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Abstract. A necessary and sufficient condition for quasi-equivalence of quasi-free
factor states over the Weyl algebra is proved. The essential part of this paper is closely
related to the work of Powers and St0rmer on the Clifford algebra.

1. Introduction

In this paper we study the quasi-equivalence of quasi-free states of
the canonical commutation relations. It is well known that all irreducible
representations of these relations for finite systems are unitarily equivalent
[1,2] and that this theorem fails in the case of an infinite system. The
algebraic approach to this problem was first given by Kastler [2]. We
follow the same method and study the problem of equivalence in terms
of states on the C*-algebra (Weyl algebra) associated with the canonical
commutation relations.

In particular we use the C*-algebra Δ(H, σ\ built on a symplectic
space (H, σ), as introduced by Manuceau [3].

Quasi-free states of the canonical commutation relations were
introduced by Robinson [4]. These states were intensively studied by
Manuceau and Verbeure [5] who introduced their C*-algebraic formu-
lation. In this work we study the quasi-equivalence of such quasi-free
states. Our approach is very closely related to the work of Powers and
St0rmer [6] on quasi-equivalence of gauge invariant quasi-free states
of the canonical anticommutation relations. Together with Verbeure
we proved a necessary and sufficient condition for two pure quasi-free
states on the Weyl algebra to be unitarily equivalent [7]. To find a
criterium in the case of more general quasi-free states, we used the idea
of Powers and St0rmer and reduced the latter problem to the case of
pure states.
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In Section 2 we recall the definition of the C*-algebra A(H, σ) and
quasi-free states on this algebra. In Section 3 we extend every quasi-free
state ωA on A (H, σ) to a pure quasi-free state ωEA on the larger algebra
A(H®H, cr0— σ). The inequality relating the norm differences of two
quasi-free states and their extended pure states obtained by Powers and
St0rmer [6] for the Clifford algebra is the main result of Section 4. In the
next section we prove some properties of operators on a symplectic
space, which are used in the last section to prove the main theorem on
quasi-equivalence.

We are indebted to Dr. A. Verbeure for many valuable discussions and especially for
the Lemma's 3 and 5 below which are crucial in this work. We are also grateful to Prof.
E. St0rmer for his kind hospitality at the University of Oslo, and for helpful discussions.

2. Quasi-Free States over the Weyl Algebra A (if, σ)

For completeness we recall the definition of the Weyl algebra A (H, σ).
Let (//, σ) be a separable symplectic space, i.e. a real vector space H,

equipped with a regular, antisymmetric, real bilinear form. Hence H
is a locally convex topological space equipped with the topology defined
by the semi-norms,

and we suppose that H is complete for this topology, we call H σ-complete.
Let A (H, σ) be the algebra generated by finite linear combinations

of the functionals δ : ψ e H -> δψ defined by

δφ(φ) = 0 if ψ φ φ

= 1 if ψ = φ

with the product law:

δ δ — f>-iσ(ψ><p)fiυψυφ — V υψ + φ '

The mapping δψ-+δ* = δ_ψ is an involution and

Σ *Λ, with

is a norm on A (H, σ) such that A (H, σ) turns out to be a normed *-algebra.
The set of representations π of A (H, σ) such that the mapping

λe1R.-+π(δλψ) is strongly continuous, determines a unique C*-algebra
norm on A (H, σ).

Its closure s/ = A(H,σ) is a C*-algebra, which we call the Weyl
algebra. For more details see [3].
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A state on the Weyl algebra is a positive linear functional, normalized
to one.

We consider the set S of linear operators A defined every-where
on H, satisfying

i) sA(φ, φ) = — σ(Aψ, φ) is a real scalar product on H,
ii) A*A^i with respect to SA .
It follows from condition i) that the adjoint A* of A with respect

to SA and the adjoint A+ of A with respect to σ satisfy A+ =A* = — A.
From condition ii) we can deduce that A is invertible. Clearly A is
injective because A*A^:1 and A is surjective because for any ψeH
orthogonal to the range <%(A) oΐA and for all φ e H we have sA(ψ, Aφ) = 0.
From A* = —A and the definition of SA it follows that σ(A2ιp, φ) = 0
for all φ e H and by the regularity of σ that —A2ψ = A*Aψ = 0. So by

On the other hand Schwartz inequality implies

Vφ, φ e H : M^"1 τ/>, φ)|2 ̂  sA(A~l\p, A~~l\p) sA(φ, φ)
and so

\<r(ψ, ψ)\2 ^ MV>» ψ) sA(φ, φ)
because

A*A^1 and s^=— σ o ^ 4 .

It follows from this last inequality and the work of Manuceau and
Verbeure [5], that the linear functional on A(H, σ) defined by

extends to a quasi-free state on A (H, σ).
The aim of this work is to study the quasi-equivalence of any two

such quasi-free states ωA and ωB with A, B e S. We follow the method
of Powers and St0rmer in their study of quasi-free states on the Clifford
algebra, i.e. we construct with any quasi-free state ωA on Δ(H, σ) a pure
quasi-free state ωEA on A(H@H, σ0 —σ) and we prove that two states
ωA and ωB are quasi-equivalent iff the corresponding pure states <X>EA

and ωEβ are unitarily equivalent. In a previous paper [7], we found a
necessary and suffivient condition for two pure states to be unitarily
equivalent, yielding a condition in terms of EA and £B. Finally we
rewrite this criterium in terms of A and B.

We start with the construction of the pure state ωEΛ.

3. Construction of the Pure Quasi-Free State ωEλ Associated with ωA

The symplectic form σ on H induces a new symplectic form, denoted
by σ0-σ, onH®H defined by

13*
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If σ is regular, then so is σ0—σ; if H is σ-complete then H@H is
(σ0 — σ)-complete.

Any operator A in S is invertible and from A* A = — A2 ^ 1 it follows
that 1+A~2 is positive and hermitian (with respect to SA) and has a
unique square root j/1 + A~2 which is also positive and hermitian.
We then define the operator EA on H@H by

This operator EA satisfies conditions i) and ii) of Section 2. To prove
i) we evaluate sEA(

? t/?2)

ψ2)-σ(Aφ1,φ2)

— σ(A]/\ + A~2 ψl9 φ2) — σ(A

= sA(ψl9 ψ2) + sA(φl9 φ2) + sA(]/l + A'2 ψl9 φ2) + i

Clearly SEA is bilinear and symmetric since SA is a scalar product and
I/I +v4"2 is hermitian. Moreover, as — A2^0 and so 1+A~2^1 we
find that

sA(φ,φ)^sA((l

It follows that

= sA(φ

and that SEA is positive because SA is a scalar product. On the other
hand sEΛ(ψ ®φ,ιp®φ) = 0 implies ψ = — j/1 + A~~2 φ = (l+A~2)ψ and
so that A2ψ = (A2 +1) ψ. It follows that ψ and hence φ and tp0φ is
zero.

To prove ii) we just compute E%EA = —EA and we find —EA = 1.
Therefore ωEA is not only a quasi-free state on A(H®H9σ@—σ)

but even a pure quasi-free state [5].
Note that the choice of σ® — σ as symplectic form on H®H instead

of σ0σ is crucial because if the latter was chosen, it would be impossible
to find a EA such that ωEA is pure.

The pure state O>EA corresponds with the one of Powers and St0rmer.
They prove that ωEA and ωEβ are uniterily equivalent iff ωA and ωB are
quasi-equivalent. The main difficulty lies in the proof of the inequality
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They use the fact that ωEΛ can be obtained by a "purification map"
Φ from the state ωA in the case where the underlying Hubert space is
finite dimensional. The infinite dimensional case is handled by continuity.
We proceed in the same manner and first prove the inequality in the
finite dimensional case.

4. Locally Normal States A(H, σ)

It is easy to see that

extends to a homomorfism and that A (H, σ) can be imbedded as a
subalgebra in Δ(H@H,σ@—σ). Moreover by the fact that EA restricted
to H® {0} coincides with A it follows that the restriction of ωEA to the
subalgebra Δ(H, σ) is equal to ωA. Therefore

\\(ωA-a>B)\\£\\(a>EΛ-ωEB)\\.

The main part of this section is now devoted to the fact that ωEA can
be obtained from ωA by a purification map Φ in the sense of [6].

We show this result gradually and we suppose first that H is 2-
dimensional. Let J be an operator in S which is unitary. Suppose that
φ e H is normalised such that Sj(φ, φ) = 1. With J there corresponds a
Fock representation π, of A (H, σ) and the creation and annihilation
operators can be defined as follows

B+=±(B(φ)-iB(Jφ))9

where B(ψ) satisfies π,(<5v) - eίB(v) (see Ref. [5]).
Having defined these operators we can prove the following lemma's,

the first two of them being trivial and therefore mentioned without
proof. We assume that H is two-dimensional.

~k-ιLemma 1. Ifΰ^y<lthen Σ / , , = (l-y)
n=0 klnl

Lemma 2. // z e <C is such that \p = Rez φ + Imz Jφ then

πj(δ) = e>*M = ezz*/2eίz*B~ eizB+

This is an immediate result of the Baker-Campdell-Hausdorff
formula and the fact that [β~, B+]_ = 1.
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Lemma 3. (A. Verbeure). Let AeS, as H is two-dimensional, we can
denote its polar decomposition as A = Ja where a is a positive real number.
There exists a density matrix σA in the Fock representation π, of Δ (H, σ)
in fflj such that V x e A(H, σ)=>ωA(x) = Tr

Proof. The density matrix is defined by (n: o -> oo)

2
where

/D+\n

and Pn the orthogonal projection on the vector /„= /— Ωj, Ωj the

cyclic vector of πjt

Since A* A ^ 1, we have a = \A\ ̂  1 and so 0 ̂  σ. Moreover

α+1

and σ is indeed a density matrix. It remains to show that ωA(x)
= Σ σ n ( f n > π j ( x ) f n ) an^ it is sufficient to show this for x = ̂ ψ with ψ

n

arbitrary.
As in Lemma 2 we introduce z e (C such that ip = Rez φ + Imz Jφ,

then it follows immediately from the definition of ωA, J and φ that

= exp( ~ - "

On the other hand by Lemma 2 and the definition and the orthonorma-
lity of the set {/„} we find

and so

Using Lemma 1 we can evaluate the last sum and we find easily

z**/2 ( α+1 *\ _ (- — * l
ex ^ 2 zz j - exp ̂  2 zz

so that
r-p /ζ \ / ς \ s~*\ -r-1 πpv
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Lemma 4. Let ωA be a quasi-free state on Δ(H, σ), H two-dimensional.
The pure state ωEΛ on Δ(H®H, σ© — σ) can be obtained by a purification
map Φ from ωA (in the sense of [6]).

Proof. Powers and St0rmer constructed this purification map from
a normal state ω on a finite irreducible matrix algebra M to a pure
state Φ(ώ) on the algebra M(x)M.

We consider the Fock representation π/ of A (H, σ) and we set
M = πj(A(H,σ)). The state ωA induces a normal state ω(Q) = ΎτσAQ
on M by Lemma 3. If V is any anti-unitary operator on ffl3, we can
extend ω to a pure state Φ(ω) on M(χ)M, defined by (see Ref. [6])

Φ(ω) (P ® Q) = Σ V°n V^n (/„, P

We now define the state Φ(ωA) on the algebra A(H®H,σ®-σ) by

Φ(ωJ (δψl @J = Φ(ω) (πj(δψl)® Vπj(δ^2) V~l).

We proceed by showing that Φ(ωA) = ωEA. Clearly

n,m

and as V is anti-unitary and

Φ(ωA) (δψi@ψ2) = Σ }/σn Vσm (fn> πj(^ψl) fm) (fm> n

so that Φ(ωA) is independent of the choice of V.
We can define the complex numbers z and y so that

ιpί =Rez φ + Imz Jφ , φ2 = Rej; φ + Imy - Jφ

and by Lemma 2 we find

Again by a straightforward calculation and application of the definition
of the vectors {/„} and [B~ ', B+]_ = 1 we get

S ! (Ί ~\}^\s m

. \ιy )

'^7Γ (s-m)! (s-π)! (n-r)! (m-r)!

ΣV^n
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fl+1 1 / I V 1

For sake of simplicity we introduce c = —-— so that σn = — 1 .
2 c \ c]

Then by the use of the formula

y. fa zn~r ys~n

 = 1 (ί-c)rl2 (]/^lz)n~r (]/~cy)s~n

Z_j V ft / \ i / \ I ^-j ι /~ s/2 ( \\ ( -, \\

(l-c)r/2

c c (s-r)!

and the substitutions t = s — r and x = ]/c — 1 z + |/c y we get

by Lemma 1.
On the other hand by the definition of EA we find

ωεΛ(δψl e V2) = exp(iσ(^φ1? t/^i) + ̂ σ(Aιp2, ψ2) + σ(4 }/l + A~2 ψl9 ιp2)) .

Furthermore we have 1̂ = Ja and so

I

Introducing again the complex numbers z and y we find

2 2JJ

and with the definitions of c and x it is easy to verify that

We next prove Lemma 3 and 4 in the case that H is of finite dimension
2k using the fact that the considered quasi-free states are product states.

Lemma 5. (A. Verbeure.) Let H be Ik-dimensional and denote by
A = J\A\ the polar decomposition of A e S. There exists a density matrix
σA in the Fock representation π, of A (H, σ) in Jfj such that

k

Proof. The operator |A| can be diagonalised as \A\ = £ a^. Since
ί=l

J commutes with \A\, we can find a symplectic basis {φ^JφJ with
σ(φi9Jφj) = δij9 σ(φi,φ^ = σ(JφhJφJ^^ and \A^~a^i9 ^Jφ

With every pair (φ^Jφ^ we associate the creation operator
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and for every set of k non-negative integers (ή) = {rcls n2 ... nk] we define

f(n) =

and

i = l \ ci

By a straightforward extension of the results of Lemma 3 one can prove
that σA = Σ σ(M)P/(n) is a density matrix and that

(")
ω^(5v) = Ttjrj<*Aπj(δψ) for every ip e H.

Lemma 6. Let ωA be a quasi-free state on A (H, σ) with H finite-
dimensional. Given an arbitrary Fock representation πκ of A (H, σ) there
exists a density matrix σA(K) such that

ή=>ωA(x) = ΎΐjpκσA(K) πκ(x).

Proof. This results immediately from the unitary equivalence of the
Fock representations of A(H, σ) if H is finite-dimensional [1,2].

The density matrix σA(K) is given by

with 0(I1) = UKJf(n} and UKJ the unitary operator of 34fj^3^κ. In the
next lemma we prove an estimate for the norm differences \\O)EA — O)EB\\
and \\coA — ωB\\ in the finite dimensional case. Note that this inequality
is precisely the same as the one obtained by Powers and St0rmer for
the Clifford algebra.

Lemma 7. // ωA and ωB are two quasi- free states on A (H, σ) with H
finite-dimensional, ωEΛ and ωEj} the extended pure states on
Δ(H®H,σ® -σ) then

Proof. We consider an arbitrary Fock representation πκ and we
define the normal states ω± and ω2 on M = πκ (A (H, σ)) by

β>ι = TrΛ^(X) . ω2 = Ύr^κσB(K) .

For the norm difference we find

I|ω1-ω2 | |= sup |ω1(P)-ω2(P)|= sup \ωl(πκ(x))-ω2(πκ(x))\ .
\\P\\£1 l|πκ(3c)||^l
PeM xeA(H,σ)
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Since A(H,σ) is dense in A(H,σ) and ||πx(x)|| = ||x|| if XE A(H, σ) [3]
we get

xeA(H,σ)

Given an anti-unitary operator V we again construct the states Φ(ωi)
and Φ(ω2) by

Φ(ω)(P®Q}= Σ
(«) (m)

Powers and St0rmer [6] proved the inequality ^\\Φ(ω^} —<
^ || cΰi — ω2|| in the case of matrix algebras, but it is not hard to extend
the result to the case of normal states on irreducible operator algebras [8].

Next we define the states Φ(ω^) and Φ(ωB) on Δ(H@H, σ® — σ) by

From the fact that πκ is a representation of A (H, σ) it can be shown
in a straightforward manner that

is a representation of Δ(H@H, σ@— σ) in M(x)M and it follows that
(x e Δ(H@H,σ@-σ))

\\Φ(ωA)-Φ(ωB)\\= sup \Φ(ωA)(x)-Φ(ωB)(x)\

= sup IΦ
Ik l l^ i

^ sup \Φ(ω1}(ξ(x))-Φ(ω2)(ξ(x)

since | |ξ(x)||^| |x| |.
The last expression is certainly smaller than \\Φ(ωί) — Φ(ω2)\\ so that

\\Φ(ω^)-Φ(ωB)\\^\\Φ(ω1)-Φ(ω2)\\.

It remains to show that Φ(ωA)
 = ωEA

 an<3 Φ^B^ — ^EB- From the defi-
nition of Φ(ω^) we have

(n) (m)
ι)>πκ(δΨ2)0(n))

and using the unitary equivalence of Fock representations

(«) (
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with the notations of Lemma 5. By a straightforward extension of the
results of Lemma 4, it is now possible to show that again

Φ(ω^) (δψί © V2) - ωEΛ(δψί Θ Ψ2).

This completes the proof.
We now want to extend the result of Lemma 7 to the general case

with H infinite-dimensional. Powers and Stormer use therefore continuity
considerations. Here this is slightly more difficult as the operators in
S may be unbounded. Nevertheless it is possible to prove the following
lemma. From now on H may be infinite dimensional.

Lemma 8. Given two quasi- free states ωA and ωB on A (H, σ), an

element y= Σ aίδ^l@φi in Δ(H®H,σ®—σ] and ε>0, there exist
i = l

a regular finite subspace H0cH and two quasi- free states ωAo and ωBo

on A(H0, σ), such that

\ωEa(y) - ωEBQ(y)\ < ε,_
where ωEA , ωEβ are to be understood as states on A(H0®HQ9 σ@—σ)

Proof. Let J be an arbitrary unitary element in S (J*J = -J2 = 1\
define for every non-negative integer m the subspace Hm off/ spanned by

{A~kψi,B~kφi,JA~kψi,JB~kφί; with k :0->m,i : l-»n} .

This subspace Hm is finite for all finite m and is regular since, given
φ φ O in Hm, then JψeHm and σ(ψ9 Jψ) = Sj(ψ9 φ)φO so that the re-
striction of σ to Hm remains regular.

n

For all m^O, ipi9(pi e Hm so that y= J] ^V.@(PI is an element of

A(Hm@Hm,σ®-σ).
Let Pm be the orthogonal projection on Hm. The operators Am = PmAPm

and Bm = PmBPm define quasi-free statesωArnandωβmon A(Hm,σ). Since
sAm(ψ> ^)= SA(Ψ> ψ) f°r ^^? 9 e Hm> sAn is a scalar product on Hm.

Moreover, for all ψ9 φeHm: \σ(ψ, φ)\2 ^sAm(ψ, ψ)sAm(φ9 φ) and re-
placing ψ by Amφ we get

^m(φ9 φ)2 ̂  ̂ m(^mφ, Amψ) sAm(φ, φ)

so that A^Am^l with respect to 5^m.
So we may conclude that if H0 = Hm for any non-negative integer m,

then H0 is a finite regular subspace of H and ω^w and ωBm are quasi-
free states on A(Hm, σ} such that conditions i) and ii) of the lemma are
fulfilled. If we can prove that lim ωEA (y) = coEA(y), then the lemma
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will be proved since the problem is symmetric in A and B.
n

Now, as y= £ fl/<L e~ and

ωEΛm(δΨιΦφi) = exp -—sA(ψi9 ψi) - — sA(φi9

it will be sufficient that for any φi9 φ^i =ί,n)

lim sA(}/l + Am

2 ψi9 φt) =
m~* <x>

and by Schwartz inequality that

To show this we consider the power series of (1 — x)* = ^ ciχi con"

verging for 0 ̂  x ̂  1 (This follows straightforward by usual convergence
criteria), and we define

9P(Am)= Σ c^-A-2)1.
i = 0

As 0:g — A~2^19 gp(Am) converges in norm, and hence strongly to
I/I + A~2. Similarly gp(A) converges strongly to j/1 + A~2.

Therefore for any ε > 0 there is a p0 such that

- gfo(Am}} Ψt\\,Λ

\\(gpo(A) - gpa(AJ) Ψi\\SA

g ε/2 + 8/2 + ||(^oμ) - βpo(AJ) Ψί\\SΛ

It is easy to verify that

and (^-^Jyl~ j~1t/;/ = ̂ "JV ί-Pm^Pmyl~ j~1φ ί. If m ^ j + 1 then
A~j~iψieHm and A~jιpiEHm so that (^-^J^"-7'"1^/^- So if m^/c
then μ- k-ΛΓ k)v>/ = 0 and if m^2p0:gpo(Am)ιpi = gpo(A)ιpi so that

||(1/ΓT^ - ]/Ϊ+A=^) Ψi\\ ^ s.
This completes the proof.

Lemma 9. Lei ω^ and ωB be quasi- free states on A (H, σ) with H
infinite dimensional, ωEA and ωEβ the extended pure states on
Δ(H®H,σ®-σ) then
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Proof. Since A(H®H,σ®—σ) is dense in Δ(H@H,σ@-σ\ it
n

follows that for every ε > 0 there exists an y of the form y = ]Γ aίδψι@φι
i = l

such that

\\y\\ ^ 1 and \\ωEΛ - ω£J| - ε < \ωEA(y) - ωEB(y)\

By Lemma 8 there exists a subalgebra A(H0, σ) on a finite subspace H0

and two quasi-free states ωAo and ωΰo on this subalgebra such that

and ωA \ Δ (H09 σ) = ωAo and ωβ | zl (H0, σ) =
So we have by Lemma 7

^o(.y) - ωEBQ(y)\ ^ ||ω^o- ω£flj| ^ 2\\ωAo - ωBo\\*

and llω^-ω^HIKω^-ω^μίJHo^^ll^llω^-ωJ. The result is
\\ωEA — ωEB\\^2\\ωA — ωB\\^ + 3ε and since this holds for every ε, we
proved the lemma.

5. Operators on a Symplectic Space

The estimate obtained in the previous lemma is going to be used
in the last section where we prove that two quasi-free factor states ωA

and ωB are quasi-equivalent iff the corresponding pure states O>EΛ and
ωEB are unitarily equivalent. On the other hand that is equivalent to
saying that (EA — EB)

2 is of trace class with respect to the scalar product
SEA on H®H[_7], This yields a necessary and sufficient condition for
the quasi-equivalence of ωA and ωB in terms of EA and EB. In this section
we try to rewrite this condition in terms of A and B directly. The result
will be used to prove that if A — B is of finite rank, then ωEΛ and ωEB

are unitarily equivalent, a lemma which we need for the proof of the
theorem of the last section. That is precisely the reason why we start
for searching this equivalent conditions already in this section.

We define the operator

-iR = (EA- EB) (EA -EB)=-2- EAEB - EBEA =-2~ EAEB - (EAEB)

We recall that —EAEB was found to be hermitian and positive with
respect to S£Λ because sEA(-EAEBψ, φ) = — (σφ -σ) (EB\p, φ) = sEβ(ψ,φ)
ifψ,φ<=H®H.

As —EBEA = ( — EAEB)~ί the same statement is true for —EBEA.
And using the fact x + x~1 — 2 ̂  0 if x is positive it follows that R is
hermitian and positive with respect to SEA.
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We next introduce the operator U on H@H

]/2\ι -i.

The adjoint of U with respect to σ® — σ is U+ = —τ=-l and it

is easily verified that U2 = U+2 = ί.
Define next the operators

QA = A + Ayί+A-2, QB = B + BVl + B-2,

' A = PR = B-B]/\ + B-2.

It is straightforward to verify that

0

0 -PA

and it follows that the bilinear form

Ώ~σ^ \o -j
satisfies

s(ψ,φ)=-(σ®-σ)(U+EAUιp,φ)

= — (σ® — σ)(EAUψ, Uφ) = sEA(Uψ, Uφ)

and therefore is a scalar product on H®H.
Let {ψi} be an orthonormal basis in H®H with respect to S£A,

then {U\pt} is an orthonormal basis with respect to s. As R is positive
and hermitian with respect to SEA, it is of trace class iff the sum £ sEΛ(ψi9 Ript)

i

converges. On the other hand by the definition of s and U2 = 1

sEΛ(ιp9 Rφ) = s(Uψ9 UR U - Uφ)

And it follows that URU is positive and hermitian with respect to s.
Moreover £ s£^(^t.,#t/)J = ]r s(£/ipi9 URU Uipt) so that .R is of trace

i ί

class with respect to SEA if and only if UR U is of trace class with respect
to 5.

In what follows we denote by τc(s) and σc(s) resp. the trace class
and Hubert Schmidt class of operators with respect to the scalar product
s. So we showed already that Reτc(sE )<=>URUeτc(s).
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The last operator is found to be

UR U = U(EA - EB) U+ U+ (EA - EB) U

I-PB 0 \IQA-QB 0

and as URU is positive and hermitian with respect to s = ι
the condition is equivalent with:

RI=(PA~ PB) (QA ~ QB) e τc(sQA)
and

R2 = (QA-QB)(PA-P

We proceed by showing that the last two statements are equivalent.
Indeed

= -l-l-PΛQB-(PAQBΓ
1

and as sQΛ( — PAQB\p,φ) = SQB(ψ,φ) it follows that —PAQB and hence
Ri is positive and hermitian with respect to SQA. Similarly R2 = —2
— ίLΛ — ίCLΛΓ1 is positive and hermitian with respect to sp^. So
R1 and R2 are of trace class if the sum of its eigenvalues exists. Now, if
ψ is an eigenvector of say QAPB with eigenvalue λ then

R2ιp = (-2-λ-λ~ί)ιp.

On the other hand then PBψ will be eigenvector of PAQB because

and
R1PBιp = (-2-λ-λ-ί)PBψ

So the eigenvalues of R1 and R2 are the same and

QΛ)oR2 eτc(sPJ

Next we remark that if N is a positive hermitian operator then
(N + N- 1 - 2) e τ coN -leσc.

To see this, if {n^ are the eigenvalues of N, note that for both con-
ditions it is necessary that n{-> 1, and that

W -2- <*=>£-.
n,
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We finish this discussion by saying that if an operator N is positive
and hermitian with respect to SQΛ then

N e τ c(sQA)oN e τ C(SA) .

Consider the operator C = 1 + j/1 + A~2.
Clearly 1 ̂  C ̂  2 so that both C and C"1 are bounded. As QA = CA

and so sQA(ψ9 φ) = sA(]/Cψ, ]/Cφ) it follows that the metrics induced by
SQA and SA are equivalent.

We summarise the results in the following lemma.

Lemma 10. Let A,BeS, and define the operators on H:

and the operator on Hξ&H

v ' A

EA =

and similarity for B.
Then the following statements are equivalent.

i) (EA-EB)
2eτc(sEΛ\

ii) EA-EBeσc(sEΛ),
iii) (PA-PB)(QA-QB)eτc(sQA),

v) (PA-
vi) (QAlQB-Vεσc(sA\

vii) A-\QB-QA)eσc(sA}.

Proof. We already investigated the equivalences

(i) <̂ > iii) o iv) <̂ > v)

We also showed that

(EA - EB)
2 = -2-EAEB- (EAEBΓ

 1 e τ c(sEJ

o-l-EAEB = EA(EA - EB) E σc(sEΛ)

and as EA is unitary with respect to SEΛ this is equivalent with
EA-EBEτ c(sEJ proving (i) <̂ > (ii).

To prove the equivalence of vi) with v) remark that

(PA ~ PB) (QA - β*) = - 2 - PAQB -

and that
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To prove the equivalence of vi) and vii) remark that QA=CA and
so A~1 (QB - QA) = C(Q~A

lQB-ΐ) and that both C and C "x are bounded.
We next prove that if A — B is of finite rank, then condition vii) of

the previous lemma is fulfilled so that the following is true.

Lemma 11. If A, Be S and A — B is of finite rank, then

(EA-EB)
2eτc(sEA).

Proof. If we denote by X = A-B, Y = A}/1 + A~2-B}/1 + B~2

then Y = A (]/l + A~ 2 - ]/f + B~ 2) + X j/1 + B~2 so that

and as X is finite rank, condition vii) will be fulfilled if

Define P = 1 + A~ 2 and Q = 1 + B~2.
It remains to show that ]/P— ]/Q e σc(sA).
Remark that A2 - B2 = A(A - B) + (A - B) B and that A~2-B~2

= B~2(A2-B2)A~2 so that P-Q is finite rank. Furthermore ]/P is
positive and hermitian with respect to SA and so is j/Q with respect to
SB. By sA(A~1B]/Qψ9φ) = sB(]/Qψ9φ) it follows that A~lβγQ is
positive and hermitian with respect to SA.

By the same arguments as used in Lemma 4.1 of [6] it is true that
j/P-j/2 is compact and as A~iB]/Q-]/Q=-A~1X]^Q is finite
rank ]/P-A~lB]fQ is compact. If we define S = ]/P-A~ 1B\/Q,
T = }/P + A~1B}/Q, Sf = ]/P-]/Q, T' = }/P + }/Q then S-S' and
T-T are finite rank and %(S'T + T'S') = P - β. So £(S'T' + T'S') and
hence ^(S T -f TS) is trace class and by the same arguments of Lemma 4.1
of [6], S is Hubert Schmidt and Sf is Hubert Schmidt. This completes
the proof.

6. Quasi-Equivalence of Quasi-Free States

In this section we prove the main theorem on quasi-equivalence.
Consider the set {#α}αei of all finite regular subspaces of H.
Then </={jtf<x = <Δ(HΛ,σ)}lxeI is a net of Weyl-subalgebra's of

j/ = A (H, σ) satisfying
i) to all pairs sίΛ,^βE/ there is a j^e/ with j;

ii) the unit of j/ = zl (#, σ) is contained in all j/α 6 /",
iii) the union (J j/α is norm dense in j/,

αel

iv) every ja/α 6 ̂  is type /.

14 Commun. math. Phys., Vol. 21
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The last statement follows from the theorem of Von Neumann [1]
saying that every representation of the Weyl algebra built on a finite
space is a multiple of the Schrδdinger representation which is irreducible.
Hence every representation is type /. It then follows from a theorem of
Haag, Kastler and Kadison [9, prop 13] that two quasi-free factor
states ωA and ωB are quasi-equivalent iff to each ε > 0 there is a j/α e /
such that || (ω^ — ωB)|X£ll <ε where X£ is the commutant of stfΛ in j/.
Note that quasi-free states are locally normal

We now show that ^ = Δ(H09 σ)c = A(H£, σ) where H& is the
orthogonal completement of H0 in H with respect to σ.

Lemma 12. If H0 is a regular subspace and finite, then

Proof. As A(H0,σ) and A(HQ, σ) are generated by resp. A(H0,σ)
and A (H^, σ) and as the last two algebra's commute, it follows that

Therefore it is sufficient to show that for any ε > 0 and x e A (H0 , σ)c

there exists a y e A ( H Q , σ) such that \\y — x\\ <ε, since this means that
Q, σ) is dense in A(H0, σ)c and hence A(HQ, σ) ^A(HQ, σ}c.
So we consider ε > 0 and x e A(H0,σY and we construct such a y.

As A (H, σ) is dense in A (H, σ) there exists an element of the form

P

z= Σ aiδ^ψiE H , such that \\z-x\\ <ε/2
i = l

z can be written as z = ZL + zί where

z1 = Σα iδV I with φ. effo1

zί=Σaiδψ±δφi with ^eH^ and φ ^ Φ θ e f / o .

Next for any integer n we define the map

ueA(H,σ)-*τn(u)=— — J exp(-Sj(ψ,ψ))δnψuδ_nιpdψ
71 Ho

where 2n0 is the dimension of H0, J a complex structure leaving H0

invariant and dip the Lebesque measure on H0 induced by the scalar
product Sj.

Clearly iΐueΔ (H0, σ)c then

—^-
71

so that τπ(x) = x.
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Next compute τ,,̂ ) with φί e H0.
By a straightforward application of the multiplication rules

= § * f e-sj(ψt,ψ')e-2ίnsj(ψ',φi)cιw'
Φi πnO J

71 φ'eHo

as J is an isometry (with ψ' = Jψ).
By a straightforward extension of the formula

1 +00

J exp( — x2 — 2niyx)dx = exp( — n2y2)— τ=-
Vπ -

we get
(- n2Sj(φίy φ$) δφι .

If we apply this to τ n ( z v ) we find

and the norm Hτ^)!! is smaller than

Σ K | exp(-n2sj(φi, φ$ \\δφt\\ ||5J - Σ |flί|

which, for a fixed element z can be made smaller than ε/2 for large n,
as φf Φ 0.

We summarize the result by considering

\\x-z^\\ = \\τn(x)-τn(z) + τ n ( Z l ) \ \ .

So

= ε

This completes the proof.
As a result of Lemma 12 we find that two quasi-free factor states

ωA and ωB are quasi-equivalent if and only if there is a finite regular
subspace HΆ of H for every ε > 0 such that

(ωA-ωB)\A(HΪ,σ)\\<ε.
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We use this in the following theorem. Note that the quasi-free state
ωA, AE S is a factor state if and only if the norm continuous extension
of σ to the completion HSΛ of H with respect to SA is non-degenerate [5].

Theorem. Two quasi-free factor states ωA and ωB with A, B e S are
quasi-equivalent if and only if (QA

1QB — 1) e σc(sA).

Proof. The proof is completely the same as the one of Theorem 5.1
of [6].

Suppose first that (QA

l QB ~ 1) e σc(sA)9 then by Lemma 10
(EA — EB)

2 e τc(sEA) and therefore ωEA and ωEB are unitarily equivalent
[7]. By the work of Haag, Kadison and Kastler, for any ε>0 there is
a finite regular subspace K of H@H such that

\\(ωEΛ-ωEB)\Δ(K\σ®-σ)\\<*.

To every finite subspace Koϊ H ®H there exists a finite regular subspace
H0 of H such that KcH0®H0 and therefore H^QH^cK1-. With the
same arguments as used in section 4 then

ί\\(ωEA-ωEB)\Δ(K\σ®-σ)\\

^ ε.

So ωA and ωB are quasi-equivalent.
Conversely, suppose that ωA and ωB are quasi-equivalent. Then

there is a finite regular subspace H0 of H for any ε > 0 such that

\\(ωA-ωB)\Δ(HΪ,σ)\\<ε,

As in [6], let E be the orthogonal projection on H0.
Define A1 = EAE + (1-E) A(l - E)and^ = EAE + (!-£) B(l - E).
In the proof of Lemma 8 we showed that if, A9BeS and E is the

orthogonal projection on a subspace H0, then EAEeS. Similarly
(1 - E) B(l - E) E S and (1 - E) A(ί -E)eS. Moreover it is possible to
conclude that also A1eS and B^ e S.

Clearly A — Al and B — Bί have finite rank and hence by Lemma 11
EA — EAl and EB — EBl are Hubert Schmidt and so O}EA~O}EA and
ωEB~

ωEB [7] On the other hand, as A1 coincides with A on HQ and
similarly for B we find that

\\(ωAl-ωBί)\Δ(HΪ,σ)\\Ce.

Moreover ωAί and ωBl are product states and coincide on Δ(H0,σ) so

that \\ωAl-ωBί\\<ε.
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Then by Lemma 9

and so ωEΛ ~ωEB P] Consequently ωEA~ωEB and by [7]:

(EA-EB)
2eτc(sEJ.

Finally the use of Lemma 10 completes the proof.
Remark. Lemma 10 provides us a large number of equivalent

conditions. If the states ωA and ωB are pure states and so A2 = B2 = — 1
then QA = PA = A and the conditions i), iii), iv) and v) are essentially
(A - B)2 e τc(sA). On the other hand conditions ii), vi) and vii) state
A — BGσc(sA).
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