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Abstract. The generalized matrix elements on the Poincare group are used to write the
Fourier transform explicitly. This realizes a mapping between positive type functions on the
group and generalized density matrices.

Introduction

This work is the continuation of our preceding paper [1] hereafter
referred to as part I. It is written in three chapters, where we deal succes-
sively with

I. The matrix elements.
II. The dual space of the Poincare group.

III. The Fourier transform in &1 and ̂ 2 spaces.
One gets a fairly simple view of the structure of the dual space of

equivalence classes of unitary irreducible representations of the group.
Our aim is to work out the Fourier transform for distributions on the

group and we hope this can be achieved in a following and last article.

Chapter I. The Matrix Elements

In part I, we computed the generalized matrix elements of the unitary
representations of the Poincare group. For this purpose, we wrote
explicitly the matrix elements of the stabilizator groups, SU(2) and
5(7(1,1). We obtained them as eigenfunctions of infinitesimal operators;
of course they are only defined up to a phase (this corresponds to the
relative (and arbitrary) phase of the vectors of the basis). Here, we use
this indetermination to redefine the matrix elements, in order to obtain
a better analytic behaviour. We give these definitions in the case of the
5(7(1,1) subgroup and obtain the case of SU(2) by analytic continuation.

* Laboratoire associe au Centre National de la Recherche Scientifique.
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For the notation one must refer to part I.
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We take the same formulae for all the representations of SU(l, 1) and
choose the determination of the square root in the following way: Put
z = s + j. Express Q(s; Λ/, λ) as product of functions of the form }/p-z
and l/p + z (or inverses of these functions). This is possible asλ — λ' is an
integer. Choose then the determination of the square roots such that

In the z-plane, one has the following cuts :

Arg j/p+z-JΓ/2 Arg/p+z =

ArgVp-z=-7r2
-p

Arg /p-z= -jr/2

Fig.l

When /I = A', one has N(s; A7, /I) - 8(5; /I7, λ) = 1.
When /I < λ', one has (with z =

N(s;λ',λ)=

When A > A', one has ΛΓ(s; λ', λ) = N(s; λ, λ'Γ1 and

λ-i

(5)

(6)

p = A ' + i
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For the SU(2) matrix elements, we take the same formulae and we choose
the following determination on the cuts and add a phase

N(s λ', λ) = lim N(s + iε λ'9 λ) iλ> ~ λ .
ε>0

We get then

N(s;λ'9λ)= Π - = if λ<λ'

if λ = λ'

if λ>λ'.

1. Analyticity

The expressions (1) (2) (3) (4) make sense for all values of s. In fact, one
has to choose a determination of the function in the integral of (2) such
that when X approaches the identity σ0, one has fεsvλ(X)-+δλ>λ. This
integral is defined for all values of s, as \Xn\ = \X22\ > \%i2\ = \^2il and
ψsλ,λ(X) is an analytic function of s.

From the normalization factors, the matrix element have cuts in the
s-plane, which are those of the square roots that we find in formula (3).

When 2s is an integer (then 2λ and 2λ' are of the same parity as 2s),
the matrix elements are zero if

-s^ λ ^s and \λ'\>s
or

-s^λ'^s and \λ\>s.

Apart from the cuts in the s-plane, the matrix elements are analytic
functions of s and also are analytic functions of X as one can see by
formulae (1), (2) and (3).

For some values of s, they defined unitary representations and for
|Res| < 1, they correspond to continuous representations in Banach
space [4]. The composition relations

which are valid for all s [3] and give rise to the properties of representa-
tions (unitary, in Banach space for some s), can be used to define "gener-
alized representations" in some sense.

We have in this way an analytic continuation for all 5. Furthermore,
one also has an analytic continuation from SU(l, 1) to SU(2), as they
are subgroups of SL(2, C). The non unitary finite representations of

l, 1) (with 2s eN and —s^λ'9λ^s) then become the unitary
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representations of SU(2). For the other representations, formula (2) can
be surely continued to the neighbourhood of the origin given by the
conditions |-^nl>|^ι2| and |^22l>l^2il> but farther there can be cuts
which come from the determination of the logarithms to be used in the
right-hand side of (2).

2. Symmetries

When one expands the right-hand side of (2) into series, one gets

ni? v ϊ\
r iV\ — _^__^__L γs + λ'γλ-λf γs-λ
Jεsλ'λ(Λ) — ~7~ι ^77j All A21 A22

(9)

vs + λί \λ'-λvs-u ( 12) 22

(10)

One derives formula (1 1) from formula (9) using a property of the function
F, which is the hypergeometric function [5].

One may then derive the following symmetries :

(from (9) and (10), with X = transposed matrix of A").

/«λ<λW = /β(-s-ιμ<λW (13)
(from (11)),

/MλuW = (~ l)Λ"λ'/εsr>3^3) , (14)

ΛsA'Λ^/βW**) (15)

(X* = complex conjugate of X).

Formula (14) is evident from (9) with σ3 = . Formula (15)

means that fεsλ'λ(X) is a real analytic function of (5, X).
By formula (11), one sees that s and ( — s — 1) define the same matrix

elements, and furthermore, the matrix elements are analytic functions
of — s(s + l), which is the eigenvalue of the Casimir operator.
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3. Unίtarίty

If X belong to SU(19 1), one has

Using relations (12), (14) and (15), one gets

Therefore, the unitarity requirement is fulfilled for real s, whenever s is
not on the cuts. This is the continuous exceptional series, with λ and λ'
integral and — 1 < s < 0. When 2s is integral, then 2λ and 2λf are of the
same parity as 2s, many of the matrix elements are zero, and for the
remaining, s is not yet on the cuts. This gives rise to the two discrete
representations, given by

2seN;

λ and i '^s + 1, or -λ and -λ'^s + ί.

When s = — \ 4- zρ, one gets the unitarity relations using formula (13).
The finite representations of SI/(1, 1) given by integral 2s and
— s^λ,λ'^ + s, are non unitary; by the non uniformness of the matrix
elements, one has:

(when one takes s*, one chooses the other limits on the cuts of Fig. 1).
The representations of SU(ί9 1) are very well known [2,4] and the

Fourier transform is well studied [4, 6]. Harmonic analysis on this group
differs greatly from the Abelian case.

When X belongs to SU(2) and 2s is an integer, we have the unitarity
relations for \λ\ and \λ'\ ^ s. In fact, we have in that case

(As before, one chooses the other side of the cut and therefore introduces
a factor (— i]λ'~λ which cancels.)

4. Composition Relations (Multiplicative Property)

In our Ref. [3], using series expansions, we proved that the following
relation is valid for all s:

(16)
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The proof is valid for all X, Y belonging to 5(7(1,1) and the summation
is uniformly convergent if X and Y remain bounded. Therefore, one may
easily derive (8).

When 2s is an integer, the representation breaks down into three
parts, as the matrix elements are identically zero whenever one has

\λ'\ ^ 5 and \λ\ > s

or

\λ'\ > s, \λ\ > s and λ, λ' with different signs .

Therefore, λ and λ' must belong both to one of the intervals
[-00, s-1], [-s, +5], [5 + 1, ...+oo].

When 5 is not at the unitary points, relation (16) can still be used to
define a representation in an other space than a Hubert space (see
Ref.[4]).

Chapter II. The Dual Space

Almost all the irreducible continuous unitary representations of the
Poincare group are characterized by the eigenvalues of P2 and W2 and
some discrete indices, such as the sign of energy for positive and zero
masses, the integral or half-integral character, or the sign of the third
component of the spin in the case of zero and negative masses. Excepting
those complications, we can give a fairly simple chart of the irreducible
representations in Fig. 2, where we plot

W 2

ω = —
\W2 w2- P P

4

p2

versus p =
\P2

For the physical masses M, ω = Ms and p = M, each point cor-
responds to two representations which differ by the sign of the energy.

For the imaginary masses /M, p= — M; the section by the line
p = — 1 gives all the representations of 517(1,1) (see Fig. 3).

The structure of the representations is more involved when P2 = 0.
The half-line p = 0, ω > 0 contains all the infinite spin representations of
zero masses, each point corresponds to four representations: positive or
negative energy, integral or half-integral spin.

The chart of unitary irreducible representations of the Poincare group.
1) The oblique hachures indicate the continuous integral spin and

negative square mass representations (ε = 0).
2) The horizontal hachures indicate the continuous half integral and

negative square mass representations (ε = 1).
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Fig. 2

3) All the lines ω = kp with positive integral or half integral k and a
half line with k = — \ and p < 0 correspond to discrete spin representa-
tions (ε = +).

4) Zero mass and infinite spin are localized on the half line ω > 0 and
p = 0.

5) At p = ω = 0, one has zero mass and finite spin and zero 4-momen-
tum representations.

£-0 k<o σ=θ±| σ=]± 2±
Θ J -Θ- -i -Θ
I

e=1

the k axis

s=-1/2+i Q

-O •)- D D

3.5 ± | 0.5± 1.5±

e=1
X

• O Θ Π -Θ O Θ
<T=-0.5± 0± 0.5± 1± 1.5±

ι
the s plane ]

Fig. 3
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The multiplicity at the line p = — 1 of Fig. 2. k = ω/p s = k if k ̂  — ,̂
s = —1 + i(fc + ̂ ) if k < —I; σ = (5, ε) is the spin index:

ε = 0: integral continuous spin representations (fc<0, s=— j + z'ρ
or -j<s<0),

ε = l : h a l f integral continuous spin representation (k<— \,
s = — j + iρ),

ε = ± : 1) s half integral ^ — |: half integral discrete spin with positive
or negative helicity representations,

2) s integral ^ 0: integral discrete spin with positive or negative
helicity representations.

Some values of σ are given on the figures. / is the zero spin representa-
tion (trivial representation).

The point P = 0, ω = 0 is rather tangled: it contains all the finite
spin, zero mass representations (four-fold: signs of the energy and of the
helicity) and also all the zero-momentum representations.

Let us call Φ the set of equivalence classes of irreducible unitary
representations of ̂ . Φ is called the dual space of the group ,̂ and is
usually endowed with the Jacobson topology [7, 8]. One may feature it
as follows: Let £f be a subset of ,̂ a representation % E Φ belongs to
£f if ̂  is weakly contained in ̂ , that is to say if one nonzero continuous
positive functional associated with ^ is a weak limit of continuous
positive functionals associated with ίf\ one may suppose these functionals
bounded in norm. The weak topology is the topology of simple con-
vergence over JSf1 (&). But the continuous positive functionals on JS?ί (&)
can be identified with the continuous positive definite functions on the
group (see Ref. [8], Theorem 13.4.5), and as one may restrict oneself to
uniformly bounded families of such functions, the weak convergence is
equivalent to the vague convergence (i.e. pointwise on ££(&\ which is
defined to be the set of continuous functions on & with compact support)
or to the convergence on any dense subset of <£l(&}.

Now, this topology can be replaced by the equivalent one which is
obtained by the vague convergence of the generalized matrix elements
(which are measures):

First, any positive type continuous function ψ associated with an
irreducible unitary continuous representation (see Ref. [8], No. 13. 4.6)
is in the vague closure of its generalized matrix elements. This function
can always be expressed as

φ(α) = <£,^σ(α)O=^_ j^ W%(*)η*(τ)η(τ')dμ(τ)dμ(τ')

where ξ is some vector given by a square integrable function η (see
formulae (17) and (18) in Parti). As a measure, ψ takes its value on a
function φ e £?(&} (the symbol j£? stands for "the space of continuous
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functions with compact support on..."):

η*(τ)η(τ')^(φ)dμ(τ')dμ(τ)

with <%™,(φ) = j %7(

At this point, one sees that one may restrict oneself to the η's belonging
to <^(^~vσ) and as 91™ (φ) is a continuous function of τ and τ', there exists a
sequence of Riemann sums which converges to I(φ) for any φ e S£(£P\
As a Riemann sum is the value on φ of a finite linear combination of the
measures Φτ

v

t?, the assertion is proved, as consequence of the separability
of &(0>).

The converse is also true: a generalized matrix element is a vague
limit of finite sums of positive type functions. With two sequences of
functions of y(3~vσ\ ηn converging to <5(τ — Tj and ζn to δ(τ' — τi),
one has

τ) Cπ(τ'

and the function

can be expressed as a linear combination of four positive type functions

<ηί + εζn, ^
vσ(α) faB + ε(n)> (with β = ± 1, ± 0 .

This convergence is the consequence of the continuity of tft™(φ) as a
function of (τ, τ'). This can be easily proved using the Lebesgue theorem
in formula (23). In fact, when φ is of compact support, one may have even
the equicontinuity in (τ, τ') for all v and all σ with the real part of s
bounded; this is a direct consequence of the uniform bound oϊfεsλ,λ one
may get by formulae (1), (2) and (3). We have a more complete

Theorem 1. The generalized matrix elements are vaguely continuous
functions of the eigenvalues of the differential operators, when P2 φ 0 or
py 2Φθ.

This means that
1. for unphysical masses, the matrix elements are vaguely continuous

functions of 5, and not only of τ = (fc, λ) and τ' = (&', λ'} (this can easily be
seen from formulae (23); one may even get the analyticity in s);

2. the matrix elements have the same limits as the masses approach
zero from P2 > 0 and P2 < 0 (see Fig. 2). Some similar results are known
[10].
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This can tje seen in the following.
First, one notices that for fixed λ and λ', and variable k and fe', all the

generalized matrix elements of an irreducible unitary representation are
obtained by translating one of them, therefore one may show that one
appropriate generalized matrix element for the zero mass representation
is a vague limit of a sequence of generalized matrix elements of irreducible
unitary representations from each side of the line P = 0 of Fig. 2. There-
fore we deal with

a) Physical Masses and Infinite Spin

03 03

First, when k and k' approach 1 (1 is defined in Part I), the measure
03 03

ωδ3(Xk, k'} has the limit vδ3(X 1 , 1 ). The surface defined by the equation
Xk = k approaches uniformly over any compact the surface defined by

03 03

X 1 = 1 , and as the invariant measures on these surfaces have well-
correlated normalizations, one can conclude.

In a second step, as the matrix elements are the product of this
measure by the continuous functions eik'xfsλ.λ(U)9 one shows that the
multiplicative factor converge also uniformly over any compact to the

03

limit el1 'xfrελ>λ(S\ when one lets M2s(s + l) converge to r2 as M2->0;
S is related to U by

S=lϊmHi1UHk.03 K K

k->l

The calculation is straightforward with Stirling formula (in fact the index
ε is a function of λ and can be dropped out). Therefore, we conclude
that we have

03 03

I λ ' λ α). (17)

The symbol u-lim stands for vague-limit. For other matrix elements, one
can translate this equality.

b) Unphysical Masses and Infinite Spin

The same techniques can be used and one gets the following equality
0303

I Λ ' / l α). (18)

Except the factor ,̂ the two limits are identical. In fact, this is obtained
because we chose an additional phase in formula (7); the natural
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continuation on the Poincare group is not the continuation given in
SL(2, C\ The factor \ can be understood easily if we remember that the
same unphysical mass representations give rise to two representations
with zero mass, but with the opposite signs of energy. At the same time,
we see that those representations are not separated in the Jacobson
topology.

c) Physical Masses and Finite Spin - Unphysical Masses and Finite Spin

The proof is the same as before, and this time, the multiplicative
factor has trivially, in the two cases, the same limit:

'λ(0) = eiλφδλλ,Λ\ / ΛΛ . ι

f / r n iλΦ* Wlth ? =
8λ λ(U) = elλφδλλ

Therefore, we get;
03 03

im3 (k~2)ψ(skkλ'λ;oί)=ψ(0εί 1 λλ\κ)δλ,λ

(20)
03 03 v '

λλ'9ct)δλ> λ

d) The Zero-momentum Point

Let the momentum converge to zero, for example by setting k = cq
and kf = cq' and letting c go to zero. Then the matrix elements converge
to those of the representations of SL(2, C) induced by the respective
representations of S [7(2), ST(2) and Sί7(l, 1). These induced representa-
tions are highly reducible, for instance a representation of SU(2) of index
5, induces a representation of SL(2, C} which is a continuous sum of all
the representations σm > ρ (with ρelR, m— — 5/2, —5/2 + 1, ... 5/2) of the
principal series in the Naimark notation [9]. Therefore all the representa-
tions σmρ are not separated in the dual space of the Poincare group.

We can now exhibit the structure of the dual space :̂
First, by a theorem of Bernat and Dixmier [11], the topology of $

is stronger than the one given by the plane {W2xP2}, i.e. by Fig. 2.
According to our considerations, both topologies turn out to be identical.
Non separated points are given by the three half axes :

a) P2 = 0; W2 ^ 0: zero mass and zero momentum;
b) P2<0: W2 = —\P2\ imaginary mass and discrete half-integral

spin, 5 = — 1/2
c) P2 < 0; W2 = 0: imaginary mass and discrete integral spin, 5 = 0.
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We may explain the Jacobson topology in a simple way: take the
spaced of measures over ,̂ which has a separated vague topology. To
each irreducible unitary representation of ,̂ associate a subset of Jί
given by the vague closure of the matrix elements of the representation.
The Jacobson topology of Φ is the natural topology of these subsets of Jί,
therefore it can be very pathological.

Chapter III. The Fourier Transform in J271 and £?2 Spaces

1. £?1-space Transform

The generalized matrix elements are measures on the Poincare group
and their values on fixed function of £?(&) are continuous functions of
the parameters. But we can also generalize their values to integrable
functions, i.e. define the Fourier transform in ££l (̂ ). For definiteness we
take (a measure defined by) a matrix element of physical mass and we
define (with M = ]/fc^; ε = fe0/|fc0|, and φ e J&?1)

φ(Mεs; k'λ'kλ) = J ψ(sk'kλ'λ;(x, X)) φ(x, X)d4xd6X . (21)

The matrix element is carried by the submanifold of equation Xk = fc',
and for all k and almost all k the function φ is integrable, that is to say,
its restriction to the submanifold is integrable:

φ(x,X) is integrable, and φ(x,Hk~
1X) too belongs to Jδf1^). By the

Fubini theorem, if one parametrizes by X = UHk, for almost all values
of fc, φ(x9Ή^lUHk) is integrable for the measure d4xd3U of the sub-
manifold, and furthermore, the same is true for the matrix element as it
has a finite continuous density (= eik>' x f s λ ' λ ( U ) ) when related to d4x d* U.
The proof is the same for all the other cases, and we get

Theorem 2. For any φeJS?1^), all vσ, all τ' and almost all τ, the
formula

Φ(vσ; τ'τ) = J ^T

V'£(oc) φ(α)rf10α (22)

makes sense, and defines a finite function φ of the parameters vστ'τ. (φ is
called the Fourier transform of φ.)

Let us call & the space of all the indices vστ'τ. First, φ is defined
only almost everywhere, and is not a continuous function, it is not
bounded and does not decrease at infinity. (However, φ is integrable for
the measure d3k/\k2k0\9 and when integrated, gives a continuous function
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of the remaining parameters, bounded by ||φ|| l5 and decreasing at
infinity.) We see that the Fourier transform is more singular on the
Poincare group than in the Abelian case; this reflects the fact that the
matrix elements are measures and not bounded continuous functions.

The explicit formulae are

φ(Mεs; k'λ'kλ) = J eik>'xfsλ,λ(U) φ(x9 H£l UHk)d4x d3 U , (23 a)

, Tk7
1STk)d4xd3S , (23b)

d30, (23 c)

where ε is the sign of energy (ε = k0/\k0\) and ε' is a spin index
(̂  = 0,1, +,-),M-/jFj.

When one defines

formulae (23) can be shortened by using φ(k'9 X\ the only integration
left is that over the stabilizator subgroup (d3U or d^S or d30).

2. ^2-spαce Transform

We come now to the Fourier transform in & 2 with the standard
procedure.

For any φ e J?1 n Jzf2, we can define φ. Let us consider

Asφe y?2(&\ for almost all X and as a function of x, \φ\2 is integrable and
by classical Fourier theorems we have

According to the values of k'9 we use the parametrizations :

(when k'2 > 0; k2 = k'2 and k0k'0 > 0),

X = Fk^OFk; d6

(when k'2 <0; k'2 = k2), and we set
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N2(X) is integrable for the measure d6X and we have

= I \φ(k',k;U)\2d4k---d3U

k'2<0 <o

In this formula d*k/\k2k0 is the invariant measure on the mass shell
defined by fc', and the two integrals of the right-hand side are to be per-
formed respectively on positive and negative square masse domains.

Now, again by the Fubini theorem, we can perform first the integration
over the subgroups, and use the classical theorems of Peter Weyl [12]
on SU(2) or of Bargmann [2] on Sl/(l, 1) to replace these integrations
by an integration over the dual spaces of these subgroups.

As we have

φ(Mss; k'λ'kλ) = f /Sλu(t7) φ(/c', k; U)d3 U (when k'2 > 0) ,

φ(ίMss; k'λ'kλ) = J/MA,A(0) φ(K, k; O)d3O (when k'2 < 0) ,

we use the Bessel-Parseval formulae:

J \φ(k',k;U)\2d*U= £ X (2s + l)\φ(M8s;Vλ'kλ)\2, (25)
SC7(2) 2se«M λ',λelss

I \φ(k',k;0)\2d30
SU(1,1)

= Σ Σ 2(2s + ί)\φ(iMSε;k'λ'kλ)\2 (26)
2 s s N , ε = ± λ',λelse

+ Σ Σ 1 Cε(ρ)\φ(iMSε;k'λ'kλ)\2dρ.
ε = 0,l λ',λelsε 0

• s = - i + ί ρ

We define the summation domains of λ and λ' :

Iεs = { - s, - s + 1, . . . + s} (for formula (25)) ,

/ s β={ε(s + l),β(s + 2),...} when ε = ± , (27)

Isε = Z + ε/2 when ε = 0, 1 (for formula (26)) .

One sums on s with 2s eN, and in the last integral of formula (26),

When the right-hand side expressions of formulae (25) and (26) are
replaced in Eq. (24), we get a generalized Bessel-Parseval formula.
It shows that the Fourier transform is an isometric mapping of
££ * (̂ ) n & 2 (0*) into the space of square integrable functions over the index
space ,̂ with the natural measure as it appears in the formulae. By
density considerations we can therefore define a Fourier- Plancherel
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transform from j?2(^) into <£2(Φ\ and these formulae give an explicit
construction of this transformation.

The inverse Fourier transform is easily obtained by classical theorems.
For almost all X, we have

φ(x, X) = 7^ J>(fc'> X)e~ίk'xd4kf. (28)

According to the sign of k'2, one has

k', X) = φ(k'9 k; U) (k'2 >0;X = Hk

= φ(k'9 k; O) (k12 < 0; X = F^

and respectively

Q(k',k;U)= Σ Σ (2s + l)φ(Mεs ,k?λ'kλ)f*λ.λ(U),
2seN λ',λelεs

φ(k',k;0)= X X 2(2s + ί)φ(iMsε;k'λ'kλ)f*λ,λ(0),

+ Σ Σ ί
ε = 0,l λ'tλelsε 0

(for the summation domains, see formulae (25), (26) and (27)).
All these formulae are to be taken as limits in J£?2(^).
Formulae (28) to (29) define the inverse transform, which can be

written with the matrix elements:

(2π)>(x,X)= Σ Σ (2s + 1) ί Ψ*(sk'kλ'λ;(x,X))
2 s e N A , A ' e / s ε f e / 2 > 0

\k /c0|

+ Σ Σ 2(2s + l) J ψ*(εsk'kλ'λ;(x,X))
ε = ± , 2 s e N λ',λelεs fe'2<0

/73t
• φ(iMsε; k'λ'kλ) d*k -^—

+ Σ Σ ί Ct(ρ)dρ
ε = 0,l Λ ' , A e / ε s 0

s=

• J ψ*(εskfkλ'λ
fe'2<0 Λ K0

The summation domains of A and A' are given in (27) and d3fc/|fc2fc0 | is
the invariant measure on the mass shell defined by k.
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We may give another form for the inverse formula by making the
integration over d3k/\k2k0\:

(2πfφ(x,X}= £ Σ (2*+l) J e-ik'*fs*.,(HkXH^ik)
2seN λ,λ'e/ s e fc 2 >0

φ(MεS;kλ'χ-1kλ)d4k

+ Σ Σ 2(^ + l) ί e-lk 'f*
ε = ± , 2 s e N λ ' ,Λe/ e « *2<0

(30a)
+ Σ Σ ί Ct(ρ)dρ

0

We can state:

Theorem 3. There exists a Fourier-Plancherel transform, which is an
isometric mapping between <£2(&}anά the spaced 2(0*) of square integrable
functions over the index space $9 with a natural measure as it appears
through formulae (24), (25) and (26). This mapping is given by formulae (23)
and (30).

We may notice that the measure on Φ is related to the measures
on the space 3Γ^0 of (fc, λ\ which are defined in Part I.

The Fourier-Plancherel transform on the Poincare group has been
studied by Rideau [13]. By classical theorems, one knowns this trans-
formation to exist: The Poincare group is postliminar [8,13,14] and
such a group admits a Fourier-Plancherel transform (in J2?2) [16].

The unitary representations of the Poincare group which contribute
to this transform are given by the indices (v, σ) which can be classified in
three subsets of ̂ :

a) v2 > 0; σ = (ε, s) with ε = + 2s eN,

b ) v 2 < 0 ; σ = (s,ε) with ε = ± ; 2 s e N , (31)

c) v 2 <0; σ = (s,ε) with ε = 0,1; 5 = — % + iρ with ρ>0.

These subsets are open in ,̂ and can be taken as the carrier (which is
called the Plancherel set) of the Plancherel measure we introduce now:

4 ^Γ (2s +1) δs (on the set 31 a),
2(2π) 2seN

v dv

4 X (2s + l)δs (on the set 3Ib), (32)
l^π) 2seN

-4- Cε(ρ)dρ (on the set 31 c).
2(2π)4
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We recall that v2 is the eigenvalue of the square mass operator P2, δs is
the unit mass at the point 5 of the discrete space N, and dρ is the Lebesgue
measure on R

In Part I, we introduced the space yvσ of the indices τ = (fc, λ) with a
measure

d^ = Σ ^ (̂ e formulae (27))

and the generalized matrix elements, denoted by <^™(a)> act in the space
^2(^~vσ, dμ(τ)\ Now for each integrable function φ, we have defined its
Fourier transform which can be denoted by

^»=ί^(α)<p((χ)ί/
10α. (33)

&

For all τ' and almost τ, this function is defined (and finite). The space
$ of indices is the natural space for the indices vστ'τ, and the space
g*2($) has a very simple meaning. Let us denote by J^vσ the Hubert space
of Hubert-Schmidt operators on JS?2(«^,σ, dμ(τ)), (with the norm
<<^vσ, -rvσ> - Trace^vσt - i^vσ). The space ^2(^) is then the Hubert
integral (see for example Ref. [17]) of the spaces 3?vσ with the measure
dμ(v,σ):

σ). (34)

For any square integrable function φ, formula (33) gives the generalized
matrix elements of an operator ^vσ(φ) acting in £?2(3~vσ,dμ(τ)\ which is
defined for almost all vσ, and a decomposable operator

acting on the space

*X2(rvσ9dμ(τ))dμ(v9σ).
&

Formula (24) then becomes

f |<p(α)|2d10α = f <*vσ(φ), ®vσ(φ)> dμ(v9 σ)
* # (35)

- f TraceΦvσ(<p)t ^vσ(φ) dμ(v, σ)

and the inversion formula (30) also :

<p(α) = J Trace<^vσ(φ) ̂ ^(α)1 d//(v, σ) , (36)

22 Commun. math. Phys., Vol. 22
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while the Fourier transform formula can be rewritten :

^^(φ) = J ^vσ(α) φ(α)d10α . (37)
9

Formulae (35), (36), (37) give the results in their usual form in harmonic
analysis [16].

In this very condensed notation, we list some properties of the Fourier
transform:

W(φ*ψ) = 9ί(φ) <%(ψ) (φ and ψ e J5?1 (

(38)

J φ(α) ψ(a)dί0a = J Trace^vσ(φ) Wvσ(ψγ dμ(v, σ)
& &

(φ and ψ e J£?2(^)) and we recall the definitions of:

C7(α): (C7(α)φ)(]8) = φ(α-1« (39)

3. The Bochner Theorem on Positive Type Functions

A function φ on a group is said of positive type if for any set of n
points oq . . . αw of the group, the n x n matrix whose elements are ^(α^α^1),
is Hermitian positive. Such a function φ fulfills the following relations

|φ(α)| ̂  φ(ε) (ε = unit element of the group) ,

Iφ = φ* (see formula (39)) ,

|φ(α) - φ(β)\2 ^ 2φ(ε) Re(φ(e) - ^(α^-1)) .

One has the following generalization of the

Bochner Theorem [18]. Let G be a separable, locally compact, type I
group; a function is of positive type on G if and only if one has

where G is the dual space of G, whose points, denoted by ζ, are equivalence
classes of irreducible unitary representations %ζ, and dρ(ζ) is a Hermitian
positive operator valued measure of finite mass (i.e. J Trace dρ(ζ)<co).
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This theorem is valid for the Poincare group [15] and gives a Fourier
representation for any positive type function φ :

φ(α) = J Trace^vσ(α)f dρ(vσ) . (40)
Φ

But in the above theorem the unicity of the measure dρ(vσ) is not
established. Let us recall the proof (in the notation of Ref. [8]).

To any function φ of positive type, one associates a representation
πφ and a cyclic vector ξφ such that

and the couple (πφ, ξφ) is unique within an isomorphism. As the group
is of type I, one may expand nφ into multiples of irreducible representa-
tions in a unique way: there exist positive measures μ1? μ2, ... μ^ on ̂ ,
foreign one to another, such that 1

where ξn(ζ) eJ4?(ζ) 0 ©#"(£) (n times), and can be written as direct sum
of n vectors ξni(ζ

UO = ΘUO (42)
i = l

The measure dρ(ζ) is defined by

. (43)

The unicity of the measure dρ(ζ) is obtained if one sees that the measure
dρ(ζ) gives the decomposition (41) within an equivalence. The measure
dμn(ζ) is equivalent to the trace of dρn(ζ) (dρn(ζ) is the restriction of dρ(ζ)
to the subset of G where dρ(ζ) is of rank rc); furthermore, formula (43)
determines the vectors ξni(ζ) up to a constant factor and a substitution,
that is to say, determines πφ and ξφ. The unicity of the representation
(πφ9 ξφ) implies the unicity of the measure dρ(ζ). So we may add a

Proposition. The measure dρ(ζ) of the Bochner Theorem is unique.
We therefore get a Fourier transform for positive type functions, but

this does not show the complicated structure of the dual space. Further-
more, one needs the Fourier transform for distributions if one intends to
look at the Fourier transform for infinitesimal operators for example,
and these operators have all a physical significance ! That is the reason
why we hope to study this generalization in a following and last paper.

For the notations and the theorems which are used here, see Ref. [8], {
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