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Abstract. An analysis of the stability of the Taub universe for arbitrary, initially small
perturbations is carried out. It is found that the perturbations decrease during the expansion
and increase during the contraction of the unperturbed space. In the process we obtain the
general solution to a system of six coupled, linear, partial differential equations in six
unknown functions of four variables.

I. Introduction

The solution to Einstein's field equations found by Taub [1] has
aroused considerable interest on several counts, (a) It is a non-flat
solution of the empty-space equations, having closed, homogeneous,
space-like hypersurfaces which expand anisotropically. It can thus be
interpreted as describing a universe containing nothing but gravitational
radiation, (b) It is well behaved for all finite values of the coordinates, but
becomes singular (in the sense that certain components of the Riemann
tensor become infinite) at t = ±00. The in variants RijklR

ijkl and RijklR
ίkj\

however, remain finite, (c) Newman, Unti, and Tamburino [2] have
obtained a metric which extends the solution to values of the proper time
outside the range covered by Taub's coordinates1, (d) The extended
space-time is maximal [3] (i.e. not part of a still larger space-time), but it
is geodesίcally incomplete [3] (i.e. there exist in it geodesies which cannot
be extended to infinite values of their afίϊne length), (e) In the part of the
manifold outside the two singularities (NUT space) there exist closed
time-like curves [4].

Some of these properties are more than mere mathematical curiosities.
In particular the singularities and the expansion are features found in
almost all cosmological solutions. With its anisotropy, Taub space thus
appears to be the simplest generalization of the Friedman models -
albeit without matter. In the early stages of the evolution of the universe,
however, when the curvature is high, the presence or absence of matter

* This work will be presented as a thesis to the Department of Physics, University of
Chicago, in partial fulfillment of the requirements for the Ph. D. degree.

1 The proper time interval covered by Taub's coordinates is finite.
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has little effect2 on the evolution of the geometry, and Misner has used
Taub-like metrics to discuss the nature of the singularity near the zero
of time [5]. Finally, the investigations of Behr [6] imply that the presence
of matter does not significantly alter the nature of the solution — in
particular, the occurrence of singularities.

For a cosmological solution to be acceptable as a model for the real
universe, however, it must be stable against small perturbations. It is easy
to show that, when we introduce a small amount of pressureless matter,
its density grows without limit as the singularity is approached. Since
this particular perturbation does not remain small, one concludes that
the Taub space is unstable [3]. We wish to point out, however, that this
instability is intimately connected to the presence of a singularity in the
future, and precisely the same behavior is found [7] when one perturbs
the closed Friedman models which also have a future singularity. In fact,
all perturbations of the closed Friedman models grow without limit as
the singularity is approached [7]. Hence, the density argument is not by
itself sufficient to rule out Taub space as a possible cosmological model,
as long as one is willing to consider the closed Friedman models as such.
The fact that, in the Taub case, the infinity destroys the smooth con-
tinuation into NUT should not concern us since NUT space, being
acausal, is of no interest as a cosmological model.

In this paper we carry out a general perturbation analysis of the
Taub metric. It is found that, just as in the positive curvature Robertson-
Walker metrics, all perturbations decrease during expansion and in-
crease during contraction. We therefore conclude that, as far as stability
is concerned, the Taub metric is as good a description of a closed universe
as are the positive curvature Robertson-Walker metrics.

But quite apart from strengthening the case for Taub space, the
analysis carried out in this paper is interesting from a purely mathe-
matical point of view, being a rigorous solution of a system of six coupled
differential equations, linear and homogeneous with respect to six
unknown functions of four variables, with coefficients depending on one
variable (the time coordinate). Moreover, the steps followed in obtaining
the solution provide, we believe, some new insight into the structure of
Einstein's system of equations, which, in the final analysis, is what makes
the solution of such a complicated problem possible.

II. The Exact Solution

The Taub-NUT metric can be written in the form:

ds2 = l2{F(dτ)2-A(ω1)2~A(ω2)2-B(ω^2}, (2.1)
2 The energy of the field, being quadratic in the gijtk, dominates the energy of matter

when the curvature is high enough (i.e. when the gijtk are large).
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where / is a constant length and F, A, and B are functions of the dimen-
ct

sionless time coordinate τ = ——. The ωα's are one-forms satisfying

(2.2)

They can be expressed in terms of the Euler angles ψ, θ, φ as follows:

ω1 = — sinψ dθ + cosφ sinθ dφ ,

ω2 = cost/; dθ + smψ sinθdφ , ι n

and ' (

co3 = dtp -f cosθ dφ .

The field equations R^ = 0 for this metric are

A 2 B ' 2 A2 ' 4 B2 ' 2 AF ' 4 BF

2F „ 2F n A 1 AF ,1 AB BF 2F r

and

2F
B 33 B 2 BF 2 B2 AB A2 (2.6)

(where a dot signifies differentiation with respect to τ) with the off-
diagonal components being identically zero. There is one non-trivial
Bianchi identity, namely

this implies that

is a first integral of (2.4)-(2.6).
As is evident from physical considerations, the field equations allow

F to be specified arbitrarily (corresponding to the arbitrariness in the
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choice of the time coordinate). For any given F, Eq. (2.7) ensures the
compatibility of the three Eqs. (2.4)— (2.6) in the two unknown functions
A and B, while Eq. (2.8) implies a constraint on the constants of integra-
tion. If one chooses for F the general form F = AmBn, then the particular
choice m = 2 makes (2.6) an equation for B alone, while n = — 1 makes
the difference (2.5)-(2.8) an equation for A alone. Once uncoupled, the
equations can be integrated rather easily.

Taub's [1] choice was F = A2B and he obtained

A = coshτ B = 1 (2.9)
2{1 +cosh(τ + α)} ' coshτ

which becomes singular (B = 0) at τ = ± oo.

Misner [3, 4] chooses F = 4/B and obtains

with B = 0atτ = a± j/α2 + 1 (a = m/l in his notation).

Finally, if we choose F = A2B~V we find

= cosτ + α sin τ (2,11)-— - -,
2(1+ cosτ)

with B = 0 at cotτ = — a (two values differing by π).
In the above expressions a stands for the only non-trivial constant of

integration of (2.4)-(2.6). The other two are the origin and the unit of the
time variable, which were chosen equal to 0 and 1, respectively. The last
two solutions allow the metric to be continued analytically outside the
"Taub" region, where B < 0 and τ becomes space-like, while ψ is now
time-like. Since we will be using Misner's choice, we rewrite Eqs. (2.5),
(2.6), and (2.8) for F = 4/B; we have

+ - + - r = 0 , (2.12)
A AB A2 AB

_ -μ H — =0 (2 Πϊ
B + AB + ^2 ϋ ? (Λ1Jj

and

1 A2 AB 2 8
2 A2 AB ~ ~A^ AB ~ ' ^ ' '
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III. The Perturbation

We now write3 g'tj = gtj + δg{j where gtj are the known functions of
time and δg^ are small corrections depending on all four coordinates.
It is well known that we can impose four arbitrary conditions on the
δgijS without restricting the generality of the perturbation. (What is
more, there are still coordinate dependent perturbations which must be
removed later - see Appendix C.) We choose

<$0o. = 0 (3.1)

for three of these conditions and as a fourth require that g'OQ is the same
function of g'Λβ as g00 is of gaβ. For example, if F = 4/B we require that
F' = 4/B' which, to first order, becomes

In the following we specialize to Misner's choice of time coordinate
F = 4/B (even though everything can be done in the same way for arbi-
trary F), and parametrize the non-zero metric coefficients as follows:

1 Ίι β

Ύ^-^
0 A + a + γ K λ , (3.2)

0

\ 0

where α, β, γ, K, λ, and μ are six unknown functions of τ, ψ, θ, and φ. Here
and in what follows A and B are the known functions of time given by
Eq. (2.10), and satisfying Eqs. (2.12)-(2.14).

We also introduce a small amount of dust-like matter, with density
ρ, satisfying the conservation law

(ρuV)., = 0. (3.3)

0

α +

K

λ

0

γ K

A+a-γ

μ

0

λ
μ

B + β

To first order this equation gives

ρA]/B = constant =f ( - j M (small of 1 s t order) . (3.3a)

The field equations4 for the metric (3.2) with source Ttj = QutUp where
only terms linear in the δgtj are retained, are given by

3 Latin indices have the range 0, 1, 2, and 3; Greek 1, 2, and 3.
4 The computations are most easily done using the methods of Cartan. We use the

notation Rίj = Rs

ίsj where ^Rί

jklω
kAωl = dωj + ωjΛωJ. The ωj 's are found by solving

dgfj = ωtj + cΰji and dωl = — ω's Λ ωs for the metric (3.2) and the one-forms (2.3). The ωj 's
are given in Appendix D.
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The Bianchi identities take the form

BIA 1 B A δR^+δR2? 1 B δRV33

+

2A 2 B B

δRu-δR22

= 0,

(3.14)

, g n+ -δR

~~

(3.15)

T-L
2A

B_A_

TT
A-B

(3.16)

—

(3.17)

In the above equations, L1( L2, and L3 are differential operators dual
to the one-forms ωx. They can be defined on an arbitrary function / by

df-fdτ =
dφ (3.18)

As is to be expected from Eq. (2.2), they satisfy the angular momentum
commutation rules: [L1?L2] = — L3, etc. Hence, they are the angular
momentum operators expressed in terms of the Euler angles (see Appen-
dix A, and reference given therein, for their explicit expression and some
of their properties).

IV. Reduction of the Equations

In this section we show that the solution of the system (3.4)—(3.13) is
equivalent to the solution of:

(a) two pairs of partial differential equations of simple form, each
pair involving only two unknown functions;

(b) two ordinary differential equations in two other functions;
(c) a quadrature.
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Examining first Eq. (3.4) for δR00 and remembering that A and B
are functions of time only, we see that α and β must be of the form
/i (τ) /2 (ψ> θ> ψ} with Λ being an eigenfunction of the operators I\ + 1}2

and L3. If we denote by Sl

m the eigenfunctions of L2 and L3 satisfying

L2Sl

m

 ά^(L\ + L\ + L\)Sl

m =-

L3S
l

m

and
(L\+L\}Sl

m=-LSl

m, where L=Ί(l + l)- m

(4.1)

we can express α and β in terms of the complete set of functions S'm as
follows (see Appendix A for a more complete description of the S^'s):

= AaM(τ)+

and

where we must demand that

= B\bM(τ)+

and

(4.2)

(4.2a)

in order that α and j8 be real. In (4.2) we have taken out factors A and B
from the time dependence of α and β and we have split up the space
independent part of the expansion into two terms: aM(τ] and bM(τ) (which
are proportional to M, the amount of matter introduced with the per-
turbation) and α00 and £>00; and these latter terms like all other alm and
bltm satisfy homogeneous equations. The equations satisfied by aM(τ) and

4M
~A&

4M
~Aβϊ

4M
~Aβϊ

A B\ γ-τ + -^\+b + ί

B^

B

1A+Ί3 +β-U2

+

B

~B

A

~~A_

A__ 8

~A~~AB{

(4.3)

(4.4)

(4.5)

Having taken care of the source terms in Eqs. (3.4)-(3.13) we find
that, for each /, m, Eq. (3.4) for δR00 implies that alm and blm satisfy

A B , 44, B

m
= 0. (4.6)

See Eqs. (3.4), (3.6), and (3.7).
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In this equation (and in what follows) we have suppressed the subscripts
/, m from a and b and we have used the notation L = 1(1 -f 1) — m2 (see
(4.1)). Substituting expressions (4.2) for α and β in (3.10) for <5jR0 3, we find
that

^±^=i£ Σ K,.Jτ)SL, (4.7)
D l = 0m=-l

where, for each /, m, K^m satisfies the equation

Turning next to Eq. (3.7) for δR33 and using (4.7) and (4.2), we find

- Σ Σ K^WSL, (4.9)
/ = 0 m= -/

where, for each /, m, R is given by

R^G-mK (4.10)
where

B ' A)' '"\AB B2 ,
(4.11)

»2

32 A2ic

Finally, Eq. (3.6) for (δRu +δR22)/2 now becomes

+ (L1L2+L2L1)κ|=-Σ Σ t

rι,MSl

m, (4.12)

where r is defined by

(4.13)
where

2 L-2 m2'
2—+ —

~\~ A ' B] ' -~\A2 ~ AB ' B2,
(4.14)

,. A 8

It will be noted that all functions of time defined in (4.7)-(4.14) ultimately
depend on a and b which so far satisfy only one Eq. (4.6). Like a and b
they must be understood to carry indices I, m.



Stability of the Taub Universe 199

Having satisfied δR00, (δRίί + δR22)/2, δR03, and δR33 and remem-
bering that

J5 δRn +δR22 δR33

~ T °° ~A B~'
(4.15)

so that δR = Q also, we observe that the Bianchi identities (3.14) and
(3.17) imply respectively

Q = LlδR01+L2δR02

(4.16)

and

Q = L1δR31+L2δR32

(4.17)

Eqs. (4.16) and (4.17) suggest that we consider next the following com-
binations of derivatives of δRQ1, δR02 and δR31,δR32:

and
L2δR01-L1δR02 = 0

L2δR31-L1δR32 = Q.

(4.18)

(4.19)

Using the commutation rules (A.5)-(A.7) given in Appendix A, we
obtain

(4.18 a)

r̂
3

and

\Γ2 , B (T2

[ A

B \
' A K 24 [

1 3

ί 1 -i- i
U/ B\+ d τ [

A !L2λ-i

' B Ls( A

T2\ i β a\ (+ 2 ) U A) (

L2

1)κ + (L1L2+L2L1)

A

r T \ ιc —i— ( T T \ T T ^ Λ J_/9 1 r " " \ ̂ l 'Σ "^ 2. \ ' i

A

Lιμ\ B (L,λ + L2μ\ (

} A\ B j - (

L l l L 2 ) ( A }

16 ί A2 8 \1

\A2 2 ^l2 AB)\

o r i 1 — Π^LH ^ j υ

(4.19a)
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We observe that in these equations λ and μ enter in combinations already
"known" (see (4.7) and (4.9)) and thus we can express certain third order
derivatives of K and y directly in terms of a and b as follows:

(4.19b)

where

B
mkά^(a-b)(m2+—-L}+LR + 2m--

A

B

A

1 A2

2 A2 AB '

(4.20)

and

dτ

(L\ - Li) K + (L,L2 + L2L,)y

(4.18b)

For Eqs. (4.18b) and (4.19b) to be consistent with each other, the following
integrability condition must be satisfied:

mk^, \ I ! , B\ A •

^(ά + b + b^j-m-R-

<-{(a-b)(nt + ±L)+2,l

h B IURT+AR! 6 1

h 4[(4K) +^K^2 2

B .}

^K\

ι^-K + LR
A

A2 8 \1|
/I2 A B J ί . j

(4.21)

When α and b satisfy this equation (in Section VI we show that the
terms in K drop out) we can write

~ (4.22)
i = 0 m = - /

where fe is given by (4.20) for m φ 0 and both (4.18) and (4.19) are satisfied.
Remembering that (4.16) and (4.17) are already satisfied, we find that we
have succeeded in making δRoί, δR02, δR3ί, and ̂ ^32 vanish separately.
The remaining two equations (δRn —δR22)β and ^JR12 are then auto-
matically satisfied by virtue of the two remaining Bianchi identities (3.15)
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and (3.16). All these statements will be verified in the next section after
explicit expressions for y, K, λ, and μ have been given.

For particular values of m the integrability condition is satisfied as a
consequence of some other equation. For example, when m = Q,k = con-
stant makes (4.21) trivial. These special cases will be discussed separately
in Section VI. The following two equations will be useful in this con-
nection :

B

4, U> 2Λ' AS

and

γ — k = — — + m — — + (L — m)\ά + b + b — I (4.24)

where

X^AR-BK, (4.25)

Eq.(4.23) follows from (4.17) and (4.20), while (4.24) follows from
(4.16) and the definition of kin (4.21). We note that if both (4.23) and (4.24)
vanish, then the integrability condition is trivially satisfied.

We thus choose as our second equation which, together with (4.6),
determines a and b, the integrability condition (4.21) (or any other
equation which for particular values of /, m implies (4.21)). For each
pair of eigenvalues ί, m, we have now reduced the system of Eqs. (3.4)
-(3.13) to the following:

(a) Two ordinary differential equations ((4.6) and (4.21) or its equiv-
alent) determining a and b,

(b) Two pairs of partial differential equations, each pair involving
only two functions ((4.7) and (4.9) for λ and μ, and (4.12) and (4.22) for
K and γ).

(c) A quadrature ((4.8) giving K when a and b are known).

V. Integration of the Space Derivatives

We now turn our attention to Eqs. (4.7) and (4.9), and (4.12) and
(4.22) which determine the space dependence of λ, μ and γ, K:, respectively:

, (5.1)

(5.2)

c] = -rSil, (5.3)
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and

Remembering that L± = L± ± iL2 and hence

(L±)2=L2

1-L2

2±ί(L1L2+L2Lί)

we find that the above equations can be written in the following simple
forms:

(5.1) ± i(5.2) =±= L± (λ + iμ) = i(BK ± AR)Sl

m (5.5)
and

(5.3)±ί(5.4) = (L±)2 ^^-} =~(r±k)Sl

m. (5.6)

Eqs. (5.5) and (5.6) imply that 1 + iμ is proportional to Sl

m^1 while
y + iκ is proportional to Sl

m + 2. Making use of the phase convention
(A. 18) given in Appendix A we find that the following expressions satisfy
(5.5) and (5.6):

and

i + l) + (5.7)

Ti(-l) zP± z(τ)S'± z + β±(τ)

γ(l ± m) (I + m +1) (/± m - 1) (/ + m + 2)
r , ^ (5 8)

21

The first terms in the above expressions are not defined when m = ± I or
m= + (/ — !). These are the particular values of m, however, for which the
integrability condition (4.21) can be satisfied as a consequence of some
other equation which eliminates these terms. This point will be discussed
in detail in the next section. The functions of time P, Q, /, g, and h enter
as "constants" of integration since L±(Sl

±l) = Q and (L±)2Sl

±(l_1} = Q.
Actually these functions are precisely the number needed to complete
the expansion of A, μ, 7, and K in terms of the S '̂s. (Note that the coeffi-
cients in these expansions which couple to a and b do not extend to
m=±l; see Appendix B, Eqs. (B.6)-(B.9).) Ordinary differential equa-
tions determining these functions are obtained when we demand that
λ, μ, γ, and K as given by (5.7) and (5.8) satisfy δR01, δR02, δR31, δR32,
(δRlί — δR22)/2, and δRl2. At the same time we will verify that the terms
which depend on a and b (through #, K, r, k) do indeed cancel as was
claimed at the end of Section IV. It is convenient to consider the com-
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binations

δRoi ± iδRo2 — 2B
y ± ικN

jL,,:rflfl±*Y
2̂5 ^4 /

+ ι

2A
'B

/

λ±ίμ

B

(5.9)

+ 1
25

L2λ-Lίμ

2A
D

+ -δ-^(A±iμΓ + (λ±ι»
A2 2

(5.10)

and

(δRn - δR22) ± iδR12 = L± (L3 + ΐ)

16 8 \(y±iκ

AB \ A

B

A L2ly±iκ\

(5.1Γ

In these expressions A, μ, y, and K: stand for the complete perturbations
as in Eqs. (3.4)-(3.13), while in (5.7) and (5.8) they stand just for the /, m
term in their expansions. We take this risk of slightly confusing the reader
in order to avoid overburdening our equations with indices and summa-
tion signs.

Substituting (5.7), (5.8) and (4.2) in (5.9) and looking at the coefficient
of the different harmonics, we find that the terms in α, b, R, K, r, and k
cancel by virtue of (4.24) while the functions /, P, and Q must satisfy the
equations 6

ι-^rO + 1)
B

and
A(Q\ B/Q\

(5.12)

(5.13)

Doing the same with (5.10) we find that in this case it is (4.23) which
makes the terms in α, b, R, K, r, and k cancel, while /, P, and Q must

6 We drop the indices ± / since the two functions are complex conjugates of each other
see Eq. (B.3b).
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satisfy the equations

and

1 A2 8f

~AB

Ijϊ!
2 Λ2

B

= 0.

(5.14)

(5.15)

Finally, we turn to Eq. (5.11). Here we must make use of the Bianchi
identities (3.15) and (3.16) to prove that the terms in α, b, R, K, r, and k
cancel. Since δR01, δR02, δR3ί, and δR32 have been satisfied, these
identities read simply

Hi(<5#ii - δR22) + L2δR12 = 0 (5.16a)
and

%L2(δRn - δR22) - L! <5Λ12 = 0 (5.16b)

or
L± {i(<5Λn - δR22) + iδR12} = 0. (5.17)

For the remaining terms to vanish, the functions P, /, g, and h must
satisfy the equations

PI, (5.18)

(5.19)

AB

2)2

and
4 B\,

A B
/z + 4 = 0. (5.20)

It may be verified that the three Eqs. (5.12), (5.14), and (5.18) for the
two functions / and P are consistent with each other, while (5.15) is a
consequence of (5.13). In fact, the solution for Q may be found by inspec-
tion from (5.13). It is Q = A - B,

VI. The Time Dependence

In this section we consider the ordinary differential equations which
determine the time dependence of the solution and show that, for each
/, m, they allow the required number of constants to be specified cor-
responding to arbitrary initial perturbations. Two of these equations are
(4.6) and (4.8) which we rewrite here:

m2

~w = 0 (6.1)
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and
A A A

(6.2)

The third equation depends on the value of m and of / — m 7 . If / — m is
different than 0 or 1 and ra Φ 0 this equation is the integrability condition
(4.21). Carrying out the indicated differentiation we find that the terms
in K drop out8 leaving

i4+4l*
8G

_4_

'A2

L-6 m2

+ -^ίAB
R

B A\ 4 L ί . . (B
A2\B--A}+^\a-b + (a-b](-B-

8m2 ί ,- 1 . . . / ^
- I Fά-b + y(α + b) τ-

B
= 0.

(6.3)

Remembering that R contains b we see that (6.3) is of the fifth order in b
and, together with (6.1) and (6.2), eight constants are required to integrate
the system. These eight constants correspond to the twelve initial values
of α, β, y, K, λ, and μ and their first time derivatives subject to the four
constraints OR - %δ δR = 0:

/ί2

^βu
4 I"!

L-2

AB

Ά B\

^ + ̂ ί
+ 2m2}+bA +
' B2 j ' b A '

β \ + m ^ f β ̂B/ m B \ A y
/ . B\

m(a+ + ~B~l"

4(L-2)

/IB

4 .

Ύ^
ana

K-m
A

(6.4a)

(6.4b)

(6.4c)

(6.4d)

These constraints determine r, r, fc, and K when a, ά, b, b, R, R, K, and fe
are given.

The equations being linear and homogeneous, only the seven ratios
of these eight constants are meaningful. This is seen in the fact that neither

7 We assume that m > 0. To obtain the corresponding equations for m < 0 we need
only make the substitutions w-» — m, K-+ — K, and k-> — k.

8 R contains K which, by (6.2), is expressible in terms of a, b.

15 Commun. math Phys , Vol. 22
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(6.1) nor (6.3) contain K. Hence

= 0, and (6.5)

is a particular solution of (6.1)-(6.3). By adding a multiple of this solution,
we can always make K(τ0) = 1. The magnitudes of the remaining seven
initial value data are then fixed.

However, since Eqs. (6.1)-(6.3) include, as special cases, the coordinate
dependent perturbations found in Appendix C, we can, by a change in
the coordinate system, make three more (not any three) of the initial value
data equal to anything we please. If we choose to make α(τ0), fc(τ0), and
ά(τ0) equal to zero, then we must demand that the initial values of the
functions M, p, and v determining the coordinate system satisfy the
equations

A - ' ^ (6.6)

and

Lv-—u= -α(τ0),

ό

2mp-—u= -6(τ0),

4L
2 A2

(6.7)

(6.8)

These equations follow from (C.29) and (C.30). In terms of the functions
α, b, and K the four linearly independent solutions of (6.1)-(6.3) already
known are given in the Table.

Table

Initial values Description
of
v u p

0

1

Lυ-4"
A

Lv u

0

0

B

B

2mp u
B

1 - - - Amplitude

m — 1 0 0 ' N

( LA \
1 1 Π 1 Π

B i

T n ι_ mj,| \ I Π Π 1

\ B /

Coordinate

Perturbations

In the last two lines, the functions u, p, and v satisfy equations (C.24)
and (C.27) given in Appendix C. Since K does not enter in (6.3), the second
solution in the table implies that a does not enter either. This can be
verified directly, but the resulting equation is too long to be given here.
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0.3 0.5 1.0

Fig. 1. The behavior of the functions a, b, and r for m = 0, / = 2. (Initial conditions: a = 1
and all other initial values equal to zero.) The same qualitative behavior is found for all

other initial conditions (and also for other values of /) as long as m = 0

As is to be expected from the i/B terms in Eqs. (6.1)-(6.3), all per-
turbations grow without limit as the singularity B = 0 is approached.
The behavior of the solution for m Φ 0 is dramatically different from that
when m = 0. When m = 0, the functions 0, b, R, and r increase mono-
tonically as the singularity is approached (see Fig. I - K and k are
constants in this case). When m φ 0, however, all six functions execute
violent oscillations of increasing amplitude and frequency as they
approach B — 0; as can be seen from Figs. 2 and 3, the frequency depends
on / and m. For a given / and m, the overall behavior is independent of the
initial conditions, even though the amplitude depends strongly on which
derivative of b is assumed non-zero initially (see Figs. 4 and 5). The
oscillatory approach to the singularity is similar to what has been en-
countered in the Kasner [9] and the mix-master [5] universes.

We now turn our attention to special values of / — m for m Φ 0. We
will consider the case m = 0 separately. When / — m = 0, for our solution
to be meaningful we must have AR-BK = Q and r-k = Q (see equations
(5.7) and (5.8)), while at the same time the integrability condition must
be satisfied. Now, when / = m, L - m = 1(1 +1) - m2 - m = 0, and by
(4.23) AR — BK = 0 implies r — k = Q. Since (4.24) is also equal to zero,
the integrability condition is satisfied. Thus for the case l = mwe take in
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Fig. 2. The dependence of r l ι f n on m for fixed /. (Initial conditions: a = 1 and all other initial
values equal to zero). The same qualitative behavior is true for the other functions also

place of (6.3) the equation
AR-BK = 0, (6.9)

This is a second order equation so that the system (6.1), (6.2), and (6.9)
admits five arbitrary constants. This is consistent with the fact that R,
R, and k are now given in terms of K, K, and r and hence only α, ά, fo, b,
and K are independent.

The other special case for raφO is / — m = 1, where we must have
r — fc = 0 in order that our solution be defined. To proceed in this case
we rewrite Eqs. (4.23) and (4.24) making the substitution

where

Π =

= AR-BK = (B + mA)Π

AG
B + mA

-K.

(6.10)
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Fig. 3. The dependence of bl m on m for fixed /-ra. (Initial conditions: b = 1 and all other
initial values equal to zero.) The same qualitative behavior is true for the other functions also

They become

m(k — r} =
B

dτ

— 2m(m + (L-m)R + (a-
B

and

— m

D

(6.11)

(6.12)

If (6.12) is equal to zero, we can use it to eliminate the derivative of Π in
(6.11). Since for / - m = 1, L - m = 2(m +1) we find that (6.11) becomes
in this case (the terms in K drop out)

(6.13)
4A I B
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Using the expression for G given in (4.11) and carrying out the differen-
tiation, we find that the quantity in brackets in (6.13) is, apart from a non-
zero factor, equal to the left-hand side of (6.1)! Hence, if a and b satisfy
(6.1) andr-k = Q, then r-k = Q also. Since both (4.23) and (4.24) vanish,
we conclude that the integrability condition is satisfied. Eq. (6.12) being
of third order in fo, our system (6.1), (6.2), and (6.12) admits six arbitrary

A 000

3000-

1.8 2.0

Fig. 4. The dependence of rt m (I = 5, m = 3) on the initial conditions. Note that the positions
of the peaks are the same for the two cases. The same is true for the other functions (as well

as for other values of / and m)

constants. These are a, ά, b, b, R, and K. Since in this case r = fc, R cannot
be given but follows from (6.4b) and (6.4c).

The case m = 0 needs special treatment in each of the above cases.
We note that when m = 0 both K and k are imaginary constants (by 6.2,
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4.21, and J3.3a). In the general case (/ — m φ O or 1), the equation that
replaces the integrability condition is mk = Q (4.20) which becomes
(since, by (4.10), R = G when w = 0):

μGΓ+^G^-4^--AG
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(6.14)

Fig. 5. The dependence of rl>m (/ = 5, m = 3) on the initial conditions. Note that the positions
of the peaks are the same as in Fig. 4, but the vertical scale changes drastically. The same

is true for the other functions (as well as for other values of / and m)

This is a fourth order equation. Together with (6.1) and the constant
values of K and k we still have eight constants.

When m = 0, the vanishing of (4.23) does not imply the vanishing of
r - fc, which is required for / - m = 0 or 1. Since, moreover, r is real while
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k is imaginary, we must require, for both cases

r = 0 and fc = 0 . (6.15)

We thus see that when / = 1, m = 0 we lose one constant of integration
(the initial value of fc). In view of the constraints (6.4), the remaining five
constants are α, ά, b, b, and K.

When / = m = 0 we must, in addition, satisfy (6.9). Since R is real and
K imaginary, we must set

R = 0 and K = 0. (6.16)

In this case we lose one more constant (the value of K) and, since α, ά, b,
and b are constrained by (6.4a), we can only assign three constants. This
is consistent with the fact that a and b must now satisfy three equations:
r = 0, R = 0, and (6.1). This system (with / = m = 0) is exactly the same
as (4.3)-(4.5) with the source term M equal to zero. This was to be
expected since the separation of the space independent part of α and β
into aM(bM) and α00(b00) was artificial.

The functions P, Q, /, g, and h which do not couple to a and b satisfy
second order equations and hence their time evolution is uniquely
determined when the initial data P, P, Q, Q, /, and / satisfy the constraint
Eqs. (5.12) and (5.13).

We note that the three coordinate dependent solutions found in
Appendix C remain valid for all /, m. This completes the discussion of the
time dependence of our equations for all values of /, m.

VII. Concluding Remarks

The reduction of the field equations given in Section IV implies that,
for this particular metric, they can be divided into three sets of different
importance:

(a) Four "main" equations δR00, (δRίί+δR22)> δR33,
 and δR03

which must be individually satisfied;
(b) Four "secondary" equations δR0ί, δR02, δR3ί, and δR32 for

which only two equations need be satisfied (the other two following
from the Bianchi identities when the "main" equations are satisfied);

(c) Two "trivial" equations (δRll—δR22) and δRl2 which are
implied by the above equations and the Bianchi identities.

Even though one might expect a similar classification (and hence
separation of the six unknown functions into three pairs) for other
metrics with equally high symmetry for which the eigenfunctions of the
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operators L l5 L2, and L3 are known, the integration of the space deriva-
tives need not be as trivial as in this case. One must, therefore, conclude
that the solution of our problem is in large part due to the simple proper-
ties of the angular momentum operators.

Turning now to the physical significance of the results obtained in
this paper, the only thing we can say with certainty is that the stability
of the Taub space is exactly the same as that of the closed Friedman
universe - the two differing only in the ^dimensionality" of their singu-
larity (Taub space collapses to a plane, Friedman to a point). We can also
say that both are stable during expansion9, since the initially small
perturbations become even smaller and hence the first order approxima-
tion is justified.

In interpreting the instability during contraction9 predicted by our
linear analysis, we must bear in mind the limitations of linearization: the
limitless growth of initially small perturbations does not exclude the
possibility that they remain finite when higher order terms in the equa-
tions are retained.
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Appendix A

The operators Lα can be expressed in terms of the Euler angles ψ, θ,
and φ as follows:

d cost/; d „ d / A ^L! = -smψ—- + . n - -- cosφcotθ-—— , (A.I)
dθ smθ dφ dip

d smip d . d
L2 = cosφ — — + — — - - -- siny; cotθ — — , (A.2)

dθ smθ dφ dip
and

(A.3)

We define, as usual, L+ = Lx ± iL2 in terms of which

L2 = L_L+ + L\ + iL3 = L + L_ + L2

3 - iL3 . (A.4)
9 For the Taub case, "expansion" and "contraction" as used here refer to the sign of

B when B < A.
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The following commutation rules follow from [Lί,L2~\ — — L3 and its
cyclic permutations and from the definition of L+ :

) - (L,L2 + L2L,)L3 = 2(L\ - L2

2) , (A.5)

L3(L\ - L|) - (L\ - L|)L3 = -2(1^2 + L2L,) , (A.6)

L3(L\ + I2 ) - (L\ + L\)L3 = 0 , (A.7)

ίL+,L3-] = -iL+, (A.8)

[L_,L3] = *£,_, (A.9)

[L+,L_]=2iZ,3, (A.10)

and

L + L_+L_L+=2(Lj+L 2

2 ) . (A.ll)

The eigenfunctions of L2 and L3 have the form

Sl

mm.(ψ, θ, φ) = eimveίm'«dl

mm,(θ) , (A.12)

and are obviously eigenfunctions of — — also. In this paper we have
dφ

suppressed the index m' on Sl

m > m / since this eigenvalue does not enter in
any of our equations. However, for our expansions (4.2) etc. to be com-
pletely general an additional sum over m' must be included. As follows
from (4.1) and (A. 12), the function dl

mtm>(θ) satisfies

m2 +m'2 — 2mm' cosθ

dl

m,m(θ} can be expressed in terms of powers of sinθ and cosθ as follows:

! (/ 5Hcosτ) (sinτ) pr-mm' m+m'(cos0)
(A.14)

where

= 2- Σ f" ΐ 1 (" + f) (* - 1)" -
k = o \ ^ / \n — κ/

When either m or m' equal zero, SόTO/ or 5^0 become proportional to
spherical harmonics of the same indices.

The orthogonality of the Sl

m ̂  is expressed by

2 π π 2 π , (A. 16)

f J j (SiLVι)*SkM^v>smθdθ^o_2 J J J v ^ m i m i / ^m 2 m2 v ^ v r "—~ w v ""Y' -»7 , 1oπ o o o z/1 + i
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We choose the arbitrary phase in (A. 16) so that

215

As is evident from (4.1), our operators are anti-hermitian and the
Condon-Shortley phase convention relating L+ Sl

m to Sl

m±ί is inapplicable
(it is impossible to satisfy (A.4)). The following phase convention is
consistent with the Lα operators as given in this paper and (A. 17):

Most of the expressions given in this Appendix can be found in
reference [8], particularly in Chapters 2 and 4.

Appendix B

To make manifest the reality of the functions λ, μ, γ, and K we must
consider together the terms coming from Sl

m and Sl_m in α and β. Adding
to (5.7) and (5.8) the terms corresponding to — m we find

ARltm±BKlt

- m _ L ^ v j t _ m .

S*
(B.I)

and
(rl.m ί

A

l/(/ + m)(/±m

J±l &

(B.2)

In these expressions we have written explicitly the indices /, ±m. The
reality conditions which follow from (4.2a) are

(*ι,J = K ϊ t _ w , (*ι.J --*ι,-m,l (R3a)

fo,m)*=η,-OT, and (fcz.J* = -A-m, J

so that for m = 0, K and k are pure imaginary, while R and r are real.
Further we must demand of P, Q, /, g, and h that

Λ , p*=f~" δ*~,ev* , ! (β 3b)j* = f-l9 g*=g_h and / 7 + = / ι _ . J
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Using these conditions, we can replace all coefficients with — m in terms
of those with + m and obtain

B 1 = 1

"-J , (B.4)

AR*m-BK*m

(B.6)

(B.7)

7 —!

i+ l/iϊ '~1 + yi(l+ί)(l -!)(/ + 2)
_

2

+ Σ
(r* If*
\rl,m Kl.

* 1 <\'

|/(/-fn)(/ + m + l)(/-ιw-l)(/ + nι + 2)JΓ

(B.8)

]//(/ + !)(/-!)(/ + 2)

«/
+2

!-m)(/ + m + l)(/-m-l)(/ + m + 2)

]/(/ + m) (/ - m +1) (/ + m +1) (/ - m + 2) J j '

(B.9)
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In these expressions m is strictly positive and α, b, R, K, r, and k are
complex functions of time. Both the real and the imaginary parts of these
functions satisfy the equations obtained in Section IV with m > 0.
(Similarly both the real and the imaginary parts of P, g, /, g, and h satisfy
the equations obtained in Section V.)

Noting that Eqs. (B.6) and (B.7) as well as (B.8) and (B.9) are complex
conjugates of each other, we verify that λ, μ, γ, and K (as well as α and β)
are real as they should be.

Appendix C

As noted in Section III, the four gauge conditions (3.1) and (3.la)
do not completely specify the coordinate system. Before obtaining the
form of the infinitesimal coordinate transformations still permitted by
our gauge conditions, we will first derive general expressions for the
perturbation to the metric tensor in tetrad form which is induced by an
infinitesimal change of coordinates.

Let us define the matrices Ak

a and B£ which relate the tetrads to the
coordinates by1 0

χa^Ak

a-^τ, ωa = Ba

kdxk; (C.I)

or

-̂  = B«kXa, dxk = Akωa, (C.la)
s*

where we have used

Ak

aB
c

k = δc

a. (C.2)

In this Appendix letters from the beginning (middle) of the alphabet refer
to tetrads (coordinates).

To obtain the change in gab(x) under the infinitesimal coordinate
transformation

χ{ __» χif — χί _|_ gξίίx) (C 3)

with ξl(x) four arbitrary functions, we start by demanding that the
expression for the interval ds2 remain unchanged, i.e.

gab(x) ω"(x) ω»(x) = g'ab(x') ω"(x') ωh(x'). (C.4)

Now, to the first order

5J^β-, (C.5)

The Xa denote differential operators dual to the ωa.



218

and

S. Bonanos:

') = Ba

k(x')dxk

dx"

so that

where

Al

bω
b, (byC.la)

(C.6)

(C.7)

Substituting (C.5) and (C.6) in (C.4), we obtain, to the first order in ε

f}n .
Φc

a. (C.8)

Finally, making use of (C.7) we find

(C.9)

Specializing now to the Taub metric (gab given by (2.1) with F = 4/B),
we let 0, 1, 2, and 3 stand for τ, θ, φ, and ψ and rename the four functions
ξl as follows:

εξ° = T(τ,θ,φ,ψ),

εξ1 = Θ(τ, θ, φ, φ),

and

(CIO)

The elements of the matrices Ak

a and Ba

k can be read off directly from
Eqs. (A.l)-(A.S) and (2.3), respectively. Also, since ω° = dτ, B£ = δa

Q and
Ak

a = δk

0. Substituting in (C.9) we find:

(C.ll)

= -β = 2BL3 [cosθΦ (C.12)
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4
—L^
B

A

-—
B

- -—L2T,

= — (α + γ) =
(C.I 6)

+ TA + 2AΘcotθcos2ιp,

δg22 = — (& — y] = 2A{cosψL2Θ + smθsinψL2Φ}

+ TA + 2AΘ cotθ sin2φ ,
(C.17)

+AΘ

+ A[cosψL3Θ + sinθ smψL3Φ^\ — BΘ sinψ ,

= - =
(C.20)

+ A\_ — sinψL3Θ + sinθcosφL3Φ] — BΘ cosψ ,

where we made use of (3.2) to express δgab on terms of α, /?, y, K, λ, and μ.
From (C.ll) and (C.12) it follows that

L3lcosθΦ+Ψ~] = -f. (C21)

Comparing with (C.13) we see that the functions T and [cos$Φ+ Ψ~]
can be expanded in the form

τ= Σ Σ "..-Wsi, (c.22)
and

[cosθΦ+!P] = ί Σ Rm(τ)^ (C.23)
ί = 0 m= -/

where the functions utim and p / % m satisfy the equations

A γyj

- (C24)

With Γ given by (C.22), Eqs. (C.14) and (C.15) can be solved for Θ and
Φ. We find

00 /

Θ= Σ Σ »/.»W[cosVL2-sinVIa]Si, (C.25)
/ = 0 m= -/
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and

sinθΦ= f Σ Vt.MίcosψLt+smψLASl (C.26)
j = 0 m = -/

where the functions vltm satisfy the equation

^.« = ̂ -«z,«. (C.27)

The obvious reality conditions for M, p, and i; are

"ίm = W ϊ , - m , P * m = - P / , - m > and »*m = »/, -m (C-28)

We have now satisfied our gauge conditions (C.11)-(C15). We next
substitute the functions T, <9, Φ, and Ψ as given above, in Eqs. (C.I 2) and
(C.16)-(C.20) and carry out the indicated differentiations to obtain the
following expressions for the perturbations to the metric tensor induced
by such changes in the coordinate system as are allowed by our gauge
conditions :

, (C.29)

Σ Σ l m P l . m - u s l

m , (C.30)
1 = 0 m= -I ( ΰ

^l£ Σ »ι«L2+S'm,

(C.32)

t}L+Sl

m, (C.33)

Σ {(B-mA)vhm-Bplm}L^S'm. (C.34)
Z = 0 m= -Z

That these expressions are real follows from the reality conditions
(C.28) and the fact that, with our phase conventions, (L+Sl

m)* = L_SLm.
Using Eqs. (C.24) and (C.27) for the derivatives of M, p, and v and the
commutation rules given in Appendix A, it is a straightforward but
extremely laborious procedure to verify that α, β, y, /c, λ, and μ as given
above satisfy Eqs. (3.4)-(3.13) as they should. We note that, for each
/, m, the perturbations to the metric due to a change of coordinates form
a three-parameter family - the three parameters being the initial values
M(TO), p(τ0)5 and u(τ0) needed to integrate (C.24) and (C.27).
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Appendix D

The ωj 's are, to the first order:

β β B\ 0 Lvβ }
_ I Γ ~ .̂-,0 j_ V/" v I

B

1 (IA_

2A-.
ω ω

A

~\(-2\\A

— K

,,3 _ ,
B

ω"
B

V Mι

B

3

=
2L3

2 [A

1 f r ~ τ . Λ l 2+ — L 2κ-μ- —L^α-y) ω2 +

2^
1

1-^ )+2a-β
^ /

L-,κ + L-,λ
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(D.I)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)



222 S. Bonanos: Stability of the Taub Universe

2A \B

+ β-2y

1
+τ

ω

ω

1

~2A

1

2A

;-L2λ + L1μ + B\l-

2A-B
(α - 7) - K - ω (D.9)

ω

L2λ (D.10)
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