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Abstract. The analytic functional calculus, relatively bounded and analytic perturba-
tions of pseudoresolvents have been studied. As an application, the nonrelativistic limit
of the Dirac and Klein-Gordon operator in the presence of an external static field has
been considered. It has been proved that the resolvents of these operators have only a
removable singularity at ¢ =o0. This implies the analyticity at c=oo of the eigenvalues and
eigenvectors corresponding to the bound states of the mentioned operators.

In this paper we consider the behaviour of the Dirac and Klein-
Gordon operators for a particle in an external static field as functions
of the parameter ¢, where c is the velocity of light, when c¢— co.

It turns out that the resolvents of the operators T{c) + mc?, where
T(c) is the relativistic Hamiltonian, are analytic functions of the complex
variable ¢, having only a removable singularity at ¢ = co. The limit for
c¢— oo is a pseudoresolvent connected in a natural way with the resolvent
of a Schrodinger operator with the same potential.

We show that the analytic functional calculus, the relatively bounded
and analytic perturbation theory for pseudoresolvents hold equally well
as in the case of closed operators (see e.g. [1, 3]).

As an application we obtain the following results: The eigenvalues
and eigenvectors for the bound states of the relativistic Hamiltonians
are analytic functions of ¢ in some neighbourhood of ¢= 0. For the
Dirac operator this is a generalisation of an earlier work of Titchmarsh [6]
in which similar results were obtained by other methods for spherically
symmetric potentials.

It should be remarked that our results are only local, i.e., there are
no estimates of the radii of convergence.

At the end we discuss some difficulties connected with the fact that
the scalar products for the Klein-Gordon equation depend on ¢ in
a manner which is not analytic at ¢ = co.
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1. Definitions and Preliminary Results

A pseudoresolvent (see [2], p. 201) is a mapping R(-) of a nonvoid set
¢ of complex numbers into a Banach algebra U with an identity 1
such that

R(wW)—RA)=A—-mwRA)R(p), Apeg ey

or equivalently
(1+ (= ) R() (1 + (1 — A R(2)

1/

=(1+E-DRM))(I+A-pRW)=1, pnicg. ®
Thus, for 4, ue€ o we have [1 —(u—A)R(4)]"! and

RW=RA) (A +u—-AHRMA)™. 2

It is well known (see [2], p. 205) that for any pseudoresolvent there
is a unique maximal extension with the property (1). The domain of
definition g2 ¢’ of this extension will be called the resolvent set of the
pseudoresolvent R. Its complement ¢ will be called the spectrum of R.

It is easy to show (see [2], p. 205) that

e={w;(l+(u-HRMA) e}, Aeg, )

where the right-hand side of (3) does not depend on A€ ¢, and that the
extension of R is given by (2). In what follows we shall always consider
a pseudoresolvent as defined on its resolvent set unless stated otherwise.

If A= L(X), where L(X) denotes the algebra of bounded operators
on a Banach space X, we shall say that R is a pseudoresolvent on a Banach
space X. It is well known that in this case the range %#(R(4)) and the
nulspace N(R(4)) of the operator R(4) do not depend on A€g and we
simply write #Z and N, respectively.

1.1. Definition. A pseudoresolvent on a Hilbert space X is symmetric
if for some pair A, A€

R(1)=R()*. 4)
It is called J-symmetric if there is J=J*=J"'e L(X) such that
R(A)=JRA*J. )

Consistently, a bounded operator A is called J-symmetric if
A=JA*]. (6)

From the resolvent Eq. (1) it follows that for a symmetric pseudo-
resolvent the set ¢ contains all nonreal numbers and that (4) holds for
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any pair 4, 1€ ¢ and that the operators R(4), A € ¢ are normal. Thus, the
subspace Z is the orthogonal complement of N. Each symmetric pseudo-
resolvent can therefore be written in the form

R(Z)=Ro(H) P, 0]

where P is an orthogonal projection and R (/) is a resolvent of a uniquely
determined selfadjoint operator T in the subspace PX. We then have

IR = 1/[ImA]. ®)

2. Functional Calculus for Pseudoresolvents

It is almost plausible that a pseudoresolvent should possess a func-
tional calculus with analytic functions in full analogy with that for closed
operators in a Banach space (see, e.g. [1], p. 600). For proofs of the
theorems in this section we refer the reader to the corresponding proofs
in [1]. Full proofs are also given in [3]'.

Here we consider complex analytic functions as defined in a complex
sphere K = Cu{c0} with the usual topology.

2.1. Definition. Let R be a pseudoresolvent on a Banach algebra U
with an identity 1 and let g, ¢ be its spectrum and resolvent set, respec-
tively. The set

’

ey

o;if R is a resolvent of some ae A
o {oo}; otherwise

will be called the extended spectrum of R.

By # we denote the set of all functions analytic on ¢’.2

Let ¥V CK be an open set containing ¢’ whose boundary I" consists
of finitely many of Jordan arcs, such that I is oriented positively with
respect to V. For any f analytic on VUl we define

1
T(f)=5f(00)+2—m£f(/1)R(/1)di, @)
where
5o {0; w0 ¢o’
1;0€0.

1 See also [5], where a functional calculus for pseudoresolvents with the properties
a), b), ¢) of Theorem 2.4 below is given.
2 Note that the analyticity on ¢’ means just the analyticity on some neighbourhood

'

of ¢'.
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2.2. Theorem. For any f,ge % we have

a) T(uf+pg)=aT(f)+BT(9),

b) T(fg9)=T(f) T(9),

c) T(fo)=1, where fo(2)=1,

d) T(f)=R(u), where f,=1/(u—2), peo,
e) o(T(f))=/1(0".

2.3. Definition (cf. [1], p. 372). A set 6, Co is called a spectral set if
it is bounded in C and if it is simultaneously open and closed in ¢'.
So, if g, Co is a spectral set, the element

1
P=5_- [ R(A)d2, I, surrounds g, in the positive sense  (3)
I
will be a projector.
If we take
1
d= e rfl AR(A)dA, 4)
it is obvious that
A—d)*=RA)p+(1—-p)/i, Aeo, Ai%0. ®)
For u€ g we also have
1 R(A)dA
R(A)= —— R 6
PRO= 5 [ = 75 T30 R, ©

where
_ [1;pinside Ty
oW = {O; u outside T, .
This implies
o(d)=0,U{0}. ™

In the case A = L(X), where X is a Banach space, we say that xe X
is an eigenvector for R and A, is the corresponding eigenvalue if

R x= x, forall Aeg. (8)

l_/lo

It is obvious that an eigenvalue belongs to the spectrum.

2.4, Theorem. Let 6, C o be a spectral set for a pseudoresolvent R on
a Banach space X and let the corresponding spectral projection be finite
dimensional. Then o, consists of a finite number of poles for T which are
eigenvalues of R.
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3. Relatively Bounded Perturbations

Let T be a closed operator in a Banach space X defined on D(T) so
that A, € o(T ), and let V be a linear operator in X defined on D(T) such
that 1 — VR(Ay; T) is a regular element of L(X).

Then, as it is well known, T+ V is a closed operator on D(T), and the
corresponding resolvents satisfy the identity

R(A;T+V)=R(4; T)(1—VRA; T)) ™

=R(A; T)+R(A; T)VR(A; T+YV) @)

for A from some neighbourhood of 4,,.
Here we take (1) as a definition of a perturbation of a pseudoresolvent.

3.1. Theorem. Let R be a pseudoresolvent on a Banach space X. Let
V be a linear operator in X defined on & = R(R(A)) such that 1+ VR(A,)
is a regular element in L(X) for some A, € . Then there is a unique pseudo-
resolvent Q such that

Q(A)=R(A)+ Q) VRA=RMA)+RA) VQAH)=RAH (I -VRA)™" (2
for A from some neighbourhood of A,. The pseudoresolvent Q does not
depend on the choice of A, € .
Proof. Let |4 — | |[R(Ao)ll < 1. Then 1 —(2) implies
Aeg, VR(A)eL(X),

[VR(Ao)[| 14— 4ol IR(Ao)ll
L —|A—Zo| IR(o)
Since the set of all regular elements is open and the map A—R(J) is

continuous, there is an r € (0, 1) such that |1 — 1| < r implies the regularity

of 1 - VR(4) e L(X).
Set

IVR(A)— VR = ®)

K,={4 A=Al =1}
and define a map

K,32~Q()=R() (1~ VR(A) " € L(X). 4
It is obvious that Q(-) satisfies the identity
0(%)=R(A)+ Q%) VR(A).
Furthermore, since 4 € K, implies VQ(4) € L(X), we have
1+VQ(A)=1+VRA(1—-VR(A) '=(1-VRA)™', Aiek,,
which shows that
QA)=R(A)+RA)VQL), ALeKk,.
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Thus Q satisfies (2). Now we must show that Q(-) is a pseudoresolvent.
We first remark that 1+ Q(4) V maps £ into #. For LueK, A+u
we have

Q(4) Q(w)=(1+Q(4) V) R(A) R(w) (1 + VO (W) =

where we have used (2).

So, Q is a pseudoresolvent defined on K,. To prove the uniqueness,
suppose that A, € ¢ and that 1 — VR(4,) is regular in L(X). Let K be
a disk of radius s < 1 around A, and Q,(4) the pseudoresolvent obtained
in the same way as above. Then Q, satisfies the equalities (2), and for
AeK,, ue K, 2+ u we have

2w —0()
= )

0 040 = -~ ~(0:(— Q)

QW Q)= - (21 ()~ ().

1
—u
This implies

(1+(@A=w QW) (1 + k-2 Q1)

=(1+@E-DoN)(1+A—-—w o (W)=1.

Hence

Q:i(W=0A) (1 +E-1HQMA)™",

which means that K is contained in the resolvent set of Q and that Q,
is a restriction on K, of the maximal extension of Q.

4. Analytic Perturbations

In this section we develop the theory of analytic perturbations for
pseudoresolvents. The results as well as the methods are quite analogous
to those for analytic families of closed operators in the sense of Kato
(see [3], p. 367).

Let s=>R(-, s) be a family of pseudoresolvents on a Banach algebra
defined for s from some complex neighbourhood @ of zero.

The corresponding resolvent sets and spectra are denoted by o(s)
and o(s), respectively.

4.1. Definition. A family of pseudoresolvents s— R(-,s) is called
analytic at zero if there is a complex number A, € ¢(0) and a neighbour-
hood 0 of zero such that A, € ¢(s), s € O and that s+ R(A,, s) is an analytic
function on ¢ with values in 2.
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4.2. Proposition. Let R(-, s) be analytic at zero. Then for any compact
I’ C 0(0) there exists a neighbourhood O of zero and an open set U such
that I' CU C o(0) and that the function

A, = R(4, 5)

is analytic in two variables on U x 0.
Proof. Take I' C ¢(0). The function
A [I(1+ (A= 40) R(4o, 0) 71
is continuous and hence bounded on I' by a constant M(I).

Set
N(I')=sup|i— 4|
reTl

and take a neighbourhood @ of zero such that for se ¢
IR(Zo, 5) — R(4o, 0)| <1/M(I') N(I') .
This is possible, since R(4, s) is continuous in s. Then

14+ (42— 2¢) R(A¢, S)
=[1+ (A~ 40) R(4o, 00T {1 + [1 + (2 — A0) R(20, 0)] " (R(4o» 5) — R(Zo, 0))}

is regular in U for any A€ I, se 0. Since the set of regular elements is
open, there is an open set % such that I' C % < ¢(0) and that 1+ (1 — 4,)
- R(4y, 8) is invertible in A for A e %, se O0. Now, the function

R(Ag, $) [1+ (A~ 4o) R(Ag, 17! =R(4, )

is analytic on % x @ in each variable separately. Since it is obviously
jointly continuous on % x 0, it is also jointly analyticon% x 0. Q.E.D.

4.3. Corollary. Let 6, be a spectral set of a(0) and I'y a closed Jordan
curve separating o, from a(0)\o;. Let f be a function analytic on U VT,
where 9 is an open set containing o, whose boundary is I';. Then there
is a neighbourhood O of zero such that s€ @ implies I'; C o(s) and that
the function

05— [ fG) R, 5)di
. ; 27i
is analytic. !
In the following, together with an analytic family R(-, s), we consider
a family V(s) of perturbations and give a sufficient condition for the
analyticity of perturbed pseudoresolvents Q(-, s) obtained by Theorem 3.1.

4.4. Theorem. Let s— R(-,s) be a family of pseudoresolvents on a
Banach space X which is analytic at zero. In addition, let V(s) be a family

3 Commun. math. Phys., Vol. 22
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of linear operators in X such that there is a complex number A, and a
neighbourhood O of s=0 with the properties

a) V(s) R(Ag,8)€ L(x), se0,

b) s+—>V(s) R(4o, 5) is analytic for s€ 0,

c) 1—V(0) R(Ay, 0) is regular in L(X).
Then there is a neighbourhood O, of s=0 and a neighbourhood O, of A,
such that the function

s—=>Q(4,s), se0,

is analytic in s.

Proof. We first remark that there is a constant »>0 such that for
|4 — Aol = the operator 1 — V(0) R(4, 0) is regular in L(X).

By the analyticity of s R(4,, ) there is a neighbourhood ¢’ of s=0
and ' >0 such that s+ R(/, s) is analytic and

1A= 2l IR(4, 9)| k<1
for |A — A¢| =7y, s€ O'. Hence the function
1—=V(s) R(4, )= 1=V(s) R(4o, 5) [1+ (2 = Z0) R(%0, 5)] "

is analytic in s€ ¢’ for every A such that |4 — 4,| <. Since the function
[1+(A—4y) R(Ag, )]~ ! is jointly continuousin 4, s on {|1 — Ao| <7} x O,
there exists an >0 and a neighbourhood @, of s=0 such that for
SEO, |A— Aol =1

1—-V(s)R(4, )

is regular in L(X). Thus the function
st R(4, 5) (1= V(s) R(4, )7}

is analytic in s, since it is product of two analytic functions. Q.E.D.

In the following we shall discuss the behaviour of isolated eigenvalues
of finite multiplicity for some classes of analytic families of pseudo-
resolvents. For later applications we consider not only symmetric
pseudoresolvents but also J-symmetric ones. In order to do this, we use
the standard method of Kato, which is powerful enough to give results
even in the J-symmetric case. We include the full proof mainly for the
sake of completeness.

We consider a family s—R(-, s) of pseudoresolvents on a Hilbert
space X with the properties

(i) R(-, s) is analytic at zero.

(ii) R(-,s)is J-symmetric for real s and for some J =J "' = J* € L(X).

(iii) The spectrum o(0) of the pseudoresolvent R(-,0) possesses an
isolated real eigenvalue 4,0 such that the “root space” given by the
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projection
P(0)= —1—— {R(4,0)dA, I surrounds 4,
27i
has a dimension m < oo.
(iv) The restriction of the form

(%, y>=(x,))

on the subspace P(0) X is strictly positive. (Here (-,-) is the scalar pro-
duct in X.)

4.5. Theorem (cf. [3], p. 385). Let R(-,s) be a family of pseudo-
resolvents with the properties (1)—(iv) listed above. Then for any circle I'
isolating A, fromthe rest of ¢(0) there is a neighbourhood O of s = 0 such that

a) I'Co(s), s 0.

b) The part of a(s) inside I' conmsists of t<m points A(S), ..., A(s).

¢) The functions A(s), i=1, ..., t, s€ O are analytic and such that 2,(s)
is real for real s and 2,(0)=A,.

d) A;(s)* Ai(s), for s€ 0, i=+j, s*0.

e) For each i=1,...,t there are vectors ®,;, j=1,...,n;, such that

2

R(4,5) D;i(s) = P;(s), A€ 0(s),

1
A — A(s)
n+n,+ - +n=m,
{D;i(3) Pyn(5)) = 0,46;,, forreals.

f) The functions ®,,(s) are analytic in s€ O and the vectors @,s) are
linearly independent.

Proof. Let O(I') be a neighbourhood of s=0 such that se O(I')
implies I' C o(s).

P
u T(s)= —2—%— 1{ AR(A,s)dAe L(X), (1)

1
P(s)= 5~ I[ R(4, s)d).e L(X). ?)

As a consequence of 4.2 O(I') can be chosen such that both T'(s) and
P(s) are analytic on O(T'). By 2 — (5) the spectrum of R(-, s) and that of
T(s) coincide inside I'. The same is true of all the corresponding spectral
projections and eigenvectors. It is, therefore, sufficient to consider the
family T'(s).

Since 4, is an isolated eigenvalue with a finite dimensional root space
for T(0), the identity (1), (2) implies that both T(s) and P(s) are J-symmetric

3%
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for real s. This together with the fact that <-,- >| P(0) X is strictly positive
implies
T(0) P(0)=P(0) T(0)= 4, P(0) . 3)

Since P(s) is analytic, we have dim P(s)=m, s O(I'). On the other
hand, there is a neighbourhood ¢’ £ O(T’) of zero such that s e ¢’ implies

[P(s)—PO) <1.
Then, as it is well known, the following implications hold

(x=P0)x, P(s)x=0)=>x=0 Vse¢

, (4)
(x=P(s)x, PO)x=0)=x=0 Vse0'.
Hence the identity
(T(s)—4)x=0, xeX
is equivalent to
P(0)(T(s) P(s) — AP(s)) y=0, x=P(s)y, ©)

where y is uniquely given by x = P(s)y. The last equation defines a
generalised eigenvalue problem in the space P(0) X. It can be written as

(A(s)— AB(s)) y=0 (6)
where
A(s)=P(0) T(s) P(s)| P(0) X, (7
B(s)=P(0) P(s)|P(0) X, A(s), B(s)e L(P(0) X). (8)
We also have
CA(s) x, yp = <{x, A(s) X>} &)
sreal,
(B(s) x, y» =<x, B(s) y> (10)
B(0)=1, A@)=A4,, (11

where A(s), B(s) are analytic for se (".

It is well known that all that (see, e.g., [3], p. 416) implies the existence
of a neighbourhood O C @' of s=0 and of the analytic functions ,(s),
¥ij(s) (scalar, vector-valued) i= 1, ..., t,j=1,...,n,n + --- +n,=m;s€0
such that

(A(s) = 2(s) B(5)) y1;(5)=0, (12)
{B($) yi(8), yin(s)) = 0x0;,, sreal, (13)
L) F (), j*i, s=*0. (14

Moreover, 4,(s) are real for real s and y;;(0) can be chosen (-, >-
orthogonal.
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Thus the analytic functions @;;(s) = P(s) y;;(s) satisfy

and <¢ij(s)’ ¢kn(s)> = 5ik5jn 5 s real ,

R(4, 9) B,(5) = R(2, 5) P(s) B;(5) = R(%, T(S)) B;,(5) = By (5)/ (A — A(9) -

This proves the statements a), b), ¢), d), e). Since @;;(s) are analytic,
O can be chosen in such a way that &;; are linearly independent for
se 0. This completes the proof.

5. The Dirac Operator

Take X =[L,(R*]% i.e., as a Hilbert space of equivalence classes of

all measurable spinor functions P,
- | P2
v=1 .
V3
Pa

on R3, which are square integrable with the usual scalar product. The
Dirac operator is formally given as

N ih N N
T'(s)= — lTaV+ BS—'Z" L V=S5 + 7, (1)
where
v 0 ’ 0 , 0 >,
0xy  0x, 0x3
5, 0
= (0, 00, 003), aV=0q4 o + 0y ox, + oy oxs

Here s is the inverse of the velocity of light, «;, § are Dirac matrices, and
V is the multiplication by a real measurable function V(x).

It is well known that the operator S'(s), as defined on [CZ]* has a
unique selfadjoint extension S(s). It is a result of Prosser [4] that under

the condition
[IV(x))Pdx<oo 3<p<oo )

the operator V is S-bounded with the relative bound less than 1, which
guarantees the existence and the uniqueness of the selfadjoint extension
Tof T3
3 Recently J. C. Guillot bas obtained the same result under the condition
140

XER? |x—y|<1 ]x_y'v

dy<o, v>1.

The author is indebted to Dr. J. C. Guillot for kindly communicating his result.
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By the Fourier transformation

y(p)= on h)3/2 [ e P () dx, 3)

the operator S’ is going into

[S(s)w](p)= isp~ v(p) + %1— w(p), ap=oyp;+apy+azps. (4)

For a real s >0 the resolvent of the operator S'(s) — m/s? is

sap+(B+ 1) m+ As?
25?2 +2mA—p?

It is obvious that for any A ¢ [0, co] there is a complex neighbourhood
0, of s=0 such that for se @, the expression (5) defines a bounded
operator. Thus, even for complex se @, formula (4) defines a closable
operator on [C¥]* with a range which is dense in X, whose closure is
denoted by S(s) —m/s* and whose resolvent is (5). Note that (5) makes
sense even for s =0 when
B + 1 ( p? B+1

RO,0)= 2L (5 —m)_ =(-s)7 0, ©)

[R(4,5) w](p)= w(p). ()

p+1
5 X.

where S, is the restriction of p?/2m on

Thus, at least formally, the family of resolvents R(4, s) has a limit
when s— 0. This limit is a pseudoresolvent expressed as a product of the
projection (f+ 1)/2 and the resolvent of a Schrodinger operator in the

space Z (8 + 1)/2).
5.1. Proposition. The family R(-, s) defined in (5) is analytic at s=0.
Proof. Take A ¢ [0, o0). The assertion follows from the identity

[R(% ) v] () )
= {(sop + (B+ D m+ 4] @mi— p?)~ (L4 282 @mA— p) ) 7} (),

and Definition 4.1. Q.E.D.

5.2. Theorem Let A¢ [0, c0) and let V(-) be such that 1 — VR(4,0) is
regular in L(X) and that s>V R(4, s) € L(X) is analytic at s=0. Then the
family of pseudoresolvents Q(-, s) defined by Theorem 3.1 is analytic at
zero. Moreover '

Q4 5)=R(A; T(s)—m/s?®), s+0, (8)
0(4,0)=R(4; Tp) P, 9)
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where  p=S@s)+V, Ty=So+VIPX, P=(f+1)2
and R(1; A) denotes the resolvent of an operator A.

Proof. 1t follows from Theorem 4.4 that Q(-, s) is analytic at s=0.
The identity (8) is obvious, while (9) follows from

0(4,0)=R(4,0) (1 = VR(%,0)*
=R(4,0) P(1-VR(Z;So) P) "' =R(4; Ty) P,
where we have used the fact that VR(4;S,) P commutes with P. Q.E.D.

5.3. Corollary. Let V be as in Theorem 5.2 and let T, have an isolated
eigenvalue Ay# 0 of finite multiplicity. Then all assertions of Theorem 4.5
are true for J=1 and the numbers As) are eigenvalues for T(s)—m/s>.

Obviously, any bounded V will satisfy the conditions of Theorem 5.2.
A result for relatively bounded potentials is given by the following
theorem.

5.4. Theorem. Let V be such that VR(Ag, so) € L(X) for some sq>0
and some 1o <0 and that 1—VR(A,0) is regular in L(X). Then the
function s—VR(4, s) is analytic for |s| <s, and 1 — VR(A,, 8) is a regular
element in L(X) for s from some neighbourhood O of s=0.

Proof. We have
VR(%o, ) = VR (%o, So) (.= T(s0) + m/s5) R(4o. 5)
sap+(B+ 1) m+ Ays*

= VR (o, 30) (2 = T(S0) +m/55) =73 2miy—p?
0

Since 4, <0 is in the resolvent set of R(-, s,), we have
Ao € (—2m/s3,0),
which, together with |s| < s,, implies

BIS? ol 83
2mlol+p* = 2m

<1. (10)

Now, (7) implies that the family
ap R(j'Or S)
is analytic in s for |s| < so,. The same, therefore, is true of VR(4,, s). The
remaining part of the assertion is obvious. Q.E.D.
5.5. Remark. Completely analogous results follow for the family
T(s) + m/s*. The “limiting” operator in this case is

(—=So+VI1-P)X)1-P).
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6. The Klein-Gordon Operator

In [7] we considered the Klein-Gordon operator which can be given
in the form
T'(5)=S(9+V,

where
0 2
soue="3(; "% v, )
0O=ve.ve. v=("), o
(%)
u(p, 5)= (1 + p>s*/m*)'/* . ©)
The scalar product is given by
0 D= [ PP 55 pa(0) o @

where p € R® and dp is the Lebesgue measure.

In [7] we proved that the closure of T'(s) is a scalar type operator
with a real spectrum in a Hilbert space with the scalar product (-,-);.

The difficulty arising here is that the scalar product varies with s.
While all scalar products for real s=0 are mutually topologically equiv-
alent, this ceases to be the case when s=0.

Thus, we fix an arbitrary s, > 0 and consider the Hilbert space X (s,)
of pairs of functions with the scalar product (4). As a linear topological
space, X (so) is not varying with s, for s, > 0. Obviously, 2 C X (s,), where
&? denotes all pairs of rapidly decreasing smooth Schwartz functions.

The expression (1) defines a linear operator from &2 to %2 This
operator is a restriction of a closed operator S(s,) given by the same
formula on the domain

D= {; [ [u(p, so) w1 (P)I* + (. 50)° 2 (p)|*1 dp < o0} . )

It is obvious that S(s,) is selfadjoint in X (s,). The expression (1) defines
a linear operator from %2 to %2 even for complex s+ 0.

For A¢[0, o0) and s from some complex neighbourhood 0, of zero,
the inverse of the operator 4 — S'(s) + m/s® is given by

As* +m  mu(p, s)® y(p) ©)
A2 +m ) A2 +2im—p?’

m@@w@=(

which is bounded in X(s,).
Since R(J, s) maps &2 into &2, it is the resolvent of a closed operator
S(s) — m/s*> which is a closure of S'(s) — m/s>.
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On the other hand, (6) makes sense even for s=0, when we have

R(,0)= R(3: S, P )
where
R(: S0 = (1= 50)7", ®
2 1/1 1
Sl 0)= 4w v=Pp. P=3(; ) O

6.1. Proposition. The family s+ R(4, s) is analytic at zero.
Preof. As in 5—(7), we write

[R(L 9 ¥] (9
- (ASZJ mmy ffm/'") @im—p?) ™ (1= 258 @im—p) ) (o).

Since the operators

10 »
(O )(um—pZ) ,

[y

0 1
(0 0) (m+p*s*/m) 24m—p*)~*,

0 0 »
(1 o @im=pt,

1 0
_ 122 _ p2)y-1)-1
(1—-22s*2Am—p*)™1) (0 1),
are bounded in X (s,) for 4 [0, c0) and s from some complex neighbour-
hood 0, of zero, it follows that R(-, s) is analytic at s=0. Q.E.D.

6.2. Theorem. Let A= [0, c0) and V be such that 1 — VR(4, 0) is regular
in L(X(so)), and that sV R(4, s) € L(X(so)) is analytic in some neighbour-
hood of zero. Then the family of pseudoresolvents Q(-, s) defined by 3 — (2)
is analytic at zero. Moreover

Q(4, ) =R(4; T(s)—m/s*), s*oc, (10)
Q(4,0)=R(4; Tp) P, (11)
To=So+ VIPX(so), T, closedin P(X(s,)). (12)

Proof. The proof follows the lines of that given in Theorem 5.2 and
will not be repeated here.
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6.3. Corollary. Let V be as Theorem 6.2 and let o(T,) have an isolated
point Lo = 0 such that the corresponding spectral projection P, has a finite
range. Then all assertions of Theorem 4.5 are true with

1= (0 s0) 712
H(p> 50)1/2 0

and 2,(s) are eigenvalues of the operator T(s)—m/s>.

Proof. Itis easy to see that the operators T(s) are J-symmetric such that
JOA,8)J=0(4,s)*, sreal.

Since Ay +0, we have P,P = PP, = P,. Thus, to apply Theorem 4.5,
it is sufficient to show that the restriction of the form <-,-> =(J-,-),, on
the subspace PX(s,) is strictly positive.

Since

<, )= [ (W12 + 201 dp
and Py =1 implies

we have
(w0 = j 20w, (s)1* dp,
which is strictly positive. Q.E.D.

6.4. Remark. As a result of [7], V will satisfy the conditions of Theo-
rem 6.2 if, for example,

JIV®I (1 +1ph)? dp< 0.

6.5. Remark. As in the case of the Dirac operator, analogous results
will be obtained for the family T(s) + m/s>.

We see that there is no complete analogy between the Dirac and the
Klein-Gordon case. This is a consequence of the fact that the operator
To=S8y+ V|PX(sy) in (12) is not the usual Schrodinger operator,
because it is not selfadjoint in X (s,) *.

It is of some help in this case to consider the whole process in the
Hilbert space X defined by the scalar product

W, o= [ (w1 b1+ v,P,)dp.

Then R(4, s), defined as in (6), will again represent a family of pseudo-
resolvents analytic at s=0, and the statements 6.1, 6.2, 6.3, 6.5 will be
true provided that V is (-,-),-bounded, for example.

4 However, the isolated eigenvalues will be the same under certain conditions on V.
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In this case, however, a new pathology arises. The operators S(s) are
not of scalar type in X ! This is seen from the expression for the projection
belonging to the positive spectrum of S(s), s>0

_ 1 u(p,s) wp,s)
®-00= g ("

which is bounded in X(s,) but unbounded in X.

There is another possible procedure. We can consider that (-,-);, T(s)
changes “simultaneously”. However, in this case the analyticity in 1/c is
lost. A kind of strong convergence of resolvents can still be proved

(see [7]).

The author expresses his gratitude to Professor S. Kurepa and to the members of the
seminar for analysis of the Institute of Mathematics, University of Zagreb, for their dis-
cussions and remarks.
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