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Abstract. We construct an example of a quantum stochastic process with a non-zero,
linear, time-independent source, for a massive scalar Boson field in four space-time
dimensions. Also we study in detail a similar process with only a single degree of freedom.

§ 1. Introduction and Summary of Results

In an earlier paper [1] we laid the foundations for a theory of quantum
stochastic processes, in order to provide a mathematical framework for
the description of the evolution of a free photon field in the presence
of localised external sources and localised absorptive photon detectors.
At the end of that paper a model was constructed which was adequate
for arbitrary Boson fields provided sources were absent.

In this paper we construct an example with a non-zero, linear, time-
independent source. This is done for a massive scalar Boson field in four
space-time dimensions, but formally we are describing the same situation
as has been considered non-rigorously in quantum optics. The theory has
two space cut-offs, corresponding to the finite extents of the particle
source (or sources) and the particle detector (or detectors). As is con-
ventional in quantum optics we suppose that the particle detector is
purely absorptive, so the theory is not strictly local.

The same construction allows us to consider the behaviour of a
displaced harmonic oscillator with external damping. By studying the
time evolution of the coherent states we prove that all initial states
converge to a unique equilibrium state, which is a pure coherent state
and a slight perturbation of the natural ground state of the oscillator.

As far as the technical details are concerned we point out that for
time-independent linear sources the complications can be reduced by
making a canonical transformation of the Hubert space. However, since
a realistic model must incorporate time-dependent sources, that method
would lead to the necessity of studying randomly fluctuating canonical
transformations. With the method we adopt, however, the inclusion of
fluctuations in the source is a relatively straightforward matter.
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We denote by X the locally compact abelian group R3 with Lebesgue
measure dx, taken as position space, and by K the same group taken as

00

momentum space. We define Fock space ^ = £ ®3F{n) where
n = 0

&in) = L%m(Kn). We define ω{k) = (m2 + k2 + k2

2 + k2)1'2 on K so that

H0=\ω{k)a*(k)a{k)dk (1.1)

is the free Hamiltonian. The total Hamiltonian of the system due to an
external scalar current localized in various sources is

(1.2)

where

Hi=~ w fω(/cΓ 1/2 ̂ a { k ) + m a*m dk ( U )

and j is supposed to be a function in Schwarz space.
In [1] we have shown how to construct a quantum stochastic process

δ from a Hamiltonian H and a bounded stochastic kernel β, which
describes the interaction between the quantum field and the particle
detector. We take μ to be a non-negative, real C00-function of compact
support on X which is constant on the regions where the detectors are
localized and equal to zero just outside. The annihilation operator at a
point x E X is defined by

A(x) = -*=- (2π)"3 / 2 f e-ίxkω(k)-1/2α(/c) dfc. (1.4)

The stochastic kernel β is now defined formally for all Borel sets E Q X
and all ρ e Fs{^) by

/(E,ρ)= J μ(xM(x)ρ,4*(*)<ίx. (1.5)
xeE

If Q = xp®W is a pure state, this may be rewritten as

(1.6)

dkdhdx.

The interaction rate JR of ^ is the operator on J^ such that

(1.7)
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for all ρ e ZΓJ^), and formally

R= lρ(x)A*(x)A(x)dx (1.8)
X

= i(2π)-^ jj ω { l ^ h ) ί l 2 a*(h)a(k)dkdh (1.9)

where μ is the Fourier transform of μ. R is an unbounded positive
operator which commutes with the number operator N. Formally, as in
[1], we expect that

(1.10)

where zeXt is the point corresponding to no events having occurred
up to time t and Bt is the strongly continuous contraction semigroup
on J^ whose infinitesimal generator is

Z=-iE-\R. (1.11)

We construct this semigroup rigorously and obtain some estimates of
its behaviour in time.

In order to proceed we introduce a particle number cut-off into the
interaction. For any δ > 0 we show that

/*(£,ρ) = /(E,«Γ* V ~ ' " ) (1.12)

is well-defined as a bounded stochastic kernel on X whose interaction
rate is the operator

Rδ = e~2δNR^R. (1.13)

By the construction of [1] we obtain from Z and βb a substochastic
process $f, by which we mean the same as a quantum stochastic process
except that the condition

(1.14)

of [1] is replaced by

^ (1.15)

valid for all ρ e ^ ( # ' ) + and all t §: 0. By making various estimates on the
behaviour of δf we show that there exists a quantum stochastic process
it on X, &Ίψ) such that for all ρ e FJ^) and all E Q Xt

E,ρ) (1.16)
<5—•()

provided t is sufficiently small.
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The estimates are obtained by introducing a doubly indexed family
of norms in #". We first choose γ0 > 0 large enough so that

jω(k)-yodk< oo. (1.17)

Then for each γ ̂  γ0 we define D{

y

n) as the space of functions in 3F{n) such
that the norm

| | V | |$ f ) = sup{|V(fc1 ... U m o ^ ω ^ ^ ... ω(/c/} (1.18)

is finite. For each α > 0 we define Dγ a as the space of sequences
{ψ(n) 6 Dffl^o such that the norm

llvlly,« = sup{||φ||?V»} (1.19)

is finite. There exist numbers c0 and α0 such that D y θ j α o is contained in 3F
and

IMI^olMUo (1.20)

for all ψ eDyO}ao. lϊ γ^yf and α ^ α ' then

MINIMI/,.' (i.2i)

for all ψeDγ.ιΛ,. We define DyΆ= f] Dγa and 0 = f) Dy>005 both being
α y

topologized by using all the available (finite) norms simultaneously. All
the constants in the next section will depend on mQJ, μ, y0, α0, cQ, and 7,
but we shall not keep referring to this fact.

§ 2. Construction of the Semigroup Bt

In order to obtain the growth estimates we need for Bt, we have to
construct it in two stages. First note that

-iω(ki)t iωikj '(„') ί2-1)

so e~iHot is a one parameter group of isometries on each of the Banach
spaces Dγ α. The operator R of Eq. (1.9) is given explicitly by

(Rψp(k1...kn)

where Sn is the symmetrization projection on L2(Kn). By means of the
estimates

\μ(k)\^cMk)-y (2.3)
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and

J ω(k - h)-γω(hyy dh S c2ω{k)~y (2.4)

valid for all y §: y0, we obtain

(2.5)
so that

\\Rψ\\y,Λ£2c\\ψ\\yta+1sup{ne-"}
(2.6)

We define the semigroup Ct = e{~iH°-*R)t for all ί^O by its formal
perturbation series

C [ = e-iHo<+ £ C(m) (2.7)

m = l

where

C|m) = (-|)m J ... " j V ^ - ^ K . . .
ti = o ί w = o (2.8)

Lemma 2.1. 77ze above formulae define Ct as a semigroup on each
space D^ for y^y0 and as a semigroup commuting with the number
operator on Dγ α.

Proof. From Eqs. (2.5) and (2.8) we obtain the estimate

tm

IIC'̂ φlΓy"' ̂ (iΓ(2cnΓ j ^ \Mf (2-9)

so the series (2.7) converges in norm within Df and

\\CMfύ*nt\\ψ\\f (2-10)

from which one obtains

^ | | φ | | γ , α + c t (2.11)

which proves that Ct leaves Dy ^ invariant. That Ct is a semigroup on
D^n) follows from the equation

(2.12)
p + q=m

which may be verified directly from Eq. (2.8) as in [5].
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The operator ^ ^ - , ^ - 1 ) © ^ ^ 1 ) of Eq. (1.3) is explicitly

8 i v e n b y

(2.13)

Σ^Ψ^.Λ...K+i) (2.14)

where kr indicates that this variable is omitted. Since j is supposed to lie
in Schwarz space we have estimates

y l / y (2.15)
and

IIH 1 t P | | ( ; + 1 ) ^c 3 i/«TI| | tp | | ( ; ) (2.16)

valid for all γ ̂  70? from which one obtains

supean{]/n + ϊ e-(«+1Hn+1) + y^ιe-ic'+m"-1)} (2.17)
n

We define the semigroup Bt = eZt by its formal perturbation series

Bt = Ct+ J B<m> (2.18)
where m = 1

B<m> = (-0 m } ...tmfct_tιHι...HίCtn<dtί...dtm. (2.19)

To prove this sum converges we follow the estimates of Lanford [5],
noting that

β(m) . #r(n) _^ ^ ( n - m) φ . . . φ ^ ( n + m) > ^ . 2 0 )

Lemma 2.2. The above formulae define Bt as a semigroup on the space
Dyoo provided y^y0.

Proof lίψe ^{r) then

\\B^ψ\\{^ J ... m j 1 ^ ( ' < + w ) ( ί - ί l ) C3
ί l = 0 ί m = 0

<ec(r + rn)tcm,r + m)m/2j^

ml
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Now let β = α -f ct + s and let ψ e Dγβ where γ ^ y0. Then

m\ rJf-M

m!

^ ( ) τ

Therefore
m/2fm ί / 1 \W 2

. (2.21)

Taking 5 = 1 and ψ ε Dy>00 the sum in Eq. (2.18) converges in the norm
|| ||y>α for all α to a limit 5tt/; e Dy>00 such that

00 (2m+\)mm/2

IIRinll < V V ^ ; f ^ α 3 c ί 1 l m l h n l l
j \ V Z C 3 t e S ϋ ^ l l y . α +

m = 0 m '

<

by Stirling's formula. The proof that Bt is a semigroup is the same as
in Lemma 2.1.

If 0 < ί < —— and ψeDγ>OC) then taking 5 = ct we obtain from Eq. (2.21)

the alternative estimate

\\Btψ\\y,a

4- ])mm/2(2m 4- ])m
y yΔm-t L)m fΠr\-1/2 pa+ltl/2i\w

~ Li vv,\ U Z C / Cϊe l f \\ΨWy,a+2ct
m=0 m '

where bo(a) is a constant increasing rapidly with α.
Having constructed Bt as a semigroup on 3) we now compute its

infinitesimal generator and obtain some associated estimates. It is easy
to show that there exists a constant ax such that if ψ e Dfl 2 and t §; 0 then

f ^ , (2.24)
a n d

^ ^ ^ ψ W ^ U . (2.25)
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Lemma 2.3. Every ψ e S> lies in the domain of the infinitesimal generator
of the semigroup Ct on Q) and

lim Γ1{Ctψ-ψ) = (-iH0-^R)ψ (2.26)
f->0 +

the limit being taken in 3) with its given topology.

Proof. If ψ G Dγ + 2> α + 1 and 0 ̂  t ̂  — then from Eq. (2.9) we have the

estimate

(cnt)

m=l
I II V-7 II y

Thereiore

(2.27)

Secondly

ί j {e-
iH°<t-s)Re-iHQS-R}ipds

s = 0

J e-iΠo(ts)R(e-iHos_i)ψds

s = 0

(2.28)

Putting all these estimates into Eq. (2.7) gives

m!

from which we obtain

(2.29)
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Lemma 2.4. Every ψ e 2) lies in the domain of the infinitesimal generator
of the semigroup Bt on 3) and

lim t~\Btψ -xp) = Zψ (2.30)
ί->0 +

the limit being taken in the topology of 3).

Proof. ϊϊψeDy + 2>a+3 and 0 < ί < — , then defining s = 1, Eq. (2.21)
becomes

(2.31)

Eqs. (2.18), (2.27), and (2.31) now yield

\\B,φ-ψ\\7,a
00 (2m-

S \\ΨWγ,a+2 (2.32)

Eqs. (2.19), (2.11), (2.17), and (2.27) yield

J (Ct_s-ί)HlΨds f C^HΛCs-

Eqs. (2.18), (2.29), (2.31), and (2.33) now yield

(2.33)

χ^b3(θί)t2\\ψ\\y + 2ί<χ + 3. (2.34)

This estimate yields the statement of the lemma.

Lemma 2.5. The semigroup Bt on 3) has a unique extension to a
strongly continuous contraction semigroup on 3F whose infinitesimal
generator is an extension of Z defined on Q).

Proof. We take γ = γ0, a = α0, and ψe@.

If t, f ^ 0 and 0 < f - t < -j-, then by Eqs. (2.22) and (2.32)

\\Bt,ψ-Btψ\\

^C0\\(B,_t-l)BtΨ\\j.a
^ c 0 b 1 ( ί ' - ί ) c 4 e x p { c 4 ί 2 e 2 α + 4 + 6 c ί }

(2.35)
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This establishes that the map t-*Btψe<^ is norm continuous for all
ψe@. By Lemma 2.4

= limΓ1(Btψ- ψ, Btψ} + lim Γxζxp, Btψ
ί->0+ ί->0+

Therefore ί-> \\Btψ\\2 is continuous and differentiable on the right with
negative derivative for all t ̂  0, and so is a monotone decreasing function.
It follows that Bt is a contraction on the dense subspace 3) of 3F and has
a unique extension to a contraction on #". The remaining statements of
the lemma now follow by elementary arguments.

From now on we shall use Bt to denote the contraction semigroup
on J^ defined by the above lemma. As in [1] we define the strongly
continuous contraction semigroup St on V = £ΓS(!F) by St(ρ) = BtρB*
for all ρeV.

Lemma 2.6. Let Rf be a bounded operator on 3F with 0 ̂  R' ̂  R as
sesquilinear forms on £% x 3>. Then for all ρeV +

lirn sup tr [ Γ 1 ^ ^ - ρ)] + tr [Λ'ρ] ^ 0. (2.37)

Proof. lϊψeSJ then Btψe@ for all ί ̂  0 and

-jj- (Btψ, Btψ} + <R'Btψ, Btψ}^0 (2.38)

so

>+ f (R'Bsψ,Bsψ)ds^0. (2.39)
s = 0

This establishes that

] + J tr[K'S s(ρ)]d5^0 (2.40)

first for all ρ = ψ®ψ where ψeSi and then by continuity arguments for
all ρeV+. The required result follows by differentiating this equation
at ί = 0.

§ 3. Construction and Convergence of the Approximate
Sub-Stochastic Processes

We turn now to the rigorous construction of the bounded stochastic
kernels βb where 0 < δ < 1/2. Throughout this section we shall take
α = α0 and y = y0. Vo will denote the dense subspace of V consisting
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of operators of finite rank which can be written in the form
n

ρ= £ trψr®ψr where ψre3> for lrgrrgn.
r = l

First note that iϊψe3> then

From this estimate and Eq. (1.17) it is immediate that for all xp e 3) the
integral

f(E,δ9φ,ψ)

defines an element of ^ ( J ^ ) . Compare Eq. (1.6).

Theorem 3.1. TTzere βxisίs α unique bounded stochastic kernel fδ on
X, V for allδ>0 such that for all ψ e9 and EQX

,ψ,ψ). (3.3)

The interaction rate Rδ of fδ is the bounded positive operator Rδ = e~2δNR
on $F.

Proof. Since / ( £ , δ, , ):@x $)-*?r{^) is sesquilinear it induces
a positive linear map fδ(E, )\VQ-+V such that Eq. (3.3) holds. If

n

Q= Σ trψr<g>ψreV0

then --=1

Σ trtrl/(X,δ,ψr,ψr)-]

r=ί
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where Rδ is the bounded positive operator of Eq. (1.13). Now if E Q X and
ρeV0 there exist ρ + , ρ _ e F 0 with ρ = ρ + - ρ _ and ||ρ|| = ||ρ+|| + | |ρ_| | .
Therefore

(3.5)

Therefore fδ(E, •) is a bounded positive linear map defined on the dense
subspace F o of V, and has a unique extension to a bounded positive linear
map from V to V. Since E->ύf

δ(E, ρ) is clearly σ-additive for all ρ e Vo

this is also true, by taking limits, for all ρ e F, so fδ is a bounded
stochastic kernel.

Theorem 3.2. There exists a sub-stochastic process $δ on X, V whose
infinitesimal generators are Z, /δ.

Proof. Sδ is constructed exactly as in Theorem 4.7 of [1], except
that Eq. (4.15) of [1] is replaced by Eq. (2.37) applied to the case R' = Rδ.
This then gives

limsuptrίy(Γ fρ-ρ)Uθ (3.6)

for all ρ e V+ which proves that Sδ is substochastic.
The following estimates will be needed in the proof of the main

theorem of the section.

Lemma 3.3. Let 0 < tγ < t2 < ••• < ίn<; t^ ~—, let δ^O and let

ψe@. Define

Then

^ ^ ! ! ^ ^ , (3.8)

(3.9)

Proof. Eq. (3.8) is a consequence of Eq. (2.23) with the extra estimate

/ f O ί + , . (3.10)
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Eq. (3.9) is obtained by using the additional estimate

\\e-δNψ-ψ\\y,^δ\\ψ\\γ>a+ί (3.11)

and writing

Giψ-G°nψ=tψr ( 3 1 2 )
where

ψr = Bt_tna(kn)e-δN...

...a(^e"™^r+l-ir*(W^^ (3.13)

Lemma 3.4. // FQAn

t and ψe9 and 0 < t< — and δ>0 then
4 C

... (GJ(1, ... t,,k, ... k,)ψ}®{G',(,, ... t,,h, ... h,)Y

Y[ dtr dxr dkr dhr.
r=l

This integral also exists for δ = 0 as an element of V and

l + 3 (3.15)

where b(oc) is a constant independent of F.

Proof. The convergence of the integral for δ ̂  0 follows from Eq. (3.8).
That the integral does give S^{F,xp®ψ) if (5>0 follows from Eq. (4.13)
of [1] extended to arbitrary Borel sets F Q A". Eq. (3.9) together with the
observation that

FQ{{xl9tX9...9xn,tn):O<t1< '<tngit and xu...,xneX} (3.16)

gives

2»{$ μ(x)dx}ndk}{$ μ(x)dx}

which yields Eq. (3.15) by use of Stirling's formula.

Lemma 3.5. Let (7, dy) be a measure space and ψ : Ύ-^Q) a measurable
function such that

$\\ψX+2,«+3dy<<x). (3.17)
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Then the equation

Q= (3.18)

defines an element ρ e V+ and ifθ<t<
4c

// 0 < t < -j— the equation

ρ,= μt°(Aj,ψy®ψy)dy

defines an element of V+ and

tr [ρt] - t f
Ua+ 3

(3.19)

(3.20)

(3.21)

Proo/. That ρ e F + follows from Eqs. (1.20) and (1.21). By Eqs. (2.32)
and (2.34)

t r [ S t ρ - ρ ] + ί

^ j \<βtψy - ψy + tZψr ψy) + (ψy9Btxpy -ψy + tZψy) + (Btψy - ψy,Btxpy - ψy}\ d]

which is Eq. (3.19). From Eq. (3.14) we obtain

which together with Eq. (3.18) shows that ρt is well defined as an element
of K+. Now

o<s<ί O

... dxdsdkdh.

^ (3.22)

Comparing this with Eq. (1.9) and using Eqs. (2.23), (2.32), (3.10) to
estimate the difference yields Eq. (3.21).

Theorem 3.6. There exists a quantum stochastic process St on X, V
and a number to>0 such that if ρeV, 0 ^ t ^ t0 and F QXt then

lim \\if{F,ρ)-it{F,ρ)\\=O

the convergence being uniform with respect to such t, F.

(3.23)
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i l l ] m _
Proof. We define ίo = min<—,-— >. If ρ = £ ί r ^ ® ^ e F 0 and

[4c 2DJ r = 1

0 < δ, δ ' ^ δ 0 then by Eq. (3.15)

m oo

|2Σ Σ 2δonfe"ί-oίr||Vr||,
2

iCI+3 (3.24)
r=ί n=l

m oo

Σ Σ 2n2-"tr\\ψ\\2

y,ay,α+3

so for such ρ the limit does exist uniformly. Since Vo is dense in V and
each S'fiF,-): V^V is a contraction the limit exists uniformly for all
ρeV. We have also shown that iϊψe@ and F Q An

t then

£t(F9ψ®ψ) = £t°(F,ψ®ϊp). (3.25)

From its definition as a limit it is easy to verify that St has the
following properties, subject to the condition that 0^ί5Ξί0.

(i) Q -• <ίf (F, ρ) is positive linear on V for all F Q Xt

(ii) F-+δt(F, Q) is σ-additive for all ρ e V;
(iii) tr K(Z ί ? ρ)]^tr[ρ] if ρeV+;
(iv) ί-><ff(Jζ, ρ) is continuous for all ρ e F;
(v) ^ s + ί = ̂ s o (ff in the sense of composition defined in [3] provided

0^5, t ands + ίg ίo
If ί ̂  0 is arbitrary and N is the integer such that (N - l)f0 < t ^ ./Vί0

we define ^f as the composition

4 = ( 4 / r - 1 ° 4 - w - i ) « 0 (3-26)

From the above properties it is immediate that St is a sub-stochastic
process on X, V and the only remaining problem is to prove that St is
actually stochastic.

If ψ e Θ and O^t1^t0 then £tί(Xt,y><g)ψ) is of the form

ρ = J

where

5 Commun. math. Phys., Vol. 22
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by Eqs. (3.25), (3.14), and (3.8). By Lemma 3.5

fUrn t r [ r 1 W f z j u ^ , ρ)-ρ)] = 0 (3.27)

so
lim inf tr [ r 1 (^(Xί? ρ) - ρ)] ̂  0 (3.28)

which proves that the continuous function

(3.29)

is monotone increasing for O g ί ^ ί 0 . Since the convex combinations
of such states \p®ψ are dense in V+ and δt is known to be sub-stochastic
it follows that

(3.30)

for all ρ e V+ and all 0 ^ t ^ t0. It is now immediate that this also holds
for all ρ e F and all t ^ 0.

Before closing the section we note that all the calculations we have
done can be performed if X is an arbitrary locally compact abelian
group, the crucial starting estimates being Eqs. (1.17), (2.3), (2.4), (2.15),
and (2.16). In particular if we impose periodic boundary conditions by
taking X = Π3 a translation invariant process is obtained if μ and j
are both taken to be constant on X.

§ 4. The Harmonic Oscillator with External Damping

If we take X to consist of just one point e then we have a model of
a displaced harmonic oscillator interacting with an absorptive particle
detector. It will become apparent that this is closely related to a method
of quantizing a certain ordinary differential equation, which however
cannot be realized by a one-parameter unitary group on the appropriate
Hubert space. We define

,T=o:ψ,,e<C and ||ψ||

on which we need only the one-parameter family of norms

"«} (4.2)
n

to define the domain Θ= [\ Da. To fix notation we let ω, μ be two
α>0

positive numbers, z0 an arbitrary complex number and α*, a the creation
and annihilation operators respectively on Jf. The process δ is con-
structed on V = &lffl) by the methods of Section 3 using the formal
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definitions

H = ωa*a Γ==-(zoa +zoa*) (4.3)
l/2ω

and

β (e, ρ) = μ a ρ α* (4.4)

so

Z=-iH-^μa*a. (4.5)

We define

Tt(ρ) = £t{Xt9ρ) (4.6)

where

- X f = { ( ί i , - . . , ί » ) : 0 < ί 1 < - - - < ί J i ^ ί and 0^n<cx)} (4.7)

so that Tt is a strongly continuous one-parameter semigroup on
V=^s(Jtf) such that if ρ e F + then

Tt(ρ)eV+ and tr[T t(ρ)] = t r [ ρ ] . (4.8)

For the remainder of the section we investigate the properties of Tt

alone, rather than the entire stochastic process δt9 and we do this by
introducing the family of coherent states [4]. For every z e C ψ(z) is
the unit vector in J f such that

xPn(z) = e-ϊ\z\2JL=-. (4.9)

Each ψ(z) lies in 3) and is an eigenvector of the annihilation operator
with

a{ψ(z)} = zxp(z). (4.10)

States of the form ρ = ψ(z)(g)ψ(z) are called pure coherent states [4],
The following theorem shows that these states have very special prop-
erties with respect to the semigroup Tt.

Theorem 4.1. If ρeV+ is not a pure coherent state then Tt(ρ) is not
a pure state provided t > 0 is small enough. If ρ is a pure coherent state
then Tt(ρ) is a pure coherent state for all t ̂  0.

Proof. Because the set of pure states in V+ is norm closed and Tt

is strongly continuous, Tt(ρ) can only be a pure state for arbitrarily small
t >0 if ρ is already pure. We now suppose ρ = ψ<S)ψ where ψ e #t and
that Γf(ρ) is pure for all 0 < t ̂  2t0.

Since
(Ctψ)n = e{~iω~iμ)ntψn (4.11)
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we have the estimate

\\Ctψ\\in)^e'^Ht\\ψ\\w. (4.12)

Using this instead of Eq. (2.10) to recalculate Lemma 2.2 we obtain an
estimate of the form

\\ψl (4.13)

so Btψ e Dom(fl) for all t > 0. Now if δ >0, Φ = Btoψ9 and 0 < t ^ t0

Tt

δ

o+t(ρ)^Tt

δ(Φ®Φ)

] (Bt_sae-δNΦ)®(Bt_sae-δNΦy ds. (4.14)

Going to the limit as <5-»0 by using the fact that Φ e Dom(α) we obtain

Tt0+t(ρ)^(BtΦ)®(BtΦT+μ } (Bt_saΦ)®(Bt_saΦy ds . (4.15)
s = 0

Since the left-hand side is a pure state when 0 < t ^ t0 the right-hand side
must be a pure state however small t > 0 is, so Φ and aΦ are proportional
and Φ is an eigenvector of a and hence a coherent state. Now letting
ίo-»O and using the fact that the coherent states form a norm closed
subset of V, it follows that ψ is a coherent state.

Conversely suppose ρ = ψ(z)(g)ψ(z) is a pure coherent state. If z(t)
and λ(t) are two complex-valued functions of t ^ 0 then

{λ(t)eψ{z(ή}} Z { A ( ί ) e > { z ( t ) } } (4.16)

if and only if

(4.17)

Therefore if λ(ί) and z(ί) are the solutions of the ordinary differential
equations

£ * (4.18)
2ω'

mp ( 4 1 9 )
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subject to the initial conditions z(0) = z and λ(0) = 1, we have shown
quite rigorously that Eq. (4.16) is satisfied. By the theory of one-parameter
semigroups it follows that

Bt{ψ(z)} = λ(t)ψ{z(t)} (4.20)

for all ί^O. Now by Eqs. (3.7) and (4.10) it is immediate that G°xp(z) is
proportional to ψ{z(t)} for all t ̂  0 and all n so by Eq. (3.25)

Tt{ιp(z)®φ)} = ψ{z(t)}®ψ{z(t)} (4.21)

first for all sufficiently small t and hence for all ί^O, the constant of
proportionality being unity because of Eq. (4.8).

The above theorem shows that Tt provides a quantization of the
differential Eq. (4.18). Since the pure coherent states span a dense linear
subspace of V by [4], Tt is unique determined by Eq. (4.21). Moreover
there does not exist any unitary group U{t) on Jf7 such that Tt{ρ)
= U(t) ρ U(t)* because Tt does not map general pure states to pure states.

The following theorem provides an example of an infinite-dimensional
quantum stochastic process with an equilibrium state. This and related
properties are studied systematically in [2].

Theorem 4.2. There exists a pure coherent state tp(z1)(x)i/;(z1) where

^ μΓ1 (4.22)

such t h a t for all states ρ e V

1 (4.23)
ί-ΌO

where the limit is taken in the norm topology of V.

Proof. For pure coherent states ρ the result is an immediate con-
sequence of the form of the explicit solution of Eq. (4.18). Since linear
combinations of pure coherent states are dense in V and Tt is a contrac-
tion semigroup, Eq. (4.23) now holds for arbitrary ρ e V by density
arguments.

We comment that as μ-»0 the equilibrium state converges to the
ground state of the displaced harmonic oscillator, whose Hamiltonian
is H. However, the rate of convergence to the equilibrium state decreases
and in the limit there is no such convergence. This theorem provides a
justification for regarding μ as being a parameter describing the degree
of external damping.
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