω . Then μ = Me3yΩ,

I\2EΫI2 λ

t~±\Wj i

and v = v(λ) is given by

(2 -
M (3y + 2)

where £ and M are positive constants, and F is constant. When y = f, the
solution agrees with that of Kantowski [15]. The metric is as in 3(ai).

k kR
(iii)μ = 0 jyΞCj9 = /? = P 0<fe<+oo(feΦl>3),

2fc
C = —r-—Γ2~, jS = CΩ + λ, λ constant.

|/(3 + k )
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Also,

1 Γ an 2 Π-4-fr 2 ^ l 1 / 2

l J V + K

 eCλ/2f3(4-C 2)

and the metric is as described in 3(ai).

(b) γ = 2. The solution assumes the complicated form mentioned at
the beginning of this appendix. μ = 3Kb2e6Ω and the metric is as
described in 3(ai). The case of C = 1 has been discovered by Kantowski
[15]. There is also the special solution for which β' = C.

Although all vacuum metrics are known for the models of Section 1,
we now rederive these solutions from the equations of that section, in
order to exemplify the unification of our treatment. In general, the
equation for β' can be integrated once to give

) {B c o n s t a n t >

The change of variable v = eβ~CΩ enables this equation to be integrated
to give

Eeβ + 2Ω = [ ( 2 _ c)Beβ~CΩ- (2 + C)] 4 / ( 2 " C ) (E constant),

which is equivalent to β = β(Ω). Eq. (1.6) now implies an equation for Ω
in terms of Ω and β(Ω\ and this yields the relation between Ω and t.
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