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Linear Kinematical Groups
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Abstract. We prove a theorem which states that in an («+ l)-dimensίonal space-time
(n ̂  3) the only linear kinematical groups which are compatible with the isotropy of space
are the Lorentz and Galilei groups. The special cases n = i and n = 2 are also briefly
discussed.

1. Introduction

We prove in this paper that in an (n + l)-dimensional space-time
(n ̂  3) the only non trivial linear kinematical groups which are com-
patible with the isotropy of space are the Lorentz and Galilei groups.

Related to ours are the papers by Lalan [1] and by Bacry and Levy-
Leblond [2]. Lalan's conditions are however much more restrictive than
ours in that he assumes at the outset a Lie group structure and he
requires the set of special velocity transformations to be invariant under
space rotations. As to the approach of Ref. [2], it is more general than
ours because space-time translations are considered as well and no
restriction to linearity is introduced. On the other hand, the Lie group
assumption is still used and, furthermore, invariance under parity and
time reversal is required.

In Section 2 we collect some notations. In Section 3 we discuss our
assumptions. In Section 4 we state and prove our theorem and mention
its extension to the inclusion of space reflection, as a corollary1. In
Section 5 the cases n=ί and n = 2 are discussed. For n — 1, some specific
counterexamples are listed, which prove that the result no longer holds.
As for the case n — 2, it is seen to hold if space reflection is allowed for,
or under restriction to connected Lie groups.

2. Notations

Let m and n be positive integers. We use the standard notations
GL(n -f 1, R) for the group of all (n -f 1) x (n + 1) real non singular matrices

* On leave of absence from Istituto di Fisica dell' Universita, Milano, Italy. A. v. Hum-
boldt fellow.

1 For the case n = 3 the result was communicated in [3]. Compare also Ref. [4]
where, however, an unnecessary strong continuity condition was used.
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and 0(m) (respectively, SO(m)) for the group of all m x m real orthogonal
matrices (respectively, orthogonal matrices with determinant plus one).
Greek indices run from 1 to n + 1, latin indices from 1 to n. A matrix G
belonging to GL(n+l,R) will often be denoted by the family of its
matrix elements G= {Gμv}μ,v = ι,...,n+ι = {Gμv}. We shall have to consider
the following subgroups of GL(n + 1, R):

Jfr(n)={H\HeGL(n+ί,R) 9 Hitn + 1=Q, ΐ = l , . . . , n } , (2.1)

f(π) = {C|CeGL(n+l,K); CI> + 1 = CB + M = 0,

i = l , . . . , n ; Cn + 1,n + 1 = l; (C i k}eO(n)},

V(n)={C\CeV(n),det{Cik} = 1} , (2.3)

«"(n)={C|C6*(n), Cn = l}, (2.4)

J?(n, λ) - {L I L e GL(n + 1, Λ) LΓ

gμv(λ) = 0 if μ φ v
nιl

^ n + l , n + l = ; n + l , n + l »

0</l< + 00,

n,A); detL=l}, 0 < Λ < + α), (2.6)

, ,...,

; detG=l} (2.8)

and, for n ̂  2,

={X ^6GL(π+l,Λ); A r

/ 1 = A r

/ f l I + 1 = 0 ,

lI + 1 (2.9)

If C e <g(n\ we write C = C(ί'fc)(α), z < /c, α e [0, 2π), if C^ - 1 for j Φ /, fc
and Cti = Ckk = cosα, Cik = — Cki = sinα.

3. Discussion of the Assumptions

Let M= {* = (x l 5 ...,xn), ί = ̂ w +ι} Λ e Λπ,ίeΛ ^Q an (w + l)-dimensional
space-time (without metric)2. We restrict ourselves to (inertial) frames
having the same space-time origin and we assume linearity. Hence we

2 We assume jR" to be equipped with the usual euclidean metric.
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write the coordinate transformation between two frames S and S' as

n+ 1

Lμvxv9 (3.1)

where {Lμv} e GL(n + 1, jR), and denote by ̂  the group of such trans-
formations, identified to the group of the corresponding matrices {LμvY$.
Let £?R denote the subgroup of JS? whose elements are the transformations
connecting frames at rest with respect to each other. The condition for S'
to be at rest with respect to S is expressed by the requirement that a world
line which is parallel to the xn+1-axis should be transformed by (3.1)
into a world line which is parallel to the x'n+ 1-axis. This is equivalent to

L + =0, i = 1,..., n (3.2)
and therefore

(3.3)

Axiom £>R = <g(n). (3.4)

Physically, this axiom states that a) in each frame clocks have been
synchronized in a standard way (here space-time homogeneity and
isotropy of space are implicit), b) that time has a unidirectional flow and
that a common time standard is used, c) that space is isotropic and that
the localization of events in space is given by orthogonal coordinate
systems of the same parity, a common length standard being adopted.

By (3.3) and (3.4) the kinematical group must satisfy

jS?n«^(n) = #(«). (3.5)

We prove in the next section that, if n ̂  3, the subgroups Jδf of GL(n+ 1,R)
satisfying (3.6) are, apart from ^(n) itself, the proper orthochronous
Galilei group (2.8) and the proper orthochronous Lorentz groups (2.6)
corresponding to all possible real values of the invariant velocity λ~1/2.

4. The Theorem

Theorem 1. Let π^3 and denote by Φ the family of subgroups of

λλe[0 +oo],
where a) if 0 < λ < + oo, &λ = &(n, λ) b) <$0 = ̂ (n); c) % + QO '

Lemma 1. Let 3? e Φ and let L e JSf . Then L can be written in the form

L = AXB, (4.1)

where A, Be <β(n\ X e %(n) and

^ιιΦθ,X n + 1,π + 1-Ln + 1 , π + 1 Φ θ . (4.2)
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Proof. By the properties of SO(n) it is a trivial matter to verify that two
matrices C, C e <g(n) can be found such that (CLC\ 1 = (CLC\n+1 = 0,
ί=2, ...,n. Since det 7ΦO we have zί(7)Φθ. Therefore we can take
A r=[C ( 1 2)(π)]wy,i4 = C-1[C(1 2)(π)]w,B = C"1 with m = 0 or m = l
according to whether A(Y)>0 or A(Y)<0. One then controls that
*n=0 (respectively, *n+1.n+1 = 0) implies (XC(1'2)(π) X~\n + 1

= -^μ,m-ι (respectively,^ 1C(1'2)(π)Z)Ai?n+1 - ~δ^n+1) and this con-
tradicts (3.5).

Lemma 2. Lei D e GL(m, R) wίίfc ίhe property that VF 6 SO(wι)
3 F G S0(m) such that

DF = FD. (4.3)
Γ/ien D = bQ, b> 0, Q e O(m).

Proof. The statement is trivial for m= 1, so we suppose m^2. We
have /^(DF/)"1)71 (DFD~1) = (DTΓ1 Fτ (DTD)FD~1. Hence the posi-
tive symmetric matrix E = DTD commutes with every rotation

FE = EF,VFeSO(m). (4.4)

3 N e 0(m) such that NEN~ 1 is diagonal [5] :

ΛΓ£ΛΓ- 1 = £=dίag{fl1,...,α l l} (4.5)

and E commutes with every rotation as well. Then, denoting by F(ίJ)(α)
(1 g i <j ^ m) a rotation of α in the (ij>plane, from EF(ίJ\π/2) = F(ί>j\π/2)E
we get at = aj9 whence E = aI = E = DTD,a>0. Therefore we get the
result with b = aί/2.

Now let ̂  G Φ and define

(4.6)

r} (4.7)
t

and V v e Y,
j f ; -XltH+ι/Xιι = v}. (4.8)

Note that, by Lemma 1, ̂  is a subset of the real line R.

Lemma 3. There exists an injection N : v-+N(v) of i^ into GL(n+ 1,R)
such that, V v e TΓ,

)}, (4.9)

(4.10)
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with
φ)>0, f2(υ) = e2(υ). (4.11)

Proof. LetvεΫ" and let X, Ye Jf». One checks that (XY~\n+1

= 0, i = 1, . . . , n, hence, by (3.5), X Y " x = C e <g(n). We have

and since Y1 ^ Φ 0 (Lemma 1), we get C21 = = Cnί = 0, hence C1 x = ± 1.
The circumstance Cn = — 1 has to be excluded because it would imply
A(X)=-A(Y) and we conclude that X = CY, Ce^'(n). Let now
K e $ f ( v ) and D e ̂ r(π). Then KD e Jf(ι ) and we have from the preceding
that 3D' e «"(«) such that

KD = D'K. (4.12)

We have (VK)u = D'^Ku = Ku = (KD)li = KllDu+ f K^Z)^ For

(4-13)

Therefore, since the matrix D = {Ai}/,i = 2,...,n ^s arbitrary in S0(n— 1)
and n ̂  3, we get

K12 = -=K1 B = 0. (4.14)

In the same way we obtain

Kn+lt2 = . =Kn+ltn = 0. (4.15)

From (4.12) we also have, for i, j = 2, . . . , n,

X KuDu- Σ DΉKtj. (4.16)
/ = 2 1=2

Therefore, by Lemma 2,

K = {Ktι}t,ι = 2,....n = eQ> e>0,QeO(n-l). (4.17)

Now let Kί and X2 be elements of Jf». By Eqs. (4.14), (4.15), and (4.17)
we can write

(4.18)ι.2= 0 *1§2β l i2 0
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There is a C e ^'(n) such that

K1 = CK2. (4.19)

Inserting (4.18) into (4.19) we get aί = a2 = 0, C1 = c2 = c,d1=d2 = d and

(4.21)

where C = {Cίl}iJ=:2i...in. Taking determinants in Eq. (4.21) and recalling
that eί > 0, e2 > 0, we get ev = e2 = e and det Q1 = detβ2. Therefore, the
generical element of Jf(t>) can be written as

1 a(v) 0 -va(v)\

K=\ 0 e(v)CQ 0

xφ) 0 φ)

(4.22)

where Q is a given element of O(n — 1) and C is an arbitrary element of
SO(n— 1). This proves the statement of the lemma with f ( v ) = +e(v)
or f(v) = - e(v) according to whether detβ = 1 or detβ = - 1.

is a subgroup of 3f and, by Lemmas 1 and 3

= AZBi A, Be <g(n)ι ZeJ^}. (4.23)

The set Jf =
we have

Proof of the Theorem. Note first that «"(n) = ίf(n)nJf = Jf (0).
Hence OeiΓ, and if ιΓ = {0} we have Jf = {JV(0)} - {/} whence, by
(4.23), Jίf = <g(n) = &+ao, which is the trivial solution. If ΊT 3 {0} we fix a
vei^, v Φ 0, and calculate

d coss + -de -sins — cosε)

a

a

c(l

^ + ι^c

• sine

e

0

0

— cosε)

a(d + vc)

/-»/^kQ C

0

0

ce sinε

\J . . . U

0 0

1 ...0

0.. .1

π π

d + vc

— va- sinε

^
0

0

d + vc- cosε. , . _ . . . . . j

, (4-24)

vc

ε e [0, 2π) .
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By Lemma 1 (see (4.2)), we have

d(ϋ) + uφ)cosβ > Q^ εe[0?2π)? (4.25)
d(v) + vc(υ)

and this gives the inequality

|uφ)/d(ι;)| < 1, ver. (4.26)

Defining

de(ί — cosε)
cosγ(ε, v} =

[dV(l - cosε)2 + a2(d + υc)2 sin2ε]1/2

and

siny(ε, v) =
Id2e2(l - cosε)2 + a2(d + vc)2 sin2ε]1/2 '

with sin y (0, ι;) — sin y (+ 0, v) = 1 and cos y (0, ι;) = cos γ (+ 0, v) = 0, we
calculate

) = C(1>2) (π — y(ε, f)) L(ε, v) C(1'2) (— y(ε, t;))

t c cosε

φ

where

0

0

0

fr\ (n r f\ o 11 c^

1

0

0

fc\ (n r f\ 0 11

0.

1 .

0.

cΛ n

. w ψ2

.0

.0

. 1

n c

0

0

0

j

, (4.27)

,c,d,e, v,ε)

sinε{de2(l — cosε) [d2e2(l — cos ε) + a2(d + vc)2 cosε]

(4.27 a)

- cosε)2 + α2(d + i c)2 sin2ε]1/2

- , (4.27b)

S[2d(l- cosε) + ϋc sin2ε] (42?c)

(d + vc) [J2β2(l-cosε)2 + α2(J + ί;c)2sin2 ε]
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and

csinε(l — cosε)[β2d — a
l/2 '

One checks that Δ(X(ε, v)) = 1, hence X(ε, u) is an element of Jίf and, by
Lemma 3, X(ε, v) e jV. Therefore,

t;)), (4.28)

where, by (4.27 b),

w(ε, υ) = — — — —. (4.29)

Eqs. (4.14) and (4.15) imply

<P! (α, c, a, e, v, ε) = φ4(a, c, d, e,v,ε) = Q. (4.30)

One checks that for (4.30) to be satisfied it is necessary and sufficient that

d(v) e2(v) = a2(v) [φ) + v φ)] . (4.31)

Using (4.31) we get

We have from (4.27) and (4.28), V ε e [0,2π),

( / \\ J / / \\ w \ vv -wv^utj T)1_\

w(ε, t n = α(w(ε, i;)) = (4.33b)
α + υc

and, using (4.32),

c(w(ε, v)) = (4.33 c)
d(d + vc)

and

w(ε, υ) = l L v—/ 7 —. (4.33 d)v y d + vccosε

From (4.33 b, c, d) we get, V ε e [0,2π),

l + w2(ε,ϋ)--^Γ>0, (4.34)

c(υ) \~1/2

I=(l+-5^w2(β,,) (4.35)

and
\ - l / 2

..^^(l + ^-w^t;)ϋd(t ) \ vd(v)
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From (4.25), (4.32), and (4.33d) we see that w(ε, v) is a continuous function
of ε which equals 0 iff ε = 0 and which, V ε e (0,2π), has a definite sign.
Then w([0, 2π), v) = w([0, 2π], v) is a closed non zero interval and we
write w([0,2π), ί^)=[0, w0(v)~] or w([0,2π), ι;) = [- w0(t>), 0] according
to whether w(ε, t;) ̂  0 or w(ε, ι?) rg 0. In the first case, w0(ι;) = Sup w(ε, v\

εe[0,2π)

in the second case w0(t;) = — Inf w(ε, v). From (4.33 b) we get that
εe[0,2π)

N~l(w(ε,v)) = N(-w(ε9v)). Therefore, -w(ε,ί;)e^ and {N(- w(ε, r)),

Mw(ε, t?))}εe[o,2π) = # (*») where J» = [- Wo(Ό> wo(t>)] £ ̂ , w0(t>) > 0.
Now let ι/ e TΓ, ι/ φ u, ι/ φ 0. We have either Γ(v) 2 Γ(v') or Γ(u') 2 /»
and 3ε, ε' e(0,2π) such that w(ε, v) = w(ε', f'). Therefore α(w(ε, t;)) = 0(w(ε',z;'))
and we get, from (4.35),

φ) _ c(ϋQ _

"^~7φO~~~λ ( 7)

Thus for a given vei^, z ΦO and for weΓ(ι ) we have, by (4.10, 33 a,
33 b, 35, 36, 37),

0

0

0 0...0 -w(l-λw2Γίl2}

1 0...0 0

0 1...0 0

0 0 0.. .1

\-λw(ί-λw2Γ1/2 0 0...0

0

(4.38)

Suppose λ < 0. Choose a positive integer m such that | λ\~ 1 /2 tg(π/m)eΓ(υ).
One checks that

which contradicts (3.5). Therefore the circumstance λ < 0 must be ruled
out. We shall then distinguish two cases, according to whether λ = Q
or λ > 0.

If Λ, = 0, (4.38) is the matrix of a special Galilei transformation along
the Xj-axis. Hence N(Γ(v)) generates the one-dimensional (proper
orthochronous) Galilei group, which of course includes N(v) because
-T = ( - oo, + oo). Thus we get from (4.23) that ̂  = &(n) = &0.

Ίϊλ>Q, N(Γ(υ)) generates the group N[(- A"1 / 2, A~1/2)] of special
(proper orthochronous) Lorentz transformations along the Xj-axis,
corresponding to an invariant velocity c = λ~1/2. From (4.37) we get
\vc(v)/d(v)\ = λv2

9 which, combined with (4.26), gives λv2<ί. Hence
A" 1 / 2,A~ 1 / 2)] = ̂ r and using (4.23) and recalling the standard
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Wigner decomposition of the matrices of the Lorentz group [6, 7], we
get that & = J£?(rc, λ) = <gλ. The proof of our theorem is thus completed.

Now suppose that we allow for space reflection to be included among
the "rest" transformations, thus replacing condition (3.5) by

j^n^(n) = ̂ (n). (4.39)

Then the proof of Theorem 1 can be adapted without essential changes to
the demonstration as a corollary of the following

Theorem 2. Let n ̂  3 and denote by Φ the family of subgroups of
GL (n + 1, R) defined by J? e Φ iffβ n ̂  (n) = V(n). Then Φ= {^λ]_λe[0 +
where a) if 0< λ< + oo, <Sλ = &(n, λ); b) y0 = &(n);c) &+ao " '

5. The Cases n = 1 and n = 2

If n = 1, conditions (3.5) and (4.39) read respectively

={/} and J^njf (!)={/, σ} , σ=

Both Theorem 1 and Theorem 2 do not hold any longer, in that new
solutions appear. Among these, for the case without space reflection,
we list the following examples :

a) the (proper orthochronous) Galilei groups respectively with
rational and integer values of the velocity,

^ ( 1 )-{G|GeGL(2,JR); G2 1=0, G11 = G22 = 1, G12 integer} (5.1)

and

); G21 = 0, G11 = G2 2 = 1, G12 rational} (5.2)

and

b) the Parker groups [8],

0 λ~1/2

^). (5.3)

is a non closed (hence non Lie) subgroup of GL(2, R). &(ί) and the
'̂s are non connected Lie subgroups of GL(2, R) (^(1) is zero-dimen-

sional).
The groups generated by σ with, respectively, ^(1), ̂ (2), and each

of the ̂ 's, are solutions of the n = 1 case with space reflection.
The fact that no kinematical groups analogous to the groups (5.3)

appear for n = 3, seems to give little relevance to the extended relativity
principle formulated in Ref. [8].
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If n = 2, Eq. (4.13) writes K12 = K12D22 where D22 = l or D22= ±1
according to whether one looks for groups satisfying (3.5) or (4.39). In
the second case, one can again conclude that K12 = Q (compare (4.14))
and, similarly, that K3 2 = 0 (compare (4.15)), while this is no longer
possible in the first case. Therefore, for n = 2, the proof which we have
given in Section 4 is still valid for Theorem 2, but fails for Theorem 1 3.

We have not been able to ascertain whether Theorem 1 extends or
not to the case n = 2 4. However, we can prove a weaker result which is
given by the following

Proposition. Denote by Ψ the family of subgroups of GL(3, R)
defined by Jί e Ψ iff Ji is a connected Lie subgroup of GL(3, R) satisfying

Jtr\^(2) = ($(2). (5.4)

Then Ψ={Jfλ}λe[0 +00], where a) if 0<λ< + cc, Jίλ = ^(2,λ};
b) Jf0 = $(2);c) Jf'+^=V(2).

Proof. Consider the following subalgebras of gl(3, R\ the Lie
algebra of all 3 x 3 real matrices :

Λ ( 3 , K ) = { Λ | Λ e g l ( 3 , Λ ) ; h13 = h2, = Q} (5.5)
and

so(2, R) = {s|segl(3, R); s = amί2ι αreal; mί2 = e12 — e21} , (5.6)

where {eρσ}ρ,σ=ι,2,3 is the basis for gl(3,R) given by (eQσ)λv = δeλδσv.
gl(3, R\ h(3,R) and so(2, R) can be identified, respectively, to the Lie
algebras of GL(3, jR), tf(2) and #(2). If Jί is a Lie subgroup of GL(3, R)
satisfying (5.4) and if we denote by A(Jί) its Lie algebra identified
canonically to a subalgebra of gl(3, R), then

)nh(3,R) = so(2,R). (5.7)

Therefore, we look for those subalgebras A of gl(3, R) which satisfy

Λnh(3,R) = so(2,R). (5.8)

Let A satisfy (5.8). Then dimΛ ^ 3. If dimΛ = 1, then

A = A + aΰ = so(2,R). (5.9)

Suppose dimyl = 2 and let {m12, p} be a basis for A. We write
3

P= Σ AV^σ

3 This failure is due to the fact that if space is two-dimensional one has no freedom
to rotate around a space axis. In the cases n^ 3, this freedom implies through (4.14) and
(4.15) that normality to the direction of motion is a frame independent property.

4 If not, it would result that the dimension of physical space is the lowest for which
only the Lorentz and Galilei groups appear as linear kinematical groups compatible with
the isotropy of space.
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and we have

[m12, p] = (μ12 + μ21) (en - e22) + (μ22 - μ^) (e12 + *?21)

+ ^23^13 ~ M l 3 ^ 2 3 + ^32^31 ~ ̂ 31^32

(5.10) shows that A abelian would imply μ13 = μ23 = 0, which contradicts
(5.8). If A is non abelian we can choose p in such a way that [w12,p]

Then (5.10) writes

and inspection shows that this implies p = 0. Hence there are no two-
dimensional subalgebras of gl(3, R) satisfying (5.8). Now suppose
dimyl = 3 and let {m12, p, q} be a basis for A. Write

3 3

P= Σ /W> 4= Σ W (5-11)
ρ,σ= 1 ί?,σ= 1

and the brackets
(5.12a)

[m12, q] = α'm12 + β'p + /^ , (5.12b)

. (5.12c)

/t cannot contain a two-dimensional subalgebra to which m12 belongs.
Therefore we can confine ourselves to the consideration of the following
cases:a)βΦθ, yφO, β'φO, /ΦO, b) βφO, y Φθ, β'φO, / = 0,c)0 = 0,

y φ 0, jϊ' Φ 0, / Φ 0 and d) β - / = 0, y Φ 0, β' Φ 0.
Cases b) and c) are equivalent because they can be reduced one to

the other by the exchange p <± q. As to case a), one checks that it can be
reduced to case b) by a suitable change of basis in the subspace {p, q}.
Consider case b). Inserting (5.11) into (5. 12 a, b) we get, in particular,

By (5.8), v13 and v2 3 cannot both vanish, so it must be β = 0 and β' = — y " ί .
Therefore case b) reduces to case d) for which, with the replacements
p-+ —γafmί2 + p and q^κxm12 + γq, the brackets write

(5.13a)

(5.13b)

q. (5 . 1 3 c)
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Substituting (5.11) into (5.13 a, b) we get

and

V i 3 = ^23> v 2 3 =-μ 1 3 , V 3 1 = μ 3 2 , v 3 2 =-μ 3 1

whence

and

<? = ̂ 23^13-^13^23+^32^31 -^31^32- (5-15)

Substitution into (5.13c) gives

[P>0]= -(^13^31 + ̂ 32^23)^12 (5.16)
and

(5-17)

Because of (5.8), μ13 and μ23 cannot both vanish and we can confine
ourselves to the consideration of the case μ23 φ 0 (by possibly performing
the replacements p -> g and # -» — p). Then, setting μj 3/μ2 3 = j8, μ3 2/μ2 3 = Ί
and performing the replacements

(5.18)

and

we get the new brackets

\m12,p(λ)~]=q(λ),

(5.20)

V λ e ( — oo, + oo ) we have a Lie algebra ylλ satisfying (5.8). Thus the
family Ω of subalgebras of gl(3, R) satisfying (5.8) can be indexed as
^ = {^λ}λe(-oo, + ao] where Λ + 00 is given by (5.9) and, if - oo <λ< + oo,
Λλ has a basis {m12,p(Λ,), g(Jl)}, where w12 = e12 — e21 and p(/l) and
q(λ) are given by (5.18) and (5.19) respectively. V λ e ( — oo, +00] denote
by &(Λλ) the (unique) connected Lie subgroup of GL(3, R) of which Λλ

is the Lie algebra. Then 9(Λ + J = #(2), &(Λ0) = 9(2) and, if 0 < λ < + oo,
&(Λώ = &(29λ). These groups all satisfy (5.4). On the other hand, if
- oo < λ < 0,

)-{L|LeGL(3,^); Lτg(λ)L = g(λ);

) = 0 if μ Φ t ? ; flf11W = flf22(λ) = μ|; ^3 3(A)=1; detL=l},
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and these groups do not satisfy (5.7) because they all contain the matrix
diag{— 1,1, — 1}. The proposition is thus proved.
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