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Abstract. The analytic functional calculus, relatively bounded and analytic perturba-
tions of pseudoresolvents have been studied. As an application, the nonrelativistic limit
of the Dirac and Klein-Gordon operator in the presence of an external static field has
been considered. It has been proved that the resolvents of these operators have only a
removable singularity at c=co. This implies the analyticity at c=cc of the eigenvalues and
eigenvectors corresponding to the bound states of the mentioned operators.

In this paper we consider the behaviour of the Dirac and Klein-
Gordon operators for a particle in an external static field as functions
of the parameter c, where c is the velocity of light, when c->oo.

It turns out that the resolvents of the operators T[c) ± me2, where
T(c) is the relativistic Hamiltonian, are analytic functions of the complex
variable c, having only a removable singularity at c= oo. The limit for
c-» oo is a pseudoresolvent connected in a natural way with the resolvent
of a Schrδdinger operator with the same potential.

We show that the analytic functional calculus, the relatively bounded
and analytic perturbation theory for pseudoresolvents hold equally well
as in the case of closed operators (see e.g. [1, 3]).

As an application we obtain the following results: The eigenvalues
and eigenvectors for the bound states of the relativistic Hamiltonians
are analytic functions of c in some neighbourhood of c= oo. For the
Dirac operator this is a generalisation of an earlier work of Titchmarsh [6]
in which similar results were obtained by other methods for spherically
symmetric potentials.

It should be remarked that our results are only local, i.e., there are
no estimates of the radii of convergence.

At the end we discuss some difficulties connected with the fact that
the scalar products for the Klein-Gordon equation depend on c in
a manner which is not analytic at c = oo.
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1. Definitions and Preliminary Results

A pseudoresolvent (see [2], p. 201) is a mapping R(-) of a nonvoid set
ρ' of complex numbers into a Banach algebra 91 with an identity 1
such that

R(μ) - R(λ) = (λ-μ) R(λ) R(μ), λ, μ e ρ' (1)

or equivalently

μ,λeρ'. {1)

Thus, for λ,μeρ' we have [1 - (μ - λ) K(λ)] - 1 and

. (2)

It is well known (see [2], p. 205) that for any pseudoresolvent there
is a unique maximal extension with the property (1). The domain of
definition ρ 2 ρ' of this extension will be called the resolvent set of the
pseudoresolvent R. Its complement σ will be called the spectrum of R.

It is easy to show (see [2], p. 205) that

ρ = {μ;(l+(μ-A)Λ(λ))- 1 e2ί}, λ e ρ ' , (3)

where the right-hand side of (3) does not depend on λ e ρ', and that the
extension of R is given by (2). In what follows we shall always consider
a pseudoresolvent as defined on its resolvent set unless stated otherwise.

If 91 = L(X\ where L(X) denotes the algebra of bounded operators
on a Banach space X, we shall say that R is a pseudoresolvent on a Banach
space X. It is well known that in this case the range &(R(λ)) and the
nulspace N(R(λ)) of the operator R(λ) do not depend on λ e ρ and we
simply write 01 and N, respectively.

l.ί. Definition. A pseudoresolvent on a Hubert space X is symmetric
if for some pair λ, λ e ρ

= R(λ)*. (4)

It is called J-symmetric if there is J = J* = J~X εL(X) such that

R(λ) = J R ( I ) * J . (5)

Consistently, a bounded operator A is called J-symmetric if

A = JA*J. (6)

From the resolvent Eq. (1) it follows that for a symmetric pseudo-
resolvent the set ρ contains all nonreal numbers and that (4) holds for
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any pair λ,λeρ and that the operators R(λ),λeρ are normal. Thus, the
subspace & is the orthogonal complement of JV. Each symmetric pseudo-
resolvent can therefore be written in the form

R(λ) = R0(λ)P, (7)

where P is an orthogonal projection and R0(λ) is a resolvent of a uniquely
determined selfadjoint operator T in the subspace PX. We then have

\\R(λ)\\^ί/\lmλ\. (8)

2. Functional Calculus for Pseudoresolvents

It is almost plausible that a pseudoresolvent should possess a func-
tional calculus with analytic functions in full analogy with that for closed
operators in a Banach space (see, e.g.. [1], p. 600). For proofs of the
theorems in this section we refer the reader to the corresponding proofs
in [1]. Full proofs are also given in [3]1.

Here we consider complex analytic functions as defined in a complex
sphere K = Cu{oo} with the usual topology.

2.1. Definition. Let R be a pseudoresolvent on a Banach algebra 91
with an identity 1 and let σ, ρ be its spectrum and resolvent set, respec-
tively. The set

, ίσ if R is a resolvent of some a e 91

\σ u {oo} otherwise

will be called the extended spectrum of R.
By 3F we denote the set of all functions analytic on σ'.2

Let V Q K be an open set containing σ' whose boundary Γ consists
of finitely many of Jordan arcs, such that Γ is oriented positively with
respect to V. For any/analytic on F u f w e define

where

Άf) = δf(oo) + - ^ J f(λ) R(λ) dλ, (2)
Z711 p

l ooeσ .
1 See also [5], where a functional calculus for pseudoresolvents with the properties

a), b), c) of Theorem 2.4 below is given.
2 Note that the analyticity on σ' means just the analyticity on some neighbourhood

of σ'.
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2.2. Theorem. For any fge^ we have

a) T(*f + βg) = *T(f) + βT{g),
b) T(fg)=T(f)T(g\

c) T(fo)=l9 where fo(λ)=l9

d) T(fμ) = R(μ)9 where fμ = l/(μ -λ\μe ρ,
e) ()

2.3. Definition (cf. [1], p. 372). A set σx Qσ is called a spectral set if
it is bounded in C and if it is simultaneously open and closed in σf.

So, if σt Q σ is a spectral set, the element

P = -τr~r- f R(λ) dλ, Γx surrounds σλ in the positive sense (3)
2πι h

will be a projector.

If we take

d = -— J λR(λ) dλ, (4)
2πι Γί

it is obvious that

For μ e ρ we also have

(6)
zπi ^ μ — λ

where

ίl μ inside Γ1

(O μ outside Γx.

This implies

In the case 9Ϊ = L(X\ where X is a Banach space, we say that xeX
is an eigenvector for JR and λ0 is the corresponding eigenvalue if

R(λ)x=z — x^ for all λeρ. (8)
A — λ 0

It is obvious that an eigenvalue belongs to the spectrum.

2.4. Theorem. Let σ^Qσ be a spectral set for a pseudoresolvent R on
a Banach space X and let the corresponding spectral projection be finite
dimensional. Then σx consists of a finite number of poles for T which are
eigenvalues of R.
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3. Relatively Bounded Perturbations

Let T be a closed operator in a Banach space X defined on D(T) so
that λ0 e ρ(Ύ), and let V be a linear operator in X defined on D(T) such
that 1 - VR(λ0; T) is a regular element of L(X).

Then, as it is well known, T + F is a closed operator on D(T), and the
corresponding resolvents satisfy the identity

R(λ; T+V) = R(λ; T) (1 - VR(λ; T))"1

) l j

for λ from some neighbourhood of λ0.
Here we take (1) as a definition of a perturbation of a pseudoresolvent.

3.1. Theorem. Let R be a pseudoresolvent on a Banach space X. Let
V be a linear operator in X defined on$ = &(R(λ)) such that 1 + VR(λ0)
is a regular element in L(X) for some λ0 e ρ. Then there is a unique pseudo-
resolvent Q such that

Q(λ) = R{λ) + Q(λ) VR(λ) = R(λ) + R(λ) VQ(λ) = R(λ) (1 - VR(λ))~x (2)

for λ from some neighbourhood of λ0. The pseudoresolvent Q does not
depend on the choice of λ0 e ρ.

Proof Let \λ-λo\ \\R(λo)\\ < 1. Then 1 -(2) implies

λ G ρ, VR(λ) G L{X),

'*«>• (3)
l — μ — λo\

Since the set of all regular elements is open and the map λ\->R(λ) is
continuous, there is an r e (0,1) such that \λ — Ao| ^ r implies the regularity
oϊl-VR(λ)sL(X).

S C t Kr={λ;\λ-λ0\Sr}

and define a map

Kr 3 λ^Q(λ) = R(λ) (1 - VRiλ))-1 G L(X). (4)

It is obvious that Q( ) satisfies the identity

Q(λ) = R(λ) + Q{λ)VR(λ).

Furthermore, since λeKr implies VQ(λ) e L(X), we have

1 + VQ(λ) = 1 + VR(λ) (1 - VR(λ))-1 = (1 - VR(λ))~\ λeKr,

which shows that

= R(λ) + R(λ)VQ(λ), λeKr.
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Thus Q satisfies (2). Now we must show that Q(-) is a pseudoresolvent.
We first remark that l + Q(λ)V maps M into St. For λ,μeKrλ±μ
we have

Q(A) Q(μ) = (1 + β(A) V) R(λ) R(μ) (1 + VQ(μ)) = ^ ,
Λ — μ

where we have used (2).
So, Q is a pseudoresolvent defined on Kr. To prove the uniqueness,

suppose that λ1eρ and that 1 — VR(λ^) is regular in L(X). Let Ks be
a disk of radius s < 1 around λ1 and Q±(λ) the pseudoresolvent obtained
in the same way as above. Then g i satisfies the equalities (2), and for
λeKr, μeKs, λ + μwe have

— μ

A μ

This implies

Hence

which means that X s is contained in the resolvent set of Q and that
is a restriction on X s of the maximal extension of Q.

4. Analytic Perturbations

In this section we develop the theory of analytic perturbations for
pseudoresolvents. The results as well as the methods are quite analogous
to those for analytic families of closed operators in the sense of Kato
(see [3], p. 367).

Let s\->R(', s) be a family of pseudoresolvents on a Banach algebra
defined for 5 from some complex neighbourhood Θ of zero.

The corresponding resolvent sets and spectra are denoted by ρ(s)
and σ(s), respectively.

4.1. Definition. A family of pseudoresolvents s\->R(-,s) is called
analytic at zero if there is a complex number λ0 e ρ(0) and a neighbour-
hood Θ of zero such that λ0 e ρ(s), seΘ and that s \->R(λ0, s) is an analytic
function on Θ with values in 91.
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4.2. Proposition. Let R(-, s) be analytic at zero. Then for any compact
Γ Q ρ(0) there exists a neighbourhood & of zero and an open set °ll such
that ΓQ^ίQρ(0) and that the function

λ,s\->R(λ,s)

is analytic in two variables on % x Θ.

Proof Take Γ Q ρ(0). The function

is continuous and hence bounded on Γ by a constant M(Γ).
Set

N(Γ)= sup \λ-λo\
λeΓ

and take a neighbourhood Θ of zero such that for s e Θ

\\R(λθ9s)-R(λθ90)\\<l/M(Γ)N(Γ)

This is possible, since R(λ0, s) is continuous in s. Then

l + (λ-λo)R(λo,s)

= [1 + (A - Ao) R(λθ90)] {1 + [1 + (λ - λ0) R(λ09 0)] " 1 (R(λ09 s) - R(λθ9 0))}

is regular in 21 for any λe Γ, seΘ. Since the set of regular elements is
open, there is an open set ^ such that Γ Q <% Q ρ(0) and that 1 + (λ - λ0)
• R(λ0, s) is invertible in 21 for λ e %, s e Θ. Now, the function

R(λ09 s) [1 -f (λ - λ0) R(λ09 5)] - 1 = R(λ, s)

is analytic on °lί x Θ in each variable separately. Since it is obviously
jointly continuous on °U x Θ, it is also jointly analytic on^r x &. Q.E.D.

4.3. Corollary. Let σί be a spectral set of σ(0) and Γx a closed Jordan
curve separating σx from # ( 0 ) ^ . Let f be a function analytic on f u Γ j ,
where % is an open set containing σx whose boundary is Γv Then there
is a neighbourhood Θ of zero such that se& implies Γ1 Q ρ(s) and that
the function

Θ $f(λ)R(λ9s)dλ
i 2τcι r

is analytic.
In the following, together with an analytic family R{,s), we consider
a family V(s) of perturbations and give a sufficient condition for the
analyticity of perturbed pseudoresolvents Q( , s) obtained by Theorem 3.1.

4.4. Theorem. Let s^->R(-,s) be a family of pseudoresolvents on a
Banach space X which is analytic at zero. In addition, let V(s) be a family

3 Commun. math. Phys., Vol. 22
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of linear operators in X such that there is a complex number λ0 and a
neighbourhood Θ of s = 0 with the properties

a) V(s)R(λ09s)eL(x), seΘ,
b) s H* V(s) R(λ0, s) is analytic for SGΘ,
c) 1 - 7(0) R{λ09 0) is regular in L{X).

Then there is a neighbourhood Ox of 5 = 0 and a neighbourhood Θ2 of λ0

such that the function

is analytic in s.

Proof We first remark that there is a constant r > 0 such that for
\λ - λo\ ̂  r the operator 1 - 7(0) R{λ, 0) is regular in L(X).

By the analyticity of s \-> R(λ0, s) there is a neighbourhood Θ' of s = 0
and r' > 0 such that SH> JR(λ, s) is analytic and

μ-Aol \\R(λ,s)\\^k<l

for |A — Ao| ̂ r o , s e 0r. Hence the function

0, s)

is analytic in s e ί?' for every λ such that |/l - Λ,o| ^ r'. Since the function
[1 + (λ — λ0) R(λ0, s ) ]" 1 is jointly continuous in λ, s on {\λ — λo\ ̂  r'} x Θ\
there exists an r" > 0 and a neighbourhood Θ1 of s = 0 such that for

μ-Λo| = r"
l-V(s)R(λ,s)

is regular in L(X). Thus the function

s\->R(λ,s)(l-V(s)R(λ,s))-ί

is analytic in s, since it is product of two analytic functions. Q.E.D.
In the following we shall discuss the behaviour of isolated eigenvalues

of finite multiplicity for some classes of analytic families of pseudo-
resolvents. For later applications we consider not only symmetric
pseudoresolvents but also /-symmetric ones. In order to do this, we use
the standard method of Kato, which is powerful enough to give results
even in the J-symmetric case. We include the full proof mainly for the
sake of completeness.

We consider a family s\->R( ,s) of pseudoresolvents on a Hubert
space X with the properties

(i) R(',s) is analytic at zero,
(ii) R(-, s) is J-symmetric for real s and for some J = J~X = J*e L(X).

(iii) The spectrum σ(0) of the pseudoresolvent #( 50) possesses an
isolated real eigenvalue λ0 φ 0 such that the "root space" given by the
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projection

P(0) = — — j R(λ, 0)dλ, Γ surrounds λo,
2τιι f

has a dimension m < oo.
(iv) The restriction of the form

<x, y) = (Jx, y)

on the subspace P(0)X is strictly positive. (Here ( 5•) is the scalar pro-
duct in X)

4.5. Theorem (cf. [3] , p. 385). Let R(,s) be a family of pseudo-
resolvents with the properties (i)—(iv) listed above. Then for any circle Γ
isolating λ0 from the rest ofσ(0) there is a neighbourhood &ofs = 0 such that

a) ΓQρ(s\seΘ.
b) The part of σ(s) inside Γ consists of t^m points λ^s), ...,λt(s).
c) The functions λ^s), i = 1,..., t, s e & are analytic and such that λ^s)

is real for real s and ^(0) = λ0.
d) λi(s) + λj(s)9 for seΘ,i φj, s Φ 0.
e) For each i=ί9 . . . , ί there are vectors Φij9 j=l9 ...9ni9 such that

R(λ9 s) Φyis) = λ _ Φijis), λ e ρ(s),

(Φu(s) Φkn{s)> = δikδjn, / o r reαί s .

f) Γfte functions Φ y ( s ) a re analytic in seΘ and the vectors Φ 0 (s) a r e
linearly independent.

Proof Let 0(Γ) be a neighbourhood of s = 0 such that seΘ(Γ)
implies Γ Q ρ(s).

T(5) = -^-r f λR(λ, s) dλ e L(X), (1)

P ( s ) = ^ τ | R(λ,s)dλeL(X). (2)
Z7ΓI

As a consequence of 4.2 0(Γ) can be chosen such that both T(s) and
P(s) are analytic on Θ(Γ). By 2 - (5) the spectrum of R(-, s) and that of
T(s) coincide inside Γ. The same is true of all the corresponding speςtral
projections and eigenvectors. It is, therefore, sufficient to consider the
family T(s).

Since λ0 is an isolated eigenvalue with a finite dimensional root space
for Γ(0), the identity (1), (2) implies that both T(s) and P(s) are J-symmetric
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for real 5. This together with the fact that < , > | P(0) X is strictly positive
implies

T(0) P(0) = P(0) Γ(0) = λoP(0). (3)

Since P(s) is analytic, we have dimP(s) = m, se Θ{Γ). On the other
hand, there is a neighbourhood & Q 0(Γ) of zero such that seΘf implies

Then, as it is well known, the following implications hold

(4)
(x = P(s)x9

Hence the identity

(T(s)-λ)x = 0, xeX

is equivalent to

P(0) (T(s) P(s) - λP(s)) y = 09 x = P(s) y, (5)

where y is uniquely given by x = P(s)y. The last equation defines a
generalised eigenvalue problem in the space P(0) X. It can be written as

(A(s)-λB(s))y = 0 (6)
where

A(s) = P(0)T(s)P(s)\P(0)X, (7)

B(s) = P(0) P(s) I P(0) X , ^(5), B(s) e L(P(0) X). (8)

We also have

(9)
s real,

(10)

B ( 0 ) = l , ^(0) = λ o , (11)

where A(s), B(s) are analytic for seΘ'.
It is well known that all that (see, e.g., [3], p. 416) implies the existence

of a neighbourhood ΘQΘ' of s = 0 and of the analytic functions ^(5),
y o (s)(scalar, vector-valued) i = 1,..., tj = 1,..., ni9 nx + +nt = rn;seΘ
such that

(A(s)-λi(s)B(s))yij(s) = 0, (12)

(B(s) yiJ(s), ykn(s)> = δikδjn, 5 real, (13)

j + ί, 5 + 0. (14)
Moreover, λ^s) are real for real s and jfy(0) can be chosen <•,•>-

orthogonal.



Analyticity in 1/c 37

Thus the analytic functions Φl7(s) = P(s) ytj(s) satisfy

δikδjn > s real ,
and

R(λ, s) Φu(s) = R(λ, s) P(s) ΦtJ(s) = R(λ, T(s)) ΦtJ(s) =

This proves the statements a), b), c), d), e). Since Φl7(s) are analytic,
Θ can be chosen in such a way that Φtj are linearly independent for
seΘ. This completes the proof.

5. The Dirac Operator

Take X = [L2(R3y]4r, i.e., as a Hubert space of equivalence classes of
all measurable spinor functions

Ψi

on R3, which are square integrable with the usual scalar product. The
Dirac operator is formally given as

Γ(s)= - — αF+ -2J- + V=8f(s)+ V, (1)
s s

where
d dV =

dxi

 ? dx2

dδ d

α = (α l9 α2, α 3 ), α Γ = α i — — + α 2 - r — + α 3
H ~^ r υc2 -z r (Λ3 — .

ox1 ox2 ox3

Here s is the inverse of the velocity of light, αi5 β are Dirac matrices, and
V is the multiplication by a real measurable function V(x).

It is well known that the operator S'(s), as defined on [ Q ? ] 4 has a
unique selfadjoint extension S(s). It is a result of Prosser [4] that under
the condition

j \V(x)\p dx < oo 3 < p < o o (2)

the operator F is 5-bounded with the relative bound less than 1, which
guarantees the existence and the uniqueness of the selfadjoint extension
T of T 3.

3 Recently J. C. Guillot bas obtained the same result under the condition

\V(v)\2

sup f ' v y ; i dy<oo, v > l .
χeR3 \x-y\<i ίx-yy

The author is indebted to Dr. J. C. Guillot for kindly communicating his result.
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By the Fourier transformation

Ψ(P)= ( 2 π ^ 3 / 2 \e-^<p{x)dx, (3)

the operator Sf is going into

^ (4)

For a real s > 0 the resolvent of the operator S'(s) — m/s2 is

rrwo Λ -, / x sap + {β+ l)m + λs2

\_R(λ, s) ψ] (p) = — τ γ ^ j — - — s — Ψ\P) - \5)
λ s +2mλ—p

It is obvious that for any λφ[0,ao'] there is a complex neighbourhood
&λ of s — 0 such that for s e Θλ the expression (5) defines a bounded
operator. Thus, even for complex seΘλ formula (4) defines a closable
operator on [Q?] 4 with a range which is dense in X, whose closure is
denoted by S(s) — m/s2 and whose resolvent is (5). Note that (5) makes
sense even for s = 0 when

where So is the restriction of p2/2m on -^~— X.

Thus, at least formally, the family of resolvents R(λ, s) has a limit
when s-»0. This limit is a pseudoresolvent expressed as a product of the
projection (β + l)/2 and the resolvent of a Schrodinger operator in the
space Λ((j8+l)/2).

5.1. Proposition. 77ze family R(-,s) defined in (5) is analytic at s = 0.

Proof Take λ φ [0, oo). The assertion follows from the identity

(7)
2 2 1 2 2 2 1 1

and Definition 4.1. Q.E.D.

5.2. Theorem Lei λ φ [0, oo) αrcd let V( ) be such that 1 - VR(λ, 0) is
regular in L(X) and that s t-> VR(λ, s) e L(X) is analytic at s = 0. Then the
family of pseudoresolvent s Q(,s) defined by Theorem 3.1 is analytic at
zero. Moreover

Q(λ, s) - R(λ; T(s) - m/s2), s Φ 0 , (8)

T0)P, (9)
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where
^ + ^ TQ = SQ+V\PX, P = (β + l)/2

denotes the resolvent of an operator A.

Proof It follows from Theorem 4.4 that β( , 5) is analytic at 5 = 0.
The identity (8) is obvious, while (9) follows from

Q(λ90) = R(λ90)(l-VR(λ,0))-1

= R(λ, 0) P(ί - VR(λ; So) P ) " 1 = R(λ; To) P,

where we have used the fact that VR(λ; So) P commutes with P. Q.E.D.

5.3. Corollary. Let V be as in Theorem 5.2 and let To have an isolated
eigenvalue λ o + 0 of finite multiplicity. Then all assertions of Theorem 4.5
are true for J =ί and the numbers λ^s) are eigenvalues for T(s) — m/s2.

Obviously, any bounded Fwill satisfy the conditions of Theorem 5.2.
A result for relatively bounded potentials is given by the following
theorem.

5.4. Theorem. Let V be such that VR(λ0, s0) e L(X) for some s0 > 0
and some λo<0 and that 1 - VR(λ0,0) is regular in L(X). Then the
function s^>VR(λ, s) is analytic for \s\ < s0 and 1 — VR(λ0, s) is a regular
element in L(X) for s from some neighbourhood Θ of s = 0.

Proof We have

VR(λ0, s) = VR(λ0, s0) (λ - T(s0) + m/s2

0) R{λ0, s)

= VR(λΰ, so) μ - T(So) + ml si)

Since λ0 < 0 is in the resolvent set of JR( , s0), we have

Λ, o e(-2

which, together with |s| ^ s0, implies

L_ < MA < 1
2m\λo\+p2 = 2m

Now, (7) implies that the family

apR{λo,s)
is analytic in s for |s| < s0. The same, therefore, is true of VR(λ0, s). The
remaining part of the assertion is obvious. Q.E.D.

5.5. Remark. Completely analogous results follow for the family
T(s) + m/s2. The "limiting" operator in this case is
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6. The Klein-Gordon Operator

In [7] we considered the Klein-Gordon operator which can be given
in the form

T'(s) = S'(s)+V9

where

p(J μ{pf) (i)
(Vxp)(p)=V(p),φ(p), Ψ=(Ψl), (2)

\Ψ2/

μ(p,s) = (ί+p2s2/m2)1'2. (3)

The scalar product is given by

(ψ9 φ)s = 1- μ(p5 s) ψ

μ(p, s)

where peR3 and dp is the Lebesgue measure.
In [7] we proved that the closure of T'(s) is a scalar type operator

with a real spectrum in a Hubert space with the scalar product ( , )s

The difficulty arising here is that the scalar product varies with s.
While all scalar products for real sΦO are mutually topologically equiv-
alent, this ceases to be the case when s = 0.

Thus, we fix an arbitrary s0 > 0 and consider the Hubert space X(s0)
of pairs of functions with the scalar product (4). As a linear topological
space, X(s0) is not varying with s0 for s0 > 0. Obviously, 6f2 Q X(s0), where
£f2 denotes all pairs of rapidly decreasing smooth Schwartz functions.

The expression (1) defines a linear operator from 5^2 to ϊf2. This
operator is a restriction of a closed operator S(s0) given by the same
formula on the domain

D={ψ',j ίμ(P> so) \ΨI(P)\2 + μ(P> so)3 Iψiipψl dp < cc}. (5)

It is obvious that S(s0) is selfadjoint in X(s0). The expression (1) defines
a linear operator from Sf2 to £f2 even for complex s Φ 0.

For λ φ [0, oo) and s from some complex neighbourhood Θλ of zero,
the inverse of the operator λ — S'(s) + m/s2 is given by

s)2\ Ψ(P)
m λs2 + mj λ2s -\-2λm — p

which is bounded in X(s0).
Since R(λ, s) maps 6f2 into ^ 2 , it is the resolvent of a closed operator

S(s) — m/s2 which is a closure of S'(s) — m/s2.
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On the other hand, (6) makes sense even for s = 0, when we have

,0) = R(λ;S0)P, (7)

where

0) = (λ~S0)-1, (8)

6.1. Proposition. 77i£ family SI->JR(A, S) is analytic at zero.

Proof. As in 5 — (7), we write

ιs2/ni

m λi"

Since the operators

'>-•

are bounded in X(s0) for /I φ [0, oo) and 5 from some complex neighbour-
hood Θλ of zero, it follows that R(-9 s) is analytic at 5 = 0. Q.E.D.

6.2. Theorem. Let λ φ [0, oo) and V be such that 1 — VR(λ, 0) is regular
in L(X(so)\ and that s r-> VR(λ, s) e L(X(s0)) is analytic in some neighbour-
hood of zero. Then the family of pseudoresolvents Q(,s) defined by 3 — (2)
is analytic at zero. Moreover

Q(λ, s) = R(λ; T(s) - m/s2\ sφo, (10)

Q(λ90) = R(λ;To)P9 (11)

To = So + V\PX(s0), To closed in P{X(s0)). (12)

Proof. The proof follows the lines of that given in Theorem 5.2 and
will not be repeated here.
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6.3. Corollary. Let V be as Theorem 6.2 and let σ(T0) have an isolated
point λ0 + 0 such that the corresponding spectral projection Po has a finite
range. Then all assertions of Theorem 4.5 are true with

0 μ(p, SQ)"1

, SQ) U

and λι(s) are eigenvalues of the operator T(s) — m/s2.

Proof It is easy to see that the operators T(s) are J-symmetric such that

JQ(λ,s)J = Q(λ,s)*9 sreal.

Since λ0 φ 0, we have P0P = PP0 = Po. Thus, to apply Theorem 4.5,
it is sufficient to show that the restriction of the form < , > = (J , )So

 o n

the subspace PX{s0) is strictly positive.
Since

and Pψ = ψ implies

ψ= 1 1 ,

we have

which is strictly positive. Q.E.D.

6.4. Remark. As a result of [7], V will satisfy the conditions of Theo-
rem 6.2 if, for example,

6.5. Remark. As in the case of the Dirac operator, analogous results
will be obtained for the family T(s) + m/s2.

We see that there is no complete analogy between the Dirac and the
Klein-Gordon case. This is a consequence of the fact that the operator
T0 = S0 + V\PX(s0) in (12) is not the usual Schrodinger operator,
because it is not selfadjoint in X(s0)

 4.
It is of some help in this case to consider the whole process in the

Hubert space X defined by the scalar product

(ψ, φ)0 = J (y>!φ1 + ψ2φ2) dp.

Then R(λ, s), defined as in (6), will again represent a family of pseudo-
resolvents analytic at s = 0, and the statements 6.1, 6.2, 6.3, 6.5 will be
true provided that V is ( , )0-bounded, for example.

4 However, the isolated eigenvalues will be the same under certain conditions on V.
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In this case, however, a new pathology arises. The operators S(s) are
not of scalar type in X! This is seen from the expression for the projection
belonging to the positive spectrum of S(s% s > 0

ps)\ (^

which is bounded in X(s0) but unbounded in X.
There is another possible procedure. We can consider that ( , L T(s)

changes "simultaneously". However, in this case the analyticity in ί/c is
lost. A kind of strong convergence of resolvents can still be proved
(see [7]).

The author expresses his gratitude to Professor S. Kurepa and to the members of the
seminar for analysis of the Institute of Mathematics, University of Zagreb, for their dis-
cussions and remarks.
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