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Abstract. Using the minimal 65 + 1 components required to describe a nonrelativistic
particle of spin S within the framework of a first order formalism, the Galilean invariant
Lee model as formulated by Levy-Leblond is generalized to the case in which all particles
are allowed to have arbitrary spins and parities. It is found that when the product of the
parities of the three fields is even the coupling term is unique and the physics essentially
identical to the spin zero case. A more interesting situation occurs when one considers the
odd parity case where the criterion that derivatives not be explicitly used in writing the
interaction requires that the dependent components enter into the coupling term. In this
case one finds that except for certain degenerate cases there exist three similar but distinct
interactions. Upon selecting one of these couplings and eliminating the dependent com-
ponents by means of the constraint equations one finds the existence of a P wave VNΘ
coupling as well as direct S wave interactions between pairs. The V particle propagator
is derived and it is found that unlike the even parity case the wave function renormalization
constant is divergent. The P wave phase shift is obtained and found to satisfy the exact
effective range formula q3 cotδ = — I/a + \ rQq2.

I. Introduction

One of the most difficult obstacles in recent years to further progress
in quantum field theory has been the absence of a consistent set of rules
for the quantization and renormalization of field theories describing
particles with spin greater than unity. A conspicuous example of the type
of difficulty encountered is contained in the demonstration by Johnson
and Sudarshan [1] that the equal time anticommutators of a spin 3/2
field become indefinite in the presence of an external electromagnetic
field. This inconsistency emerges as a consequence of the secondary
constraints upon the fields, the existence of which is guaranteed for all
half-integral spins greater than one-half. Although one suspects (with
good reason) that these difficulties are a consequence of the rigid re-
quirements of Lorentz invariance, a complete confirmation of this
conjecture is dependent upon the presentation of a consistent theory of
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interacting higher spin fields within the framework of a less exacting
group of spacetime transformations. In the present paper such an
objective is achieved by carrying out an extension of Levy-Leblond's
Galilean invariant version of the Lee model to the case in which all
particles have arbitrary spins and parities. This is equivalent to solving
the problem of determining the most general Galilean invariant trilinear
interaction subject to the assumptions that (a) the fields should involve
the minimal number of components compatible with a theory involving
only first order derivatives and (b) the couplings must not explicitly
contain derivatives.

In the following section a brief review is given of Galilean free fields
beginning with the spin one-half case and subsequently generalizing
this to arbitrary spin by means of the formalism of totally symmetric
multispinors. After constructing the most general Lagrangian in this
formulation it is noted that an enormous simplification ensues upon
expressing the multispinor in terms of a spherical basis. The Lagrangian
is then displayed and its Galilean invariance demonstrated in terms of
the new spherical tensor fields. As a byproduct it is shown that this
leads to an alternative derivation of the g factor.

Section three presents the derivation of the coupling appropriate to
the case in which the product of the parities of the three fields is even.
In this case the interaction is unique and requires only the demonstration
that the multispinor basis (in which the uniqueness is proved) reduces
to the spherical basis with the insertion of the appropriate Clebsch-
Gordan coefficient. The more interesting odd parity case is developed
in the concluding section. It is shown that in general there are three
distinct trilinear couplings, for each of which the V particle propagator
is more singular than in the even parity case by two powers of the Galilean
invariant momentum.

II. Galilean Free Fields

The problem of deriving a wave equation (or field theory) for a
particle which transforms as a spin one-half object under the homo-
geneous Galilei group has been solved by Levy-Leblond [2] and it is
upon this result that we proceed to construct a theory of higher spin
fields. The equation which he derives for the four component spinor ψ
is of the form

Gφ-0

where



Lee Model for all Spins 221

and we have used the two independent sets of Pauli matrices ρl and σt

to span the 4 x 4 dimensional spinor space. Under the Galilean trans-
formation

xf = Rx + vt + a

ψ(x, f) obeys the transformation law

V/(x', ί') - eίh~ lf(x>t}A^(v, R)ψ(x, t)
where

, «
D*(R)

with Z)*(R) being the usual two dimensional representation of spin
one-half. Using the decomposition

(Φ
Ψ = u

into two component spinors φ and χ one has the equations

Eφ + σ pχ = Q

σ - pφ +2mχ=Q

as well as the Schrόdinger equation for all four components.
The generalization of this result to arbitrary spin has been given in

the multispinor formalism [3, 4] with the result that if one chooses to
describe a spin S object by a symmetric multispinor of rank 25 (i.e.
φαι ...Λ2S), the most general Lagrangian is of the form

ί 1 2S

1 ^ r» Ψai --.a2s 2~ι α ιαi flι-ιαί-ι aτaΊ * ai+ ι,a'τ+ i \^"^J
I ^O ί=1

where Γ is the matrix i(l + ρ3) which is invariant in the sense that

The simple property of Γ that it is nonzero only when each of its indices
refer to "upper" components means that there is an extraordinarily large
number of the ^(2S+ 1) (2S + 2) (2S + 3) independent components of
ψaι...a2S which do not occur in the equations of motion. More specifically
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from the fact that Γ acts on all indices but one in the equation

2S

Zj aiα' i . . .* ai-ia'i- i ^cudi* « f + ι«ί + ι •* «2S«2S^«Ί - - «2S
i = l

one infers that the only relevant components of ψaι _α 2 j s are a) the
components for which all indices of ψaί...a2s

 are 1 or 2 and b) the 45
components for which 25—1 indices take the values 1 or 2 and the one
remaining index is 3 or 4. This description of a spin S particle by a 6S + 1
component formalism may be said to be "minimal" in that this is the
smallest number of components compatible with a formalism which
allows only first derivatives in the wave equation. If one now introduces
the notation

Va1...a2S = <l>ai...a2S for β i=l,2

Ψaί...a2S-ίr = U7 *a2S-.ί

 for β « = l , 2 ; r = 3,4

(2.1) can be rewritten as

(2.2)v

"Ί" Z a i . - . a j - i a , + i ...α2S

f lΓ» α l ' PΦaι...a2s ~^~ ^m%cn ...a2s- i %*ι —a2s- i ~^~ ̂  C'| 2"

where all spinor summations are now over two-valued indices. The
Lagrangian (2.2) has been used to show [4] that the g factor for this
minimal component theory is 1/S.

In view of the fact that the number of components required for a
Galilean invariant theory increases only linearly with 5 one strongly
suspects that the enumeration of these components can be accomplished
more conveniently as well as more explicitly by using a basis of spherical
tensors rather than a multispinor approach. Such fields can be introduced
by the definition

ύ - Y \(S+m)l(S-m)llf
Ψaι...a2S- L 9^j εaι...a2SΨS (Z'0)

m=-sl Z ύ ! J

where the square root factor has been inserted to normalize the coefficient
of the time derivative term in the Lagrangian to unity. The quantity
d...α2s ^s defined to be totally symmetric in its lower indices and in the
usual representation of the σ matrices is equal to unity when S + m of its
2S indices take the value one and S — m take the value two and zero
otherwise. The contravariant components φ™ transform according to
the 25+1 dimensional irreducible representation of the rotation group.
Covariant components may be defined by use of the metric tensor

7mm , = (—l)s+mδV A / u-m,m'
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while the transition from covariant to contravariant indices is accom-
plished via the tensor

The use of covariant and contravariant indices affords a great sim-
plification in this development as it allows one to make use of Wigner's [5]
tensorial notation for the 0(3) group. Thus repeated upper and lower
indices are summed and the transformation properties of a given expres-
sion can be determined merely from an examination of non-repeated
indices.

With the definition (2.3) the time derivative term in £? becomes
φ™+ Eφ™. It is to be noted that the fields φ™+ transform as covariant
components and one consequently must generalize the summation
convention by adopting the additional rule that two repeated upper
indices are summed provided that one of the two objects involved is
the adjoint of a contravariant field.

Since the field χ transforms as the direct product of S — 1/2 and 1/2
under 0(3) we introduce a spherical tensor in this case by defining

Xa

'

where the somewhat unusual form of the Kronecker delta is necessary
to transform the range of r(l, 2) into the corresponding range of m'(|, — )̂
as appropriate to a spherical basis. This definition allows one to rewrite
the mass term in <f? as 2mχ™'™± ̂  + χ™'™!. ̂  and leaves only the somewhat
more difficult task of writing the spatial derivative expression in terms of
spherical tensors.

In order to achieve this objective we introduce covariant spherical
components for x and σ

x±1= + ~*

σ± ! = + 2-*(σx ± iσy) σ0 = σz

and corresponding contravariant components for p

dx±1

πΌ __

dxQ dz
such that

σ p = c
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Furthermore one notes that in terms of the three-j symbols

Γ (S + ro)! (S - m)! 1*

2ST (25-1)!

while

* * ,m m — m —m

where (̂  || σ \\ ^) = j/6 is the reduced matrix element of σ. Upon combining
these results and freely raising and lowering indices of the three-j symbols
by means of the metric tensor one obtains the desired reduction of the
spatial derivative term and thus the complete Lagrangian

i m

m' l

μ v W • - μ m i v

(2.4)

As a consequence of the tensor notation this expression is manifestly
invariant under rotations and it is only necessary to demonstrate the
invariance under pure Galilean transformations. This somewhat tedious
calculation is given in Appendix A.

The equations of motion implied by (2.4) are

while the commutation (anticommutation) relations implied by the
action principle for the independent components φ are

Eqs. (2.5) can be shown to imply the Schrodinger equation upon per-
forming the same type of manipulations as those required in Appendix A
to demonstrate the invariance of JSf. It is of interest to point out that the
introduction of a coupling to an external electromagnetic field allows
one to calculate the g factor in this spherical basis and thereby provide
a useful addition to the earlier calculation [4] in the multispinor
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formalism. Minimal coupling is seen from (2.5) to imply

1 Im - S — -\ In 1 - \
-6(2S + 1)-—-I7vI7v'ί 2 ,2 i 2Jv ' 2m \S μ m' } U v m"

^ μ ' U (2.6)

where
77v-pv-e^v.

This reduces upon use of the six-j symbol to the form

ieh 1 SI /I 1 m"\ Im 1 S

' = Q

Introducing the Levi-Civita tensor (ε10"1 = +1) one can write

<9MV/ -dv'Av = ίεvv'v"Hv,,
and

-*"v

so that (2.6) becomes

If one now gives up a strict adherence to a tensorial notation and uses

5+1

(S m" m'"] N">" '" »" i ">- - (S ||S ||S)

where the reduced matrix element is given by

(S ||S || 5) =[(25+1)5(5+1)]*,

one verifies by inspection the result
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thereby displaying the 1/S value of the g factor for the 6S + 1 component
theory.

Before concluding this section it is necessary to comment briefly
upon the exceptional spin zero case. Inasmuch as one cannot construct
spin zero by the multispinor method as here described one must give an
explicit statement as to how the Lagrangian of a scalar particle is to be
written. It being desirable to retain the 65+1 component description
we choose to describe the spinless case by a single field φ and write

despite the fact that this requires that one give up the condition that only
first derivatives occur in the equations of motion. This is primarily a
technical point and will have no great bearing upon the remainder of
this paper.

III. Interactions in the Even Parity Case

We now seek to write down the most general trilinear interaction
which is consistent with Galilean invariance and does not require the
explicit appearance of derivatives in the coupling term. Since this is
equivalent to the problem of generalizing the Levy-Leblond version of
the Lee model to the case of all three particles having arbitrary spin it
will be convenient to use the notation of the Lee model and refer to the
fields by the usual F, N and θ labels. Since the mass superselection rule
of the physical Galilei group is consistent with the interaction Vτ±N + θ
only if

(3.1)

we require (3.1) to hold throughout the remainder of this paper.
The most systematic approach to the problem of the construction

of interactions is to begin in the multispinor formalism and then trans-
form to spherical tensors only after the derivation of the most general
invariant form. To determine the possible invariants one notes that in
order that only the 65 + 1 minimal components of each field be coupled,
the matrices contracted between the three fields must in general connect
only upper components to upper components. More specifically, if one
writes the entire 2(SV + SN + Sθ) index object which is to be contracted
with the product of the V, N and θ field operators as the sum over various
direct products of ρ and σ matrices then only those combinations are
allowed which involve at most one "upper-lower" matrix (e.g. ρ^ or
"lower-lower" matrix (e.g. (1 — ρ3)). The reason for this is that if, for
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example, two such matrices were to occur then with only three fields
participating in the interaction both of these matrices would have to act
on the same field operator. This would have the consequence of bringing
in components of that field which are not admissible in the 65+1
component formalism.

In order to apply this specifically to the V+ Nθ interaction we note
trivially that Sv ̂  SN + Sθ and that except for the single case SV = SN + Sθ

there must be matrix contractions between the indices of N and θ. This
clearly requires that one obtain all matrices / which are invariant in the
sense

(v, R)IΔ*(υ9 R) = I (3.2)

appropriate to these matrix contractions between N and θ as well as
invariants /' such that

A* + (v, R)ΓΔ*(v, R) = Γ (3.3)

which correspond to the matrices which connect F+ to ΛΓ and V + to θ.
The problem of determining all / and /' for which (3.2) and (3.3) hold is
an elementary one and it is sufficient to state that as a result of the
calculation one finds

(3.4)

(3.5)

where α, α', /?, β' are arbitrary. It should be pointed out that this only
enumerates the matrices which are scalar in the sense of (3.2) and (3.3)
and leaves open the possibility of constructing invariants from vectors
of the form \ (1 + ρ3)σ. Although such additional invariants can indeed
be constructed, it can be shown in relatively straightforward fashion that
they do not generate any new couplings above and beyond those implied
by (3.4) and (3.5). Combining this result with our previous observations
concerning the nature of the couplings one can now infer that the most
general invariant is constructed from the product of 2SV matrices of the
form (3.5) and SN + SΘ — Sv matrices of the form (3.4) with the restriction,
however, that only one β or β' be different from zero.

A final simplification occurs if one imposes parity conservation on the
theory. It is trivial to show that the equations of motion possess the
appropriate transformation properties under the parity operation
provided that

This result immediately illustrates the fact that the invariant matrices ρ2

and ρlσ2 are, by virtue of their anticommutation with £3, the analogue
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of the pseudoscalar matrix y5 of the Dirac theory. One thus is led to
consider the two possibilities

for which invariant couplings can be constructed. The upper sign may be
referred to as the even parity case and will be the object of our immediate
attention while the lower sign or odd parity case will be deferred to the
following section.

The even parity case is thus seen to require that all β and βf be zero
and one uniquely writes the coupling term as

11 L* σ2JαίαΓ 11 * aj.a'sir+So-Sv+j 11 "sv - sθ + sN + kβ'sN + sθ - sv +k
ί = l j = l f c = l

+ h.c.

where following Levy-Leblond we include the nonlocal form factor f(r)
allowed by Galilean invariance. The appearance of Γ in all indices means
that all spinor summations can be limited to two-valued indices and one
readily finds upon transforming to spherical tensors by means of (2.3) that

ΦS;R + ̂ "-r, f * - * - (3.6)
mv / \ m

\(Sθ-mθ-δ)\
+ h.c.

The summation over <5 merely defines the expected Clebsch-Gordan
coefficient and one can thus write (3.6) in terms of the three-;' symbols
in the manifestly Galilean invariant form
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where we have defined

( 2 S v ) l ( 2 S N ) l ( 2 S θ ) l

and replaced ίSiφ% by φ$.
The theory can now be solved in the lowest lying sectors as in the

usual Lee model. Again the first nontrivial sector is that of a single V
particle and one finds in terms of the Galilean invariant Ω = E — p2/2mv

that the unrenormalized propagator

has the momentum space representation

r A
LΔ

- ί-\mv _ zm
V Am^ — °m' (3.7)

where ω = q2/2μ with μ being the reduced mass

= mNmθ

In writing (3.7) we have included a bare internal energy term by making
the replacement

in the Lagrangian. The renormalized internal energy is given by the
expression

v ^^_^\f^t0 2SV + 1 J (2π)3 ω - U

which is seen to be divergent in the local limit /(ω) = 1 while the wave
function renormalization constant is found to be

-ι #Ό2 r d*<ι I/Ml2

z-ι =
2SV + 1 J (2π)3 (ω - U)2

which has the remarkable property of being finite in that limit. The
extraction of the remaining physical content of the model can be continued
in a straightforward fashion. However, as the results are qualitatively
identical to those obtained by Levy-Leblond in the spin zero case we
terminate this discussion of the even parity case in favor of the more
interesting possibility referred to earlier in this section.
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IV. Interactions in the Odd Parity Case

As a result of the discussion leading up to the construction of the
interaction for the even parity case one can now directly undertake the
problem of writing down the interaction for the odd parity situation.
In this case one can obviously generate an invariant interaction by
replacing one of the Γ's which multiply the V field by ρ2

 or the replace-
ment of a Γσ2 contracted between N and θ by ρ1σ2. This procedure in
general allows for more than one interaction with special cases as
follows :

i) If all of the fields have zero spin clearly no parity conserving
interaction is possible.

ii) If only one of the fields has zero spin then a ρ2 (or ρίσ2) can be
contracted between the two remaining fields and the coupling is unique.

iii) If all spins are nonzero but one of the spin values is the arithmetic
sum of the other two then there exist no matrix contractions between
these two fields and consequently no ρ2 or ρίσ2 can be inserted in that
pair. This leads to the existence of two invariant couplings and is clearly
the situation which applies whenever the smallest spin of the three fields
is one-half (e.g., SN = SΘ = 1/2, Sv = 1).

iv) In all other cases there exist three independent couplings, it being
trivial to see from the above that all particles must have at least one unit
of spin in this case and that the simplest example here is SN = Sθ = Sv = 1.

Rather than deal separately with each of the three cases ii), iii), and
iv) separately we proceed by assuming that all spins are nonzero and
that they satisfy condition iv). One of the three possible interactions will
be considered in detail and it will subsequently be indicated how the
other two can be constructed. Since cases ii) and iii) can be obtained by
taking limits of the three interactions implied in iv), the former two need
not be separately considered.

We choose as the specific example the case in which ρ2 is contracted
between V+ and N, i.e.

' U?2J«ιαΊ 11 * αtαί [[ * αSv - sθ + SN + jα'j
i=2

II •-•* 2-ia'sv - sθ +
k= 1

+ h.c.
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This clearly brings in the "lower" components of both V and N and the
labor required to carry out the reduction to a spherical basis is con-
siderably more lengthy than in the even parity case. As a result of this
tedious calculation one finds that

Se SF-i Sjv-i\/ μ i mv

mθ μ m

mv mv mβ v- μ

/ ^(25, + 1)4 + lux (4.1)
]V ύN ~ 21 }

where again we have pulled a factor of ίSl into each field and define

( 2 S y - l ) \ ( 2 S N - l ) l ( 2 S θ ) l

Using the transformation laws for φ% and Xsi"ί,i as given in Appendix A
one can demonstrate the invariance of (4.1) under pure Galilean
transformations while the rotational invariance is manifest as a conse-
quence of the tensorial notation employed here.

It is of interest to note that as a result of the appearance of the χ
components in (4.1), the dependent components of the V and Λf fields
will now contain Nθ and Vθ+ terms respectively in addition to the
usual derivative of φ. This means that the interaction (4.1) will, upon
elimination of the dependent components, yield direct interactions of the
form (φ£ φN) (φβ φθ) and (φv φv) (φβ φθ). Although these are not
without interest, inasmuch as their structure can be altered by allowing
explicit quadrilinear interactions (which, of course, are not forbidden),
we shall not explicitly consider these direct or S wave interactions.
Since they do not affect the V particle propagator, the disregard of these
interactions need not be considered an approximation in the following
discussion.
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The V particle propagator can be found by straightforward calcula-
tion to have the form

μ1 m1 v μ2

Sθ mί SN~^\/μ2 SN m3 \/Sv μ3 m6 \ M v μ4

mθ Sv-± m3 JU "U SN-

± m5

m6 5N-i;j (2π)3 ω-O

The lengthy succession of three-j symbols can be reduced and eventually
one arrives at the form

ί O C _μ 1
O T '2 N~
"•"

2_ SΘ(SΘ+1)-S2

N-S2

V + ±Ϊ d*q q2\f(ω)\2

ι r o ς ' i n r o c j n J3 (2SN + 1)(2SF+1) J J (2π)3 ω-O

which thus yields for the internal energy of the V particle (which we
assume to be stable in the sense U < 0)

I2 2SN+1 d3q q2\f(ω}\2

λυ *" 32SNSvm
2 J (2π)3 ω-U

where we have abbreviated the square bracket in (4.2) by the (positive
definite) parameter λ2. Similarly one has

2SN+l 1 2, d3q q2\f(ω)\2

32SNSvm
2

N (2π)3 (ω-U)2 '

An important contrast with the even parity case is seen to consist in the
more divergent character of the odd parity coupling, a circumstance
which arises here from the occurrence of a q factor at each vertex in the
fundamental bubble graph of the V propagator. Thus the internal energy
and the wave function renormalization constant are cubically and linearly
divergent respectively in the local limit f(co) = 1.

It is interesting to note that the Nθ pair which couple to the V particle
are in a P wave as a consequence of the derivative coupling. Consequently
the phase shift which is computed from
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is the P wave phase shift which one expects to have the low energy
expansion

As in the case of even parity where Levy-Leblond has observed that for
/(ω) = 1 the S wave effective range formula is exact, we find here that the
0(q4) terms are absent and that

-ι^-μu]/^2μΰ- ^*™$μ

z0g(2sN + ιμV '
It is important to note that the S wave phase shift in the present

theory is also nonvanishing as a consequence of the direct interactions,
even though we shall not calculate it here. We do note, however, that
there exists the possibility of having in addition to the P wave V particle
an S wave bound Nθ state if the coupling constant is sufficiently large.
Thus there can exist two opposite parity stable particles in the V sector.

Although the propagator is seen from (4.2) to have a remarkably
trivial dependence upon the spin value, it is interesting to note that if
one employs a formalism which is not restricted to a calculation of
matrix elements of only the independent components a more complicated
structure is found. Thus in Appendix B we consider the odd parity case
with SV = SN= 1/2, Sθ = 0 and use the full four component spinors for
the N and V fields. One finds that

/ ^.2 ^3 ^ I f(^ ^\\2 \

ΔΪI = / v i *3AT ' 2mv

 J

d3q I/Ml2

 ( gl
(2π)3 Ω — ω 4mji

(2π)3 Ω

d\

ί J (2π)3

- ω / (4.3)

«2l/(ω)|2

Ω-ω

Inasmuch as this result is shown in the appendix to yield (4.2) for the
specified values of the spins it serves the useful function of displaying the
possible complexity of the Green's functions when the dependent
components are explicitly included.

Finally we point out that the task of writing down the other two
interactions possible in the odd parity case is entirely straightforward.
One of these is trivially obtained by interchanging all N and θ labels
in the above. The other (in which ρ1σ2 is contracted between N and θ)
requires that one repeat the whole calculation in order to get all the spin
factors right. Inasmuch as all these factors can be included in gθ9 the
physics of the P wave V sector is unchanged and we consequently shall
not display the explicit results.
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Appendix A

Starting from the multispinor transformation law it can be shown that
under the transformation xf = x + υt one has

, 0 ~ (3/2)* (2S + 1)* l m , ~2 S

ff
W ~~ 2 fl m

V 2 V 2

We consider separately the three terms in 5f

mm'+ mm' m m'+ ± ± m t* ^mXs-i,ίXs-*,*-+ m Xs-*,* \S i m

i M v m / / +ι
' v μ)Vφs j (A.1)

Upon making use of the six-j symbol by means of the relation

1 » ί l_ / + 1 )

μ m" V i - t 7 Hi i

one finds for the φ+ φ term

ί ίm" m"'

(A.2)

Since the part of I , which is symmetric in v and v' is non-
\ v v J /

vanishing only for 7 = 0, 2 while for) = 2 one has < 1 1 ^ > = 0, it follows
l2 2 2J

that only thej = 0 term remains. Using the known form of the relevant
six-j symbol (A.2) reduces after some arithmetic to

(A.3)
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It may be noted that the χ+ φ and φ+ χ terms require no simplification
in order to carry through the proof of invariance.

(A 4)
m

The φ+ χ term generated by the transformation is seen to cancel the
corresponding term in ii) and one consequently need examine only the
φ+ φ term. Extracting this part from (A.4) one finds

\ s;*)(ί i)(;:, *
ΰ'*

Upon repeating the type of operations used in ii) and combining this
with the χ+ φ term one finally obtains the φ+ φ part as

which upon reference to (A.I) and (A.3) is seen to complete the demonstra-
tion of the invariance of (2.4).

Appendix B

We consider the case SV = SN= 1/2, Sθ = 0 with the interaction term

— r, t \ψθ !R-\ — r, t l + h.c.

The Green's function is defined to be

δ
Δv(x9 ί x', t') = - -—777-7-77 <ψv(x, t)y\κ=o (B.I)

OQ2K(X , t)

where we include a source K in the Lagrangian via the coupling

\Py Q2 xv ~h xv Q2 ψy

17 Commun. math Phys., Vol. 21
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From (B.I) and the field equations one thus infers

Δv(x, t; x', t'} = - ί/hθ + (t-tf) <0 1 ψv(χ, t)ψ +

The explicit form of Δv

 1 is readily found to be

.-^o-^U-J
l

(2π)3

2mv
(B.2)

where
[Jf ^o = EΓ + ρ! σ p + mv(l - ρ 3) .

The result (B.2) is readily brought to the form (4.3) thereby leaving only
the task of demonstrating consistency with (4.2). This is accomplished
by projecting out the independent components via

AV-+ΓAVΓ

and carrying out an inversion of Δv in this nonsingular subspace. The
result is

υ ' 4m2

N

 J (2π)3 ω-Ω

in agreement with (4.2) for Sv = SN = \, Sθ = 0.
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