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Abstract. Unbounded *-representations of *-algebras are studied. Representations
called self-adjoint representations are defined in analogy to the definition of a self-adjoint
operator. It is shown that for self-adjoint representations certain pathologies associated
with commutant and reducing subspaces are avoided. A class of well behaved self-adjoint
representations, called standard representations, are defined for commutative *-algebras.
It is shown that a strongly cyclic self-adjoint representation of a commutative *-algebra
is standard if and only if the representation is strongly positive, i.e., the representations
preserves a certain order relation. Similar results are obtained for ^representations of the
canonical commutation relations for a finite number of degrees of freedom.

Introduction

In this paper we study unbounded ^representations of *-algebras.
The basic definitions, notation and motivation are drawn from the
Wightman formulation of quantum field theory and the theory of Lie
algebras. The general plan of the paper is to examine some of the pa-
thologies associated with *-algebras of unbounded operators and, then,
to find natural definitions which rule out these pathologies. Two such
definitions are those of self-adjointness for representations (Section IV)
and strong positivity (Sections VII and VIII).

The results of each section are summarized at the beginning of each
section. We claim little or no originality for the contents of Sections I,
II, V and VI which consist largely of background material, definitions
modified from C*-algebra theory and quantum field theory and known
examples illustrating features of unbounded representations.
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I. Review of Known Results on Unbounded Operators

We review some of the well known results on unbounded operators
and refer to [3, Chap. XII], [14] and [16] as references for the results
stated in this section. In this paper we will work exclusively with Hubert
spaces over the complex numbers. We use the physicists' inner product
(/, g) which is linear in g and conjugate linear in /.

A bounded or unbounded operator A on a Hubert space §, defined
on a linear manifold ΐ)(A) (called the domain of A) is a linear mapping
of T>(/4) into §. Unless otherwise stated we assume Έ>(A) is dense in §.
If A and B are operators on § with domains ΐ>(A) and T>(5) we say A
is an extension of B, denoted A D £, if ΐ)(A) D D(£) and Af = Bffor all
fe Ώ(B). We denote by GA the graph of the operator A, the linear mani-
fold in § θ S of all pairs, GA = {{/, Af} fe ΐ)(A)}. Clearly A 3 B if and
only if GA 3 GB. An operator A is said to be closed if its graph GA is closed,
i.e. A is closed if and only if/π-»/and Afn-*g as n-»oo implies fe ΐ)(A)
and Af = g. We say A is closable if A has a closed extension. If A is
closable we denote by A the smallest closed extension of A, i.e. if A is
closable then GA = GA, where {£} denotes the closure of a set S in a
Hubert space.

If A is an operator with dense domain Ί)(A)C& we denote by A*
the hermitian adjoint of A. The graph of A* is given by

(g,h) for all

The domain of ^4* consists of all those vectors satisfying the relation,

*) = { f e ξ > ; \ ( f , A h ) \ £ K \ \ h \ \ for some constant K^O

and all h e

A* is always a closed operator. However, the domain ΐ)(A*) may not
be dense in §. In fact A is closable if and only if T)(A*) is dense in §
and if ^(A*) is dense in § then J = .4**.

An operator A is said to be hermitian if A* 3 A. An operator A is
hermitian if and only if (/, Ag) = (Af, g) for all /, g e ΐ>(A). Every her-
mitian operator is closable since X>(^4*) D T>(,4) and hence T)(^4*) is
dense in §. An operator A is self-adjoint if A = A*. An hermitian oper-
ator A is self-adjoint if and only if Ώ(A) = T>(^4*). Since A* is closed it
follows that every self-adjoint operator is closed. An operator A is said
to be essentially self-adjoint if its closure A is self-adjoint.

If A is an hermitian operator we denote by T>+ and D_ the deficiency
spaces of A defined by the relations,

+ = {Range μ + /7)}J- = {/€Dμ*); A*f = ίf}9

_ = {Range (A ~ /7)}1 = {/e 3>μ*) Λ*/ - - //} ,
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where {S}1 denotes the orthogonal complement of S. A useful result of
von Neumann states that an hermitian operator A is essentially self-
adjoint if and only if D+ = T>_ = {0}. Furthermore, A has a self-adjoint
extension if and only if the dimension of £> + equals the dimension of X) _ .

If A is a self-adjoint operator then A has a unique spectral resolution
{E(λ)\ -oo<λ< + 00} such that E(λ)E(μ)*=E(πUΆ{λ,μ})9E(λ)-^E(μ)
(strongly) as λ-*μ from above, E(λ)-^I (strongly) as λ-+ + oo, E(/l)-»0
(strongly) as λ-+ — oo.

(/, Ag) = J M/> £(λ) βf) for all / 6 § and 0 6 D(,4)

and

If ,4 is an hermitian operator and C is a bounded operator we say
C commutes with A if

(f,CAg) = (Af,Cg) for all f,g e S)(A) .

If A is essentially self-adjoint then C commutes with A if and only if
C commutes with the spectral projections of A (see [6, Chap. VIII, Sec.
120] or [16, Chap. IV, and 17, Sec. 4, Thm. VII, p. 251]).

Finally, we state some results concerning normal operators (see, e.g.
[3, Chap. XII, Problems 9, 10, 11 and 12, p. 1258-1259]). If A is a
closed operator then A* A is self-adjoint where ΐ)(A*A) = {fe'ΐ)(A) 9

Afe ΐ>(A*)}9 A A* is also self-adjoint. A closed operator A is said to be
normal if A*A = AA*. A closed operator A is normal if and only if
ΐ)(A) = ΐ)(A*) and \\Af\\ = \\A*f\\ for all f e ΐ ) ( A ) . If A is normal then
Aί = (1/2) (A + A*) and A2 = (1/2 i) (A - A*) are essentially self-adjoint on
Ϊ)(A) and the spectral resolutions of A1 and A2 commute.

II. Closed ^Representations of *-Algebras

In this section we define ^-representations of *-algebras. For need of
an adjective we will call ^representations hermitian representations. In
analogy with the notion of a closed operator we define the notion of
a closed representation. We show that just as every hermitian operator
has a minimal closed extension, every hermitian representation of a
*-algebra has a minimal closed extension.

A *-algebra 91 is an algebra over the complex numbers with a
^-operator satisfying;

(i)
(ii)

(iii) (AB)* = B*A*
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for all A, B e 91 and complex numbers α. In general 9Ϊ will not be normed
since we are interested in the study of unbounded ^-representations.

All algebras in this paper will have a unit denoted by I .

Definition 2.1. A representation π of an algebra 91 on a Hubert space
§ is a mapping of 91 into linear operators all defined on a common
dense domain D(π) which is dense in § and π satisfies the conditions,
π(7) = /, the unit operator on <r>,

(i) π(<*A + B)f = aπ(A)f + π(B)f9 for all A9 B e M f e ΐ)(π) and all
complex numbers α.

(ii) πμ)D(π)c£(π) for all A e 91 and π(A)π(B)f = π(AB)f for all
,4,βe9land/eT)(π).

Definition 2.2. A representation π of a *-algebra 91 on a Hubert
space § is said to be hermitian or a ^-representation if

(iii) (f,π(A)g) = (π(A*)f,g) for all /,#et>(π) and ΛeSl, i.e. π(A)*
D π(A*) for all A e 91.

We remark that a representation π is hermitian if and only if for
every hermitian A e 91 (i.e. A = A*) π(A) is hermitian.

This definition of a ^representation is well known to workers in the
theory of representations of Lie algebras and axiomatic quantum field
theory (see e.g. [15]). In the Wightman formulation of quantum field
theory one assumes that the "smeared fields Φ(/)" generate a *-algebra
and a field theory is a cyclic ^-representation of this algebra satisfying
additional assumptions such as Lorentz invariance and local com-
mutativity.

Definition 2.3. If π1 and π2 are representations of an algebra 91 on
a Hubert space § we say πv is an extension of π2, denoted % D π2, if
!>(%) D D(π2) and π^A) D π2(A) for all A e 91.

If π is a representation of an algebra 91 on a Hubert space § with
domain T)(π), there is a natural induced topology on £>(π). This topology
is defined as follows. Suppose S is a finite set of elements of 91. We define
the semi-norm \\ - \\s on D(π) as

\\s= Σ l

where || / 1| is the Hubert space norm of/. Note S 3 S" implies || / 1| s ̂  || / 1| s,
for all /e D(π). We define the induced topology on T)(π) as the topology
generated by the neighborhoods,

Note π(y4) is a continuous mapping of D(π) into D(π) in the induced
topology for all ^4 e 91.
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Just as there is a notion of a closed operator there is an analogous
notion of a closed representation.

Definition 2.4. We say π is a closed representation of 91 if T)(π) is
complete in the induced topology.

We show that every hermitian representation of a *-algebra can be
extended to a closed hermitian representation. The following lemma
will be useful.

Lemma 2.5. Suppose π is a * -representation of a * -algebra and Sc 91
is a finite set of elements of 91. Then, there is an hermitian element C e 91
such that \\π(C)f\\ ^ \\f\\s for all /e £(π).

Proof. Let S = {Al9 A2, ..., An} be a finite subset of 91. Let

n

D = (n/2)ΣAfAi and C =
i= 1

We have

i = l

This completes the proof of the lemma.

Lemma 2.6. Suppose π is a * -representation of a *-algebra 91 on a
Hilbert space §. Then, there is a unique minimal closed extension π of π.
Furthermore, the domain of π is given by

and n(A)f = π(A)f for all A e 91 and all f E £>(π).

Proof. Suppose π is a ^-representation of a *-algebra 91 on a Hilbert
space ξ). Since π is hermitian we have π(A)* 3 π(A*) for each A e 91.
Hence, π(A) is closable for each A e 91. Let £)(π) be defined

and let π(^) = π(^4) | X)(π) for all A e 91. We show π is a closed ^represen-
tation of 9ϊ. Clearly, π is linear. We show n(A) T)(π) C T)(π) for all A 6 9ί
and πμjB)/ - π(A) π(B)f for all / G 9I(π) and Λ B e 91.

Suppose ^4, B e 91. From Lemma 2.5 it follows that there is a C 6 91
such that
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for all /e D(π). Suppose /e £)(π). We have /e D(π(C)). Hence, there is
a sequence {/ne D(π); rc = 1, 2, ...} such that π(C)/w-»π(C)/ as n->oo.
It follows from the above inequality that

(a) IIΛ-/H-0,
(b) ||
(c) || _

as w, m-> oo. From (a) and (b) it follows that /e T)(π(5)) and

(d) ra (/„-/)!!->() _ _

as rc-»oo. From (c) and (d) it follows that π(B)feΊ)(π(A)). From (a)
and (c) it follows that f e ΐ ) ( π ( A B ) ) and π(AB)f=π(A)π(B)f. Since
A e 91 is arbitrary it follows that

π(B)f = π(B)f e f) D
yle^T

Hence, π(£) X>(π) C £>(π) for all 5 e 91 and π(4β)/ = π(yl) π(fl)/ for all

We show π is hermitian. Suppose AeW and /, #eT)(π). Since
/e D(π(;4*)) and # e ΐ)(π(A)) there are sequences {/„, gn e T)(π); n = 1,2, . . .}
such that /„->/, gn-*g, π(A*)f^π(A*)f and π(^)^-^πp) as n-»oo.
Using these sequences we obtain the relation.

for all ^4 e 91 and all /, ̂  e D(π). Hence, π is hermitian.
We show π is closed. Suppose {/α; α e J0} is a Cauchy net in D(π) in

the induced topology on £>(π). Then {π(v4)/α; αe/0} is a Cauchy net in
§ for each Ae^Ά. Sincejφl) is a closable operator for each A e 91 there
is an /e Ί)(π(A)) = ΐ)(π(A)) such that lim/α = / and limπ(A)fQ[ = π(A)f.

Hence, /eD(π) and lim||πμ)(/α-/)|f=0 for all Ae 91. Hence, D(π)

is complete in the induced topology and π is closed.
Finally, we show π is the minimal closed extension of π. Suppose π1

is a closed extension of π. We show πx 3 π. Suppose /0 e T)(π). We show
/o e D(πι) and π^/o = π(A)f0 for all ̂  e 91.

Suppose S is a finite subset of 91 and ε > 0. From Lemma 2.5 it follows
that there is a C E 91 such that

for all /

Since /0 e X)(π)C D(π(C)) there is a vector /eD(π) such that ||π(C)/0

- π(C)/|| < ε. Hence, for each finite subset S of 9ί and ε > 0 the set

AeS
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is not empty. Let /0 be the set of all pairs {S, ε} partially ordered by the
relation α = {S, ε} < {S', ε'} = α' if and only if S' D S and ε' ̂  ε. By the
axiom of choice there is a net {/αeg(α); αe/0}. Clearly, this net is
a Cauchy net in the induced topology on D(π) and since πx 3 π this net
is a Cauchy net in the induced topology on T^πJ. Since ]imπ^(A)fΛ

= n(A)f0 = π(A)/0 for all A e 21 and π! is closed it follows that /0 6 D^)
and π1(^4)/0 = π(^4)/0 for all Ae2l . Hence, we have π x D π . This com-
pletes the proof of the theorem.

Hereafter, we denote by π the minimal closed extension of the
^representation π.

We remark that if $1 is a Banach *-algebra (i.e., a complete normed
*-algebra) then a ^-representation π of 91 on a Hubert space § is closed
if and only if Φ(π) = §. We also note that if π is a ^representation of
a *-algebra 2Ϊ and £>(π) = § then π(2l) is a *-algebra of bounded oper-
ators. This follows from the closed graph theorem.

III. The Commutant π(«)'

We define the commutant π(2I)' of a *-algebra π(9ί) of unbounded
operators. Our definition corresponds to the definition used in the
Wightman formulation of quantum field theory (see [15, Eq. (3-8),
p. 101]). The commutant π(2l)' is a weakly closed symmetric linear subset
of 23 (§) (all bounded operators on §). The commutant need not be an
algebra as shown in Lemma 3.2.

Definition 3.1. Suppose π is a ^-representation of a *-algebra 9ί on
a Hubert space §. The commutant of π(2I), denoted π(9l)', consists of
all bounded operators C on § such that

( f 9 C π ( A ) g ) = (π(A*)f9Cg)

for all /, 0 e D(π) and ,4 e 21.
If π(2ί) is a *-algebra of bounded operators π(2ϊ)r is simply the com-

mutant of π(2ϊ) defined in the usual manner. The above definition of the
commutant is essentially the weakest definition, i.e., this definition gives
the biggest commutant.

One can easily check that the commutant π(2I)' of a ^representation
π has the following properties.

(i) π(2ϊ)' is a complex linear manifold,
(ii) π(2ί)r is symmetric, i.e., C e π(2ϊ)' ̂ > C* e π(2I)r,

(iii) π(2ϊ)' is closed in the weak operator topology,
(iv) If π is the closure of π then π(2ϊ)' = π(2l)'.

In general π(2l)' is not an algebra as the next lemma shows.
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Lemma 3.2. Let 91 be the free commutative algebra on one hermitian
generator A0 (i.e., 91 consists of all polynomials P = α0/ + α1.4o + <v4δ
with complex coefficients with multiplication and the ^-operation defined
in the obvious manner). Let π be a * -representation of 9Ϊ on a Hilbert
space §. Then, π(9I)' is an algebra if and only if π(A0) is essentially
self-adjoint.

Proof. Let 21 and π be as described in the lemma. We begin by showing
that π(9I)' consists of those bounded operators which commute with
π(A0)9 i.e., those operators C such that

(a) ( f , C π ( A 0 ) g ) = (π(A0)f,Cg) for all /,0eS(π).

Clearly, if C e π(9ϊ)' then C satisfies relation (a). Conversely, if C satisfies
relation (a) then

(/, Cn(Al) g) = (/, Cπ(A0) π(An

0~ *) g) = (π(A0)f, Cπ(A0) π(An

0~
2) g)

= . . . = ( n ( A » 0 ) f , C g )

for all n=l,2,.. . and all /, 0eT)(π). Since each element of 91 is a
polynomial in A0 it follows that C e π(2ϊ)'.

Now suppose that π(A0) is essentially self-adjoint. Let {E(λ)\
< oo < λ < + 00} be the spectral resolution of π(A0). By the remarks in
Section I a bounded operator C commutes with π(A0) (i.e., C satisfies
relation (a)) if and only if CE(λ) = E(λ) C for all — oo < λ < + oo. Hence,
π(3l)' = (E(λ); — oo < λ < + oo}r and π(9l)r is a von Neumann algebra.

Next suppose π(9t); is an algebra. We begin by showing that the
Cayley transform of π(A0) is in π(9l)r. Let U be the partial isometry from
Range (π(AQ + U)) onto Range (π(A0 — il)) defined by

= n(A0 — i I ) g where f = π(A0 + H ) g .

Note Uf = 0 for /e Range (π(A0 + ί/))1. Note U* is a partial isometry
from Range(π(AQ - il)) to Range (π(A0 + il)) defined by

il)g where f = π(A0-H)g.

We have that U*U = E+ and UU* = E_ where E+ and E_ are the
hermitian projections onto Range(π(AΌ + iI)) and Range (π(A0 — il))9

respectively.
We show U e π(9ί)'. From the definition of U it follows that

(/, Uπ(A0) g) = (/, I7πμ0 + U) 9) ~ *(/,
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and

= (U*π(A0-ίl)f,g)-i(U*f,g)

= (/, πμo - il) g) - i(f9 Ug)9 for all f,ge D(π) .

Hence, U e π(2I)' and since π(2I)' is symmetric U* e π(2l)'. Since π(2I)' is
an algebra we have / — E+ =1 — U*U and I — E_=I — UU* are con-
tained in π(9I)'. It follows that

- £+) g) = (/, (/ - £+) 0) + i(/, (/ - E+) π(Λ + //) g)

= i ( f 9 ( I - E + ) π ( A Q ) g )

= i(π(A0)f9(I-E+)g)

for all/, g e T)(π). Since X)(π) is dense in § we have E+ = I. A simimilar cal-
culation shows E_ = /. Hence, n(A0) has deficiency spaces £)+ — X)_ = {0}.
Hence, if π(SI)' is an algebra π(^40) is essentially self-adjoint. This com-
pletes the proof of the lemma.

IV. Self-Adjoint Representations of *- Algebras

To each ^representation π of a *-algebra 91 there is a naturally
associated adjoint representation π* of 21. The domain and action of
π* are given by

and

π*(A)f = π(A*)*f for all /eD(π*).

Just as the hermitian adjoint of a hermitian operator may fail to be
hermitian, the hermitian adjoint representation π* may fail to be her-
mitian. In analogy with the definition of a self-adjoint operator we define
self-adjoint representations as those hermitian representations which are
equal to their adjoints (i.e. π = π*). A ^representation π is self-adjoint
if and only if T)(π) = T)(π*). We show that just as every hermitian exten-
sion Aί of an hermitian operator A is an hermitian restriction of ^4*, so
is every hermitian extension πί of an hermitian representation π an
hermitian restriction of π*.
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It is easily seen that for ^-representations π each operator C e π(2I)'
maps T)(π) into D(π*). It will follow that the commutant of a self-adjoint
representation is necessarily a von Neumann algebra.

We next examine the problem of reducing subspaces for ^represen-
tations. If π is a ^representation of a C*-algebra 91 on a Hubert space §
and SDΐ C § is a linear manifold which reduces π (i.e. π(A) 501 C SOΐ for all
A E 9ί) then the hermitian projection Em onto the closure of 3DΪ is in the
commutant, π(2l)'. This is not true in general for unbounded ^represen-
tations as will be shown by a simple example. However, we will show
that if π is a self-adjoint representation of a *-algebra 91 on a Hubert
space § and 501 C T)(π) is a reducing subspace for π such that π restricted
to SOΐ is self-adjoint then the hermitian projection Em onto the closure
of 9W is in the commutant π(2I)'. Conversely, if JEeπ(2ϊ)' is an hermitian
projection then 9Jl = E£>(π) is a reducing subspace for π such that π
restricted to 9K is self-adjoint. Hence, for self-adjoint representations
there is a one-to-one correspondence between reducing self-adjoint sub-
spaces and hermitian projections E e π(9l)'.

Finally we introduce the notation of when one algebra dominates
another algebra and show that a ^representation π is self-adjoint if π(9I)
contains a dominating subalgebra which is self-adjoint.

Lemma 4.1. Suppose π is a * -representation of *-algebra 51 on a Hil-
bert space <r>. Let

X>(π*)=
Λe9l

let

*|D(π*) /or a//

n, π* is a cfosed representation of 91 (π* wigΛί wot be a ^-representa-
tion) which extends π. We call π* the hermitian adjoint of π.

Proof. Let π* be defined as in the lemma. We show that π*(B) D(π*)
CD(π*) and π*(AB)f = π*(A)π*(B)f for all ,4,£e5ϊ and /eD(π*).
Suppose /E D(π*) and g e T>(π). We have

(π(A*) g, π*(B)f) = (π(A*) g, π(B*)*f)

= ( π ( B * ) π ( A * ) g , f )

= (π((AB)*)g,f)

= (g,π((AB)*)*f)

= (g,π*(AB)f).

Since \(π(A*)g,π*(B)f)\^K\\g\\ for all ge D(π) with K= \\π*(AB)f\\ it
follows that π*(B)fe *ΐ)(π(A*)*). Since this is true for all A E 9ί we have
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π*(β)/eD(π*). Hence, π*(B) X>(π*) C ϊ>(π*) for all BE 91 and we have

= (g,π*(A)π*(B)f)

for all g e X>(π) and /e D(π*). Since D(π) is dense in § we have π*(AB)f
= π*(A) n*(B)f for all A, B e 91 and /e D(π*). Hence, π* is a representa-
tion of 91.

It is clear that π* is an extension of π since π(A*)* D π(A) for all A e 91.

Finally, we show π* is closed. If {/α :αe/} is a Cauchy set in the
induced topology on D(π*). Then, it follows from the fact that
is a closed operation that if lim/α == / then / e T)(π(^4*)*) and

= π(4*)*/ Hence, /eX>(τφl*)*) for all ΛeSI. Hence, /e£>(π*) and
D(π*) is complete and, therefore, π* is closed. This completes the proof
of the lemma.

Lemma 4.2. Every hermitian extension of a* -representation π is an
hermitian restriction of π*. (In fact, if π, π1 are hermitian and π λ 3 π
then π* D πf D π1 D πj

Proof. Suppose π is a ^-representation of a *-algebra 91 on a Hubert
space § and π! is an hermitian extension of π. Since π^(A*)^π(A*) for
all ,4e9I we have π(^4*)*Dπ1(^4*)*. Since πx is a ^representation we
have ^(.4*)* D π^A) for all ^4 e 91. Hence, we have

π(A*)* D πxμ*)* D %(A) D π(A)

for all ^ e 91. Hence, π* D πf D π1 3 π. Hence πx is an hermitian restric-
tion of π* and the proof is complete.

Definition 4.3. We say a ^-representation π of a *-algebra 91 is maximal
if every hermitian extension of π coincides with π.

Definition 4.4. We say a representation π of a *-algebra is self-adjoint
if π is hermitian and π = π*. We say π is essentially self-adjoint if the
closure of π is self-adjoint.

It follows from Lemma 4.1 that an hermitian representation π is self-
adjoint if and only if T>(π) = D(π*). A self-adjoint representation is maxi-
mal by Lemma 4.2 and, therefore closed.

We note that if π* is hermitian then π* is self-adjoint. This may be
seen as follows. Since π* is hermitian we have π**I)π* and since π* is
an hermitian extension of π it follows from Lemma 4.2 that π**Cπ*.
Hence, we have π* = π** and π* is self-adjoint.

We leave open the problem of the general analysis of π**. We remark
that we have found a simple example of a closed ^representation such
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that π is not self-adjoint but π* is self-adjoint and hence π** is a proper
extension of π. In general we do not know whether π** is hermitian.

The next lemma shows that operators in the commutant of a ^repre-
sentation map D(π) into D(π*).

Lemma 4.5. Suppose π is a * -representation of a * -algebra 91 on a Hu-
bert space §. Suppose Ceπ(9I)'. Then CX>(π)cX>(π*) and Cπ(A)f
= π*(A) Cf for all A e 91 and /e D(π).

Proof. Suppose π is a ^-representation of 91 and C e π(9I)'. Then, for
all A e 9X and /, g e D(π) we have

Since \(π(A*)f,Cg)\£K\\f\\ for all /e£(π) (with K = \ \ C π ( A ) g \ \ ) it
follows that C# e D(π(A*)*) and

Since X>(π) is dense in § we have Cπ(A)g = π(A*)* Cg. Since C#e £)(π(,4*)*)
for all Aε 91 we have C#eD(π*). Hence, CT)(π)cD(π*) and Cπ(A)f
= π*(A) Cf for all A e 91 and /e T>(π). This completes the proof of the
lemma.

Lemma 4.6. Suppose π is a self-adjoint representation of a *-algebra.
Then the commutant π(9I)/ is a von Neumann algebra. Furthermore for
each Ceπ(9l)' we have Ct>(π)c£(π) and Cπ(A)f = π(A)Cf for all
AeMandfe^π).

Proof. Suppose π is a self- adjoint representation of 91. Since D(π)
= D(π*) it follows that for each Ceπ(9iy we have CD(π)cD(π) and

Cπ(A)f - π(A) C/for all A e 91 and/ e T)(π). We show π(9I)' is a von Neu-
mann algebra. Since π(9I)' is a symmetric weakly closed linear manifold
in 95(§) it suffices to show that C l9 C2eπ(9ί)' implies the product
CXC2 e π(9I)'. But, if Cl9 C2 E π(9l)' we have that

C1C2π(A)f = C2π(A) CJ = π(A) C,C2f

for all A e 91 and / e £>(π). Hence, C1 C2 e π(9I)'. This completes the proof
of the lemma.

We turn next to the problem of reducing subspaces. If π is a represen-
tation of an algebra 9Ϊ on a Hubert space § and 9W is a linear manifold
contained in D(π) we say 9W reduces π if π(A) 9W C 9K for all A e 91. We
denote by π 1 9PΪ the representation π restricted to 50Ϊ. If π is a ^representa-
tion of a *-algebra 9ί and 9W is a reducing subspace then the restriction
π 1 9W is a ^representation.

For a bounded ^-representation of a *-algebra 91 for each reducing
subspace 301 the hermitian projection E onto the closure of SDΐ is in the
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commutant π(9l)'. This is not true in general for unbounded ^representa-
tion. This may be seen as follows.

Let 91 be the free commutative algebra on one hermitian generator
AQ. 91 consists of all polynomials in AQ. Let ξ> = L2(R) and let D(π)
= {/e§; / is a C°°-function and dnf/dxneξ> for all n=l,2, ...}. We
define a ^representation of 91 on § defining

for all /e T)(π). It is easily shown that π is a ^-representation (in fact π
is self-adjoint).

Let 9W be the linear manifold of all C°°-functions which vanish
outside the closed interval [0, 1]. Clearly, SR is a reducing subspace for
π. The hermitian projection E onto the closure of 9JΪ is given by

(JB/)(x) = /(x) XE[0,1]

for all /e§. However, E is not in π(9ϊ)' since for /, ge D(π) we have

( E f 9 π ( A Q ) g ) - ( π ( A ξ ) f , E g )

Since this expression does not vanish for all /, g e D(π), E φ π(9I)'.
We say that a reducing subspace 9JΪ is self-adjoint if π|9Jl is a self-

adjoint representation. The next theorem shows that for self-adjoint
representations there is a one-to-one correspondence between self-
adjoint reducing subspaces and hermitian projections in the commutant.

Theorem 4.7. Suppose π is a self-adjoint representation of a *-algebra
91 on a Hilbert space §. Suppose E e π(2l)' is an hermitian projection. Let
S0ϊ = ED(π). Then 30Ϊ reduces π and the restriction π|SDΪ is self-adjoint.

Conversely suppose SDΐc£>(π) is a reducing subspace for π and π|SDϊ
is self-adjoint. Then, the hermitian projection E^ onto the closure of 501
is in the commutant π(9ϊ)7.

Hence, for self-adjoint representations there is a one-to-one corre-
spondence between hermitian projections in π(3I)' and self-adjoint reducing
subspaces.

Proof. Suppose π is a self-adjoint representation of a *-algebra 91.
Suppose £eπ(9iy is an hermitian projection. Let 3Dϊ = ET)(π). From
Lemma 4.6 it follows that £D(π) C D(π) and π(A) Ef= Eπ(A) Efϊor all
A e 91 and all /e D(π). Hence, 9W C D(π) and SR reduces π.
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We show π|50l is self-adjoint. Suppose /G50Ϊ and /G X)((π/50l)*).
Then fe ΐ)((π(A)/Wl)*) for all A e 21. Hence, for each A G 91 there is a
constant KA depending only on A and / such that |(/, π(
for all g G 501. Since E/ = / we have for all 0 e T)(π)

Hence, / G ΐ)(π(A)*) for all ,4 G 91. Hence, /e £(π*) - £(π). Since E/ = /
we have fe E£(π) - 50Ϊ. Hence, /e X)((π/50l)*) implies /G 501 and, there-
fore, π/50ϊ is self-adjoint.

Conversely, suppose 501 reduces π and π/50ϊ is self-adjoint. Let E be
the hermitian projection onto the closure of 501. Clearly, we have
E£(π) D 501. We show that 50Ϊ D ED(π). Suppose fe E£(π). Then / = E/i
with /Ί G D(π). We have for all ^ G 501

= (fl9Eπ(A)g)

Since /t G D(π) C D(π*) we have that fv G D(π(y4)*) for all A G 91. Hence,
for each A G 91 there is a constant ^ depending only on A and
/16D(πμ)*)(^=||πμ)*/ιll) such that \(f^π(A}g}\^KA\g\ for all
g G 501 C D(π). Then, from the above equation it follows that

for all 0G50Ϊ. Hence, fe £((τφl)|50ϊ)*) for all AeM and, therefore,
/GD((π|50ί)*). Since π|50ϊ is self-adjoint we have /e9W. Hence,
£D(π) C 501 and, therefore, ED(π) - 501.

Since ET)(π) = 50ί C D(π) it follows that for f,ge T)(π) and A G 91 we
have

and
(/, £πμ) ̂ ) = (£/, πμ) flf) - (πμ*) Ef, g)

= (Eπ(A*) E/, g) = (π(A*) E/, Eg)

= (Ef,π(A)Eg) = (f,Eπ(A)Eg)

Hence, (πμ*)/, E^) - (/, JBπμ) g) for all A G 9ί and f,ge D(π). Hence,
E G π(9I)'. This completes the proof of the theorem.

Remarks. We note that in the proof of the second part of the above
theorem we did not use the fact that π was self-adjoint. Hence, we have
the slightly stronger statement for the second part of Theorem 4.7. If π
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is a ^-representation of a *-algebra 91 on a Hubert space § and 501C T)(π)
is a reducing subspace for π such that π 19Jt is essentially self-adjoint then
Em 6 π(9l)' where Em is the hermitian projection onto the closure of 501.

Using some of the ideas of Nelson [7] we define the notion of
domination as follows.

Definition 4.8. Suppose π is a ^-representation of a *-algebra 91 on
a Hubert space §. Suppose S C 91 is a symmetric linear subset of 91. We
say π(S) dominates π(9I) if for every A e 91 there is a B e S such that
\\π(B)f\\^\\π(A)f\\ for all /et>(π). We say S dominates 91 if π(S)
dominates π(9l) for every ^representation π of 91.

A very simple example of an algebra and a dominating subalgebra
is the following. Let 91 be the free commutative algebra on two hermitian
generators A and B. 91 consists of all polynomials in the commuting
elements A and B. Let 9ίt be the *-subalgebra of 91 consisting of all
polynomials in H = A2 + B2. It is simple matter to show that π(9ίt)
dominates π(9ϊ) for every ^representation π of 91.

Lemma 4.9. Suppose π is a *-representation of a *-algebra 91 and sup-
pose 9lx is a *-subalgebra such that π(9I1) dominates π(9I). Let πt be
*-representation of 9IX defined by π ί ( A ) = π(A) for all Ae^ and £>(%)
= D(π) (i.e. πί=π\<Ά1) then, if π1 is self-adjoint then π is self-adjoint.

Proof. Let π and π1 be ^-representations of 91 and 9ΪX as described
in the lemma. Since πt = πf we have D(πf) = D(πι)== Φ(π) Since
X>(π?)DD(π*) we have D(π*)cD(π). Since D(π*)DD(π) we have D(π)
= D(π*) and π = π*. This completes the proof of the lemma.

We remark that the converse of this lemma is false. In Example 3 of
the next section we describe a self-adjoint representation of the free
commutative algebra on two hermitian generators A and B such that the
*-subalgebra generated by π(A2 + B2) is not self-adjoint.

V. Some Examples of Unbounded Self-Adjoint Representations

In this section we examine three examples of self-adjoint representa-
tions of *-algebras. The first two examples are well known. The first
example is a representation of a commutative *-algebra by an algebra
of functions on a measure space. The second example is the "Schro-
dinger" representation of the commutation relations. The third example
is a modification of an example constructed by Nelson in [7]. Nelson
constructed an example of two essentially self-adjoint operators A and B
defined on a common dense invariant domain D, such that ABf = BAf
for all /el), but the spectral projections of A fail to commute with the
spectral projections of B. By modifying Nelson's example we construct
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an irreducible self-adjoint representation of the free commutative algebra
or on two hermitian generators on an infinite dimensional Hubert space.

Example 1. For the first example we consider the free commutative
algebra 91 on π-hermitian generators Aί9 ...,An. 91 consists of all poly-
nomials

P = α [m] £ α([m]) A[m] where A[m] = A^A^... A™»
[m]

and the α([m]) are complex numbers with α([m]) φ 0 for only a finite
number of [m]. Let μ be a regular Borel measure on Rn and let § I? (Rn,μ)
be the Hubert space of all μ-measurable square integrable functions on
Rn. We define a ^-representation π on § by the relations,

!... xn) = P(x, . . . xn)f(x, ...xn)

for all P = P(A^ . . . An) e 91. We take the domain of π to be

D(π) = {/e § J |P(x)/(x)|2 dμ(x) < oo for all P e 91} .

Clearly, π is a *-representation of 91.
We will show that π is a self-adjoint representation of 91. First we

will show π(P*)* — π(P) for all P e 91. To prove this it is enough to show
π(P)Dπ(P*)* since π(P*)*3π(P) for all Pe2I. Suppose /e I>(π(P*)*)
and π(P*)*f = g. Since

l(P(X)f(X)-g(x))h(x)dμ(x) = 0

for all h e D(π) and in particular for all square integrable functions h of
compact support it follows that g(x) = P(x)f(x) //-almost everywhere. Let

fn(x) = f(x) for \x\^n

= 0 for \x\>n.
Then, we have

\\π(P)fn-g\\2= J \g(x)\2

\x\>n

as Π->QO by the Lebesque dominated convergence theorem. Hence,
/e D(π(P)) and π(P)/ - .̂ Hence, we have π(P*)* = π(P) for all P e 91
and, therefore,

Hence, π is self-adjoint.

Example 2. For the second example we take the Schrodinger repre-
sentation of the canonical commutation relations for a finite number of
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degrees of freedom. Let 9ί be the free non-commutative algebra of all
polynomials in the hermitian generators {g,,^; i = 1,..., s} modulo the
two-sided *-ideal generated by the relations

fe, Pj] = (liPj ~ PMi = idyl,

[^^ ] = [PiJpj]=0

for i,7 = l,...,s.
We define a ^-representation π on § = L2(RS) by defining

= *£/(*)•

We define T)(π) to be Schwartz's space £f(Rs) of all complex infinitely
differentiable functions which together with their derivatives decrease
faster than any polynomial in X j , . . . , xs.

Clearly π is a ^-representation of 91. It follows from [5, Part II] or
[13] that the induced topology on Ί)(π) = ̂ (Rs) is equivalent to the

s

Schwartz space topology on <f(Rs). Let H = \ £ vl + <£ and let ^i be

the *-subalgebra of 91 consisting of all polynomials in H. It is well
known that π(Hn} = (i(|x|2 - Δ))n/^(Rs) is essentially self-adjoint for all
n= 1,2,.... It is shown in [5, Part II] or [13] that a function/ 6 g> — L2(RS)
is in if (Rs) if and only if / e D(π(ίΓ)) for all n = 1,2,... and furthermore
the topology on £f(Rs) defined by the semi-norms | |/| |Π= \\n(Hn)f\\ is
equivalent to the Schwartz space topology on ^(Rs).

It follows from this remark that π(9I1) dominates π(9ί) (in fact one
can easily check that 91! dominates 91). Since ^(Rs) is complete it follows
that π and πv =π|2I1 are closed ^-representations of 91 and 91̂  Since

π1(Hn) = π(Hn) is self-adjoint for all n== 1,2,... it follows that

00 00

X)(T£ L ) — I I T)(τΓ|(/ι ) )— ( | ^)\7iι\Hn)) = ^(Tt j j .
n=ί n = l

Hence, πλ is self-adjoint and from Lemma 4.9 it follows that π is self-
adjoint.

We show π is irreducible. It is well known that π(qi) = xi\^(Rs) and
π(Pί)= —i(B/dxi)\&'(Rs) are essentially self-adjoint for z'=l, ...,s. If
C 6 π(9I)', C must commute with π^ ) and π ,̂-) for i = 1,..., s. Since these
operators are self-adjoint C must commute with their spectral projections
and therefore, C must commute with the unitary operators. U(k) and

8 Commun. math Phys , Vol. 21
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V(y) for all k,yeRs, where

(U(k) f) (x) = exp in £ M* / (*) = ̂ °
\ \ i = ι

*) = exp in
\ \ \ ί = ι

It is well known that these operators (defining the Weyl-Schrodinger
representation of the commutation relations) are irreducible (see e.g. [17]).
Hence, C e π(5l)' implies C = λl. Hence, π is irreducible.

We note that although π is irreducible not every vector /e D(π) is
cyclic. If /e T>(π) has compact support then every g e{π (21)/} has support
in the same compact set and, therefore, / is certainly not cyclic for π.

Example 3. By modifying an example of Nelson [7] we construct an
irreducible representation on an infinite dimensional Hubert space of
the free commutative algebra on two hermitian generators. Let 21 be the
free commutative algebra on two hermitian generators A and B. 2Ϊ is
*-isomorphic to the *-algebra of all complex polynomials in two real
variables. Let § = L2(V) be the Hubert space of all Lebesque measurable
square integrable functions in the square V= {(x, y); \x\ g π, \y\ ̂  π}. Let
T)(π) be all C00-functions (infinitely differ en tiable) on V satisfying the
boundary conditions.

)y) forall \y\^π,

) forall |x|^π

fora l ln = 0, 1,2, . . .We define

for all/ 6 D(π). Clearly π(A) D(π) C D(π), π(B) D(π) C D(π) and π(A) π(B)f
= π(B) π(A)f for all / e D(π). We define π(P) for all P - P(A, B) e 21 poly-
nomials in A and B by the relation π(P)f = P(n(A\ π(B))f for all / e D(π).
Clearly π is a *-representation of 51.

Lemma 5.1. π(An) and π(Bn) are essentially self-adjoint in D(π) for all
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Proof. Consider the function /(x, y) of the form

/ (x, y) = exp I — - + ίmx }h(y)\ (a)
L \ 2π / j

where m is an integer and h(y) is a C°° -function with suppoert strictly
inside the interval ( — π, π) (i.e., there is a δ > 0 depending on h such that
/j(y) = o for \y\ < π — δ), one can easily verify that /e £>(π). We claim that
/ is an analytic vector for n(An). In fact, we have

y) = (m- y/2πTkf(χ, y) ,
H(πμt/)I^NH-irk | |/ | |.

Hence, we have

fc'!

Hence, / is an analytic vector of π(An).
Since the linear span of functions / of the form (a) is dense in £> it

follows that D(π) contains a dense set of analytic vectors for π(An). Hence
by a theorem of Nelson [7, Lemma 5.1], π(An) is essentially self-adjoint.

Next consider the function g(x, y) of the form

g ( x , y ) = k(x)eίmy (b)

where m is an integer and k(x) is a C°°-function which support strictly
inside the interval ( — π, π). We claim g is an analytic vector for π(Bn).
In fact, we have

Hence, g is an analytic vector for π(Bn). Since the linear span of vectors g
of the form (b) is dense in § it follows that ϊ>(π) contains a dense set of
analytic vectors for π(Bn). Hence, π(Bn) is essentially self-adjoint.

Lemma 5.2. π* is hermitίan and therefore π* is self-adjoint.

Proof. Suppose π* is the hermitian adjoint of π and /, g e D(π*). We
show that j(/Lπ*μwβw) g) = (π*(AnBm)f, g) for all n, m = 0, 1, 2, . . . . Since
π(An) and π(V)jire_self-adjoint by Lemma 5.1, we have π*(An)f = π(A")f
and π*(Bm)f = π(Bm)f for all /e D(π*). By Lemma 4.1 we have that π*
is a representation of 91 and π*(P) D(π*) C D(π*) for all Pe2I. Hence
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we have for f,ge D(π*)

(/, π*(A"Bm) g) = (f, π*(A") π*(Bm) g)

= (π*(Bm)π*(A")f,g)

= (π*(BmA")f, g) = (π*(A"Bm)f, g) .

It follows that for P e 21 with P = £ α(n, m) Λ".Bm and f,geΐ>(π*) we have
nm

(/, π*(P) 0) = £ Φ,

Hence, π* is hermitian. By the remark after Definition 4.4 it follows that
π* is self-adjoint.

We remark that a closer analysis shows that π itself is already self-
adjoint.

Lemma 5.3. Let I7(α) = exp(iαπ(^)) and V(β) = exp(ίβπ(B)) for all
real α, )8. T/zβn π(9ϊ)r - {[/(α), V(β\ - oo < α, β < oo}'.

Proof. Suppose C is bounded operator on § which commutes with
(7(α) and V(β) for all real α and jB. Then for f9ge D(π) we have

) - lim (iα)-1 (/, C(t7(α) -
—

since by Stone's theorem (iα)'1 (l/(α) - I)f-+π(A)f as α-^0 for /e D(π)
C £(π(4)). Similarly one finds (/, Cπ(B) g) = (π(B)f9 Cg) for all/, 0 6 £>(π).
By induction we have (/, Cπ(AnBn) g) = (π(AnBm)f, C, g) for all /, g e D(π)
and n,m = 0,l,2,.... Hence, (/,Cπ(P)gf) = (π(P*)/,C,0) for all Pe9ί
and /, 0 G D(π). Therefore C e π(9I)'.

Conservely suppose C e π(9l)'. Then we have (/, Cπ(A) g) = (π(A)f, Cg)
for all /, g e 35 (π). Since π(^4) is essentially self-adjoint it follows that C
commutes with the spectral projections of π(A) (see Section I) and hence
C commutes with

U((ή=\eίλ«dE(λ) with π(A)=$λdE(λ)

and similarly C commutes with V(β) for all β. This completes the proof
of the lemma.
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Lemma 5.4. π(9I)' =

Proof. Let R be the von Neumann algebra generated by {t/(α), V(β);
< oo + α, β< + oo}. By Lemma 5.4 we have π(2l)' = .R'.

One can easily check with the aid of Stone's theorem that for
^β^2π, we have for al

( E7(α)/) (x, y) = /(x + α, y) - π ̂  x < π - α

— e~ιyf(x + α ~~ 2π, y)π — α ^ x ^ π ,

([/( - α)/) (x, j;) = /(x - α, j) α - π ̂  x ̂  π

= eiyf(x — α + 2π, y) — π ^ x < α — π

for all — π rg 3; ̂  π, and

for all — π ̂  x ̂  π. Let E(/l) ( — π^λ^π) be the projection defined by

(E(λ)f) (x, y) - ((/ - V(π) U(π-λ)V(- π) U(λ - π))/) (x, y)

= 0 λ^x^π.

We have £(λ) e R for all μ| ^ π, since C7(α), F(j?) e R for all α and β. Let

$! - J eiλ dE(λ) .

We have S^R and for all /e §

Let S2 = U( - 2π) e R. We have for all / e

Let .R! be the von Neumann algebra generated by S1 and 52. K! is a com-
mutative von Neumann algebra and the vector /(x, y) = 1 e $ is cyclic
for R1 since the linear span of the functions {eίnx eimx\ n, m = 0 + 1, + 2, . . .}
is dense in §. Since Λ! is commutative and has a cyclic vector R± is a
maximal commutative von Neumann algebra (see [10, Lemma 1.2]) i.e.
Rι=R(. Since R{CR we have R'cR(=Ri. Hence, every operator
C e R C R! is of the form

( C f ) ( x , y ) = C ( x 9 y ) f ( x , y )

for all / e $, with C (x, y) a measurable essentially bounded function.
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Now suppose CeR'. We show C — λl. Since Ce-R'C-Rj, we have

(Cf)(x,y)=c(x,y)f(x,y)

for all / e §. A straight-forward computation shows that

(U(a) CU(- α)/) (x, y)= C ([x + α], y)/(x, y) ,

( - /?)/) (x, jO = C (x, [y + β])f(x, y)

for all /e§ and all α and /?, where [x + α] = x + α modulo 2π. Since
[/(α) Cl/(- α) = C and F(β) CV(-β) = C for all α and jS it follows that
C(x9y) is constant almost everywhere. Hence C = λl and π(2I)' = {/I/}.

Theorem 5.5. π* is an irreducible self-adjoint representation of 21 on
an infinite dimensional Hilbert space.

Proof. By Lemma 5.1 π* is self-adjoint and by Lemma 5.4 π(2I)'
- {λl}. Since π* Dπ, it follows τr*(9l)'Cπ(9iy. Hence, π*(9I)'= {λl}.

VI. Strongly Cyclic ^-Representations and States of *-Algebras

Just as in the Gelfand-Segal construction for C*-algebras, there is for
each state ω of a *-algebra 91 a strongly cyclic ^-representation π of 91
on a Hilbert space <r> with a cyclic vector /0 e § such that ω(A) = (/0,π(/4)/o)
for all A e 91. The representation π is determined by ω up to unitary
equivalence. The proof of this statement follows from the proof of the
Wightman reconstruction theorem in quantum field theory [15, Theorem
3-7, p. 117-126]. Furthermore, as in the theory of C*-algebra, the
induced representation π is irreducible if and only if the state ω is pure
(see [9] for proof for C*-algebras).

Even strongly cyclic * -representations of commutative * -algebras
may have unexpected properties. Hilbert proved the existence of a poly-
nomial P(x, y) in two real variables such that

(i) P(x, y) is of sixth degree,
(ii) P(x, j;) > 0 for all (x, y) e R\

(iii) P is not a finite sum of squares of real polynomials.

Using Hubert's construction, Gelfand and Vilenkin [4, Chap. II.,
Sec. 7.2, p. 232-236] argue that there exists a state ω on the free com-
mutative algebra on two hermitian generators A and B such that
ω(P(A,B))<Q with P a polynomial satisfying conditions (i) (ii) and (iii)
above. Hence in the representation induced by ω?π(P)^0 while
P(x, y) ̂ 0 for all (x, y) e R2. To avoid this type of pathology we define
the notion of strongly positive states on commutative *-algebras, those
states which are non-negative on non-negative real polynomials of
hermitian elements.
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Definition 6.1. Suppose π is a ^representation of a *-algebra 91 on
a Hubert space §. A vector /e D(π) is said to be cyclic if {π(9I)/} is

dense in § and / is said to be strongly cyclic if {π(9I)/} is dense in T)(π)
in the induced topology on D(π). A ^-representation π is said to be cyclic
if it has a cyclic vector and strongly cyclic if it has a strongly cyclic vector.

Suppose π is a ^representation of a *-algebra 91 on a Hubert space
§ and/e D(π). Let π^=n\ {π(9ϊ}/}. Then it is easily seen that/is strongly
cyclic if and only if the closure of π± is an extension of π (i.e., πx D π).

Definition 6.2. A state of a *-algebra 91 with unit / is a functional on
satisfying the requirements.

(i) ω(aA + B) = <χω(A) + ω(B\
(ii) ω(A*A)>09

(iii) ω(/) = l

for all A, B e 91 and complex numbers α. A state ω is pure if it can not
be written in the form ω = λω1 + (1 — λ) ω2 with ω± φ ω2 states of 91 and
0<λ<l .

Theorem 6.3. For each state ω of a *-algebra 91 with unit I there is
a closed strongly cyclic *-representation π of 91 on a Hilbert space § with
strongly cyclic vector /0 e D(π) such that ω(A) = (/0, n(A)f0)for all A e 91.
The representation π is determined by ω up to unitary equivalence. Further-
more, the induced representation π is irreducible if and only if ω is pure.

Proof. Since the proof of this theorem virtually a word for word repro-
duction of the corresponding theorem for C*-algebras we give only an
outline of the proof and refer to [6], [9] and [15, Theorem 3-7, p. 117]).

Let /={AεVl;ω(A*A) = Q}. One shows / is a left ideal and
/* = {A E 91; A* E /} is a right ideal. Let Q = 9l// be the complex linear
space of all equivalence classes \_A\ = {B e 91; A — B e </) of 9ί modulo
J>. One shows ([̂ 4], [5]) = ω(A*B) is a well defined inner product on β.
Let § be the Hilbert space obtain upon completion of Q relative to its
inner product. We consider Q as a dense subset of §.

We define a representation πί of 91 on Q by the relation n^A) [ΰ]
= \_AB~] for all A, B e 91. One shows π1 is a well defined ^representation
of 91 on § with domain T)(πx) = β. Let π be the closure of π! with domain
£>(π). Let /0 = [/] e Q C D(π). We have /0 is strongly cyclic since
{π(9I)/0} = δis strongly dense in D(π) and ω(A) = (f0π(A)f0) for all A e 91.

If π and π' are strongly cyclic closed *-representations of 91 on Hilbert
spaces § and $' with strongly cyclic vectors/0 andf^ such that (/0, π(^4)/0)
= (/o, π'(yl)/o) for all ,4 e 91 then π and π' are unitarily equivalent. To see

this, one defines an isometry U of {π(9ί)/0} onto {π/(9I)/0

/} by the relation
Uπ(A)f0 = π'(A)fQ for all ,4e9ϊ. One checks that C7 is well defined,
linear and isometric. Hence, U can be extended to an isometry of § onto
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§'. The extension is also denoted by U. One checks that for a net
{/αeπ(2ϊ)/0;α£/0} lim/α = /e D(π) in the induced topology on D(π)

α

if and only if lim UfΛ= Ufe D(π') in the induced topology on D(π').
ot

Since /0 and /0' are strongly cyclic {π(2I)/0} is dense in D(π) and
{π'(5ϊ)/o} is dense in D(π') in the induced topologies. It follows from these
remarks and the fact that π and π' are both closed that C/D(π) = D(π').
Furthermore, we have Uπ(A) f = π'(A) U f for all/e£(π) and AeM. There-
fore, π and π' are unitarily equivalent. Hence, the representation induced
by a state ω is determined up to unitary equivalence.

Finally, we show that the induced representation π is irreducible if
and only if ω is pure. Suppose π is a closed strongly cyclic representation
of with strongly cyclic vector /0 6 T)(π) such that ω(A) = (/0, π(A)f0) for
all A e 31.

First suppose ω is not pure. Then ω = λω± + (l—λ)ω2 with ω± φ ω2

states of 31 and 0<λ<l . Consider the bilinear form on {π(2l)/0}
defined by

Using the fact that ω(A*A) > λωλ(A*A) > 0 for all A e 31 one shows that
the above bilinear form uniquely defines a positive operator 0 < C < λl
such that

<(π(A)fQ9 π(B))/0> = (π(A)f0, Cπ(B)f0)

and

) π(B2)/0) - (π(A*) π(B±)fQ9 Cπ(B2)/0)

for all A,B,B1,B2e$ί. Since π(./4) and π(^4*) are continuous in the
induced topology and {π(9I)/0} is dense in D(π) in the induced topology,
the above relation may be extended to all of T>(π). Hence, we have
(/, Cπ(A) g) = (π(A*)f, Cg) for all f,gε D(π) and A e 21. Hence Ceπ(2ί)'
and C =M/ since ω! φ ω.

Conversely, if π is not irreducible there is an operator C1 eπ(2l)' with
Ciφ&I λe C}. Then for α = 1 or α = i, C2 = (αQ + αCf) φ{λI;λeC}
and C2eπ(9iy. Let C = (2||C2||Γ

1 (||C2|| / + C2). We have O^C^/,
C ^ μ/; A e C}, C e π(2l)'. Note (/0, C/0) > 0 since (/0, C/0) - 0 implies
( π ( A ) f 0 , C π ( A ) f 0 ) = ( π ( A * A ) f Ό 9 C f 0 ) = Q for all AeM which implies
C - 0. We have

(/o, π(^*^) C/0) - (π

(/o, π(A*A)) (I - C)/0) = (π(A)fθ9 (I - C) π(A)f0) > 0

for all Ae9ί. Hence, ω1(A) = (/0,C/0)~1 (/o»π(A)C/0) and ω2(A)
= (/o, (/ - Q/oΓ1 (/o, n(A) (I - C)/0) for all A e 91 are states of 91 and
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ω = λωί + (1 — λ)ω2 with λ = (/0, C/0). Since C<£{α/;αeC} we have
ω1 φ co2. Hence ω is not pure. This completes the outline of the proof
of the theorem.

In the next section we will study strongly cyclic self-adjoint represen-
tations of commutative *-algebras. As pointed out in the beginning of
this section Gelfand and Vilenkin have shown the existence of a state ω
of the free commutative algebra on two hermitian generators A and B
and a sixth degree polynomial P(A, £) e 21 such that P(x, y) > 0 for all
(X y) e jR2 and ω(P(A, B)) < 0. In order to distinguish against such states
we introduce the following definition.

Definition 6.4. Suppose ω is a state of a commutative *-algebra 21.
We say ω is strongly positive if for every finite set of hermitian elements
Aί9 A2,...,An and every real positive polynomial P(x l 5..., xn) ^ 0 for all
(xί,..., xn) G Rn we have ω(P(Aί,..., An)) ^ 0. A ^-representation of 2ί is
said to be strongly positive if each vector state of π is strongly positive
(equivalently, if π(P(Ai9..., An))^0 for all positive polynomials of her-
mitian elements).

We remark that the cyclic representation induced by a strongly
positive state of a commutative *-algebra is strongly positive. In the next
section we shall need the following lemma which gives a well known
necessary and sufficient condition for the moment problem to have
a solution.

Lemma 6.5. Suppose 21 is the free commutative *-algebra on n-her-
mitian generators Aί9 ...,An and suppose ω is a state of 21. Then, a neces-
sary and sufficient condition that there exists a regular Borel measure μ
(not necessarily unique) on Rn such that

ω(P(Al9...,An))= $P(xl9...,xn)dμ(xl9...,xJ

for all P e 21 is that ω be strongly positive.

Proof. For the proof we refer to [12].

VII. Standard Representations of Commutative *-Algebras

In this section we define standard representations of commutative
*-algebras. Intuitively, we mean by a standard representation of a com-
mutative algebra a self-adjoint representation of the algebra by an
algebra of functions on a measure space. Example 1 of Section V is an
example of a standard representation of a commutative *-algebra. To
construct faithful standard representations of commutative *-algebras
with an uncountable number of generators one has to deal with rather
large measure spaces. We avoid such measure theoretic problems by
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defining standard representations in terms which can be stated as easily
for finitely generated algebras as for infinitely generated algebras. We
show that for a self-adjoint representation π of a commutative *-algebra
91, the following statements are equivalent:

(i) π(A)* = π(J)for all hermitian A e 91,
(ii) π(A)* = π(A*) for all A e 91,

(iii) π(9I)" is commutative

where π(9I)" is the commutant of π(9I)/. We define a standard representa-
tion of 91 as a self-adjoint representation satisfying any one and, therefore,
all of these statements. The reader may verify that a standard representa-
tion of a finitely generated commutative *-algebra is unitarily equivalent
to a self-adjoint representation by an algebra of functions on a measure
space.

We show in Theorem 7.3 that self-adjoint representations induced
by strongly positive states are standard. Finally, we show that if 9ί is
a commutative *-algebra which is dominated by a countably generated
*-subalgebra. Then every standard representation of 91 is a direct sum
of strongly cyclic self-adjoint representations of 91. The proof is based
on Nelson's theory of analytic vectors [7] and techniques developed by
Reed in [8].

Theorem 7.1. Suppose π is a self-adjoint representation of a com-
mutative *-algebra 91. Then, the following statements are equivalent.

(i) π(A)* = π(A) for all hermitian A e 91,
(ii) π(A)* = πpF) for all A e 91,

(iii) π(9ϊ)" is commutative.

Proof. We prove (i) => (ii) => (iii) => (i).

Suppose π is a self-adjoint representation of a commutative *-algebra
91 and statement (i) is true. To prove statement (ii) is valid it suffices to
show ΐ>(π(A*)) = T)(π(A)*) for all A e 91 since π(A)* D π(A*) for all A e 91.
It is well known from the theory of the polar decomposition of a closed
operator (see e.g. [3, Chap. XII, Sec. 7, p. 1245-1250]) that if C is a closed
operator on a Hubert space § then H = C*C is self-adjoint and Ώ(H^)
= D(C) where H* is the positive square root of H. Suppose A e 91 and
let H1=π(A*)*π(A*) and H2 = π(A)π(A)*. It follows that 5)(π(A*))
= D(#ί) and ΐ)(π(A)*) = ΐ>(H%). We show Hί=H2. Clearly, we have
H! = π(A*)* π(A*) pπ(AA*) and H2 = π(A) π(A)* D π(AA*). Since A A* is
hermitian we have π(AA*) is self-adjoint. Since self-adjoint operators
are maximal (i.e., they have no proper hermitian extensions) it follows
that H1=π(AA*) = H2. Hence, Ώ(π(A)*) = Ώ(H$) = Ώ(Hί) = 5){π(^
and hence π(A)* = π(A*) for all ,4e9ϊ. Hence, we have (i)=>(ii).
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Next suppose statement (ii) is true. Then, if A = A* e 91, π(A) is self-
adjoint. Let {EA(λ); — oo <λ< -f 00} be the spectral resolution of π(A)
and let R = {EA(λ); all A = A* e 91, - oo < λ < + oo}" be the von Neu-
mann algebra generated by all the spectral projections of all the self-
adjoint 7φ4), A = A* E 91. We claim R = π(9I)". Clearly, we have C e π(9l)'
if and only if C commutes with each hermitian π(A) e π(9ί). Since these
operators are essentially self-adjoint we have by the remark of Section I
that Ceπ(9t)' if and only if CEA(λ) = EA(λ)C for all A = A*E$l and
- oo < λ < + oo. Hence, we have π(9I)' - R and π(9I)" = R' = R.

We show π(9ϊ)" = Ris commutative by showing the projections which
generate R are commutative. Suppose A, B e 91 are hermitian and let
C = A + IB. Let HI = π(C)* π(C) and H2 =π(C)π(C)*. We have ̂  and
#2 are self-adjoint and ̂  =π(C)*π(C)Dπ(C*C) and H2=π(G)π(Q*
Dπ(CC*) = π(C*C). Since C*C is hermitian we have π(C*C) is self-
adjoint from statement (ii). By the maximality of self-adjoint operators
we have H± = π(C*C) - H2. Hence, π(Q* π(C) - π(C) π(C)* and π(CJ is
normal. Let

42 = —(π(Q-π(C)*).

By the remark of Section I we have A^ and A2 are self-adjoint operators
with mutually commuting spectral projections. Clearly, we have Aί D π(A)
and A2Dπ(B). By the maximality of self-adjoint operators we have
A! = π(J) and A2 = π(B). Hence, it follows that EA(λ) EB(μ) = EB(μ) EA(λ)
for all hermitian A, B e 91 and — oo < /I, μ< + oo. Hence, .R = π(9I)" is
commutative and (ii)=>(iii).

Finally, suppose statement (iii) is true. Suppose A e 91 is hermitian
and let UH = (π(A + ii)) be the unique polar decomposition of π(A + ii)
where H ̂  0 is self-adjoint and U is a partial isometry from

Range π(,4 + z7)* to Range π (A + il).

We claim (7eπ(9l)". Suppose Feπ(9I)' is unitary. Since π is self-
adjoint we have 7D(π)cD(π) and F*π(^l + if) F/= π(A + ί/)/ for all
/eD(π). Hence 7*π(^l + ii) V = π(A + ίl) and F*π(^ + iJ) V = (V*UV)
• (F*ff F) = UH. By the uniqueness of the polar decomposition we have
F*(7F= U and V*HV = H. Since π is self-adjoint π(9I)' is a von Neu-
mann algebra. Hence, π(9I)' is generated by its unitary elements and,
therefore, 17 e (π(9ϊ)')' - π(9ί)".

Since π(9I)" is commutative we have UU* = U*U and, hence,

Range π(A + z7) = Range n(A + //)* .
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We have / orthogonal to Range π(A + il) if and only if fe X)(π(,4)*) and
π(A)*f= if and we have g orthogonal to Range π(A + il)* if and only
if g e T>(π(A)) and π(A) g= — ίg. Since these ranges are equal we have
/eD(π(A)*) and π(A)*f = if if and only if /eD(π(2)] and π(A)f
= π(A)*f = —if. Hence, Range π(A + II) = §. Repeating this argument
for π(A — ίl) one finds Range π(A — il) = <r>. Hence, the deficiency spaces
D+ and T)_ for π(A) are D+ =!D_ ={0}. Hence, π(3) is self-adjoint.
Since ^4 is an arbitrary hermitian element we have (iii) => (i). This com-
pletes the proof of the theorem.

Definition 7.2. Suppose π is a ^-representation of a commutative
*-algebra 91. π is said to be standard if π is a self-adjoint representation
satisfying conditions (i), (ii) and (iii) of Theorem 7.1.

Theorem 7.3. Suppose π is α strongly cyclic self-adjoint * -representa-
tion of a commutative *-algebra 91 on a Hilbert space £>. Suppose /0 is
a strongly cyclic vector with ||/0 | |=1 and ω(A) = (f0,π(A)f0) for all
A e 91 is the state determined by f0. Then π is standard if and only if ω
is strongly positive.

Proof. First suppose π is standard and {At e 91; i = 1, . . . , n} are her-
mitian elements of 91. Since π is standard n(At) is self-adjoint and the
spectral projections Et(λ) of π(At) commute with the spectral projections
Ej(λ) ofπζAj) for i,; = l, ...,n. Let E(λi9 ...9λJ = El(λ1)E2(λ2), ...,En(λJ
be the joint spectral resolution for π(A^, ..., n(An). The functional
calculus for self-adjoint operators then shows that for /0 e D(π) and
P = P(A1 , . . . , An) a polynomial in (A1 , . . . , An) we have

(/o, π

Hence, if P^ , . . . , λn) ̂  0 for all real λ1 , . . . , λn we have ω(P) - (/0, π(P)/0)
^ 0. Hence, ω is strongly positive.

Conversely, suppose ω is strongly positive. We show π(A0) is
self-adjoint for all hermitian A0 e 91. Suppose A0 = A$ e 9Ϊ. Let
5 — {AI , . . . , An} be a finite set of elements of 91 and let 33S the commutative
*-subalgebra of 9X consisting of all polynomials in A0 and ^4- e5;
i = l , . . . , w . _

Let 9Ws = {π(»s)/0} and let < be the restriction of π to95s and
{π(9Is)/0}, i.e., π'8(A)f = π(A)f for all A e 93S and / e {π(95s)/0}. Let πs be
the closure of π's. Clearly πs is a closed strongly cyclic ^representation
of Ss induced by the state ωs = ω \ Ss. In fact, we have ωs(A) = (/o?πs(^4)/0)
for all A e 93S.

Since ω is strongly positive ωs = ω \ 93S is strongly positive. Hence, by
Lemma 6.5 there is a regular Borel measure μ (possibly not unique) on
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Rn+l such that

ωs(P(Aθ9 A19 ..., An)) = J P(xθ9 xl9 ..., xj dμ(x0, xt, ..., xj

for all polynomials P(A09Al9...9AJe&s. Let £s = L2(Rn+1,μ) be the
Hubert space of all //-measurable square integrable functions on Rn+i

and let Φs be the standard representation of 33S on §s defined the relations

= P(x0, *!,..., xJF(x0,*ι, ...,*„)

for all F e I)(ΦJ = {F e g)s; P(x0, x l9 ..., xj F(χ0, xt, ..., XM) e $s for all
polynomials P}. As shown in Example 1 of Section V, ΦS(P*) = ΦS(P)*
for all P e 23S. Hence, Φs is standard. Let e0 e §s be the function
e0(xθ9 x1? . . ., xπ) = 1 and let 9ls = {Φs(23s)e0} and let Es be the hermitian
projection onto 9ls. Let τs be the closure of the restriction of Φs to
{ΦS(23S) e0}. Note ωs(A) = (eθ9 τs(A) e0) for all A e Ss. Since e0 is strongly
cyclic for τs, τs is a closed ^representation induced by ωs.

Since πs and τs are closed ^-representations induced by ωs there is
an isometry U of 9WS onto 9ls such that C/D(πs) - D(τs) and U*τs(A) Uf
= πs(A)f for all A e Ss and /e D(πs) and, finally, l//0 = e0 (see Theo-
rem 6.3).

Since Φs is standard and A0 = A$9 we have Φ5(^40) ^
s self-adjoint and

Φ^o + i/)"1 exists. Let Cs= U*ESΦS(AQ + H)'1 ESU. Cs is defined on
9WS C §. We extend Cs to all of § by defining CJ = 0 for / e 9J^. A straight
forward computation shows that

/o, (a)

J/o, Csπ(^) π(B2)/0) (b)

{oτsAlA9Bι9B2E&s.
Hence, for each finite set S of hermitian elements of 9ί there exists

an operator Cs on § such that ||CJ ^ 1 and Cs satisfies relations (a) and
(b) above. Hence, by the axiom of choice there is a net S-»CS of such
operators where the sets S are ordered by inclusion. Since the unit ball
of 2?(§) is compact in the weak operator topology [1, Chap. IV, § 2,
Thm. 1, Cor. 3] the net {Cs} has at least one cluster point in the weak
topology. Let C be a cluster point of {Cs}. We claim Ceπ(2l)' and

Since Csπ(A0 + il)f0 = f0 for all S it follows that Cπ(A0 + H)f0 = f0.
We show C e π(2I)'. Suppose A9 B^ B2 e 21 and ε > 0. Since C is a weak
cluster point of the set {Cs} there is a finite set S such that A9 B1? B2 e Ss

and
|(πμ*) πίBJ/o, (Ca - C) π(B2)/0)| < β/2 ,

KπίBJ/o, (Cs - C) π(A) π(B2)/0)| < ε/2 .
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Combining these inequalities with Eq. (b) we obtain

|(πμ*) πφj/o, Cπ(S2)/0) - (π^/o, Cπ(A) π(B2)/0)| < ε .

Since ε is arbitrary we have

(πμ*) πCBJ/o, Cπ(52)/0) - (π^O/o, Cπμ) π(B2)/0)

for all ^4, B^B2E 21. Since /0 is strongly cyclic there are for each/, # e T)(π)
sequences {JBlfI} and {B2J such thatπ(Blw)/0-^/, π(A*) π(βlπ)/0->πμ*)/,
π(B2n)f0-^g and π(A) π(B2n)f0-*π(A) g as n-> oo. Hence, we have

(πμ*)/, C0) = lim (πμ*) π(BlB)/o, Cπ(B2n)f0)n~ *• oo

= lim (π(BlB)/0, Cπ(A) π(B2π)/0)
W~* 00

= ( f , C π ( A ) g ) .

Hence, C e π(2I)'. Since π is self-adjoint we have from Lemma 4.6 that
CX>(π)c£(π) and

Cπμo + ί/)/0 - πμ0 + //) C/o = /o .

Hence,/0 e Range π(A0 + //) and π(A)f0 = π(A) π(A0 + il) Cf0 = π(A0 + iί)
- π(A) C/o e Range π(A0 + iί] for all A e 21. Since /0 is cyclic it follows
that the range of π(AQ + il) is dense in <r>. Repeating this argument for
πμo — ί J) we have that the Range π(A0 — il) is dense in §. Hence, π(AQ)
had deficiency spaces D+ = T)_ = {0} and π(A0) is essentially self-adjoint.
Since π(A0) is self-adjoint for arbitrary hermitian A0 we have that π is
standard. This completes the proof of the Theorem.

Next we will show that every standard representation of a com-
mutative *-algebra 21 which is dominated by a countably generated
*-subalgebra 2ί1? is the direct sum of strongly cyclic standard representa-
tions. The main part of the proof is in the following lemma.

Lemma 7.4. Suppose 21 is a commutative *-algebra which is dominated
by a countably generated *-subalgebra 21̂  Suppose π is a standard repre-
sentation of Won a Hilbert space <r>. Then π is strongly cyclic if and only
if π(2I)" is cyclic.

Proof. Suppose 21, 21 1 and π are as stated in the lemma.

First suppose π is cyclic with cyclic vector /0 e D(π). Suppose g e §
and ε > 0. Since /0 is cyclic there are hermitian elements A, B e 2Ϊ such
that || π(A + ίB)f0 -g\\< ε/2. Let

An= ]λdEA(λ), Bn= ]λdEB(λ),
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where EA(λ) and EB(λ) are the spectral resolutions of π(A) and π(B).
Since /0 e X)(π(^4))nT)(π(β)) there is an integer r such that

|| (Ar - π(A))fQ || < ε/4 , || (Br - π(B))/0 1| < ε/4 .

By the argument of Theorem 7.1, £4 (A), £β(/l) e π(2I)" for all real A.
Hence, C = Ar + ίBr e π(9I)". Now, we have

Q - π(A)fQ || + || BJ0 - π(B)f0 \\

< ε/4 + ε/4 + ε/2 = ε.

Hence, g e § may be approximated arbitrarily well by vectors C/0 with
C e π(2l)". Hence, π(9l)" is cyclic with a cyclic vector /0.

Next suppose π(9I)" is cyclic with cyclic vector /0 and ||/0|| = 1. Since
Sti C 2ί is countably generated ^ has a countable algebraic basis
{An\ An = A*, n = 1, 2, . . .} i.e. each A e 91 is a finite linear combination of
An. In fact, the An may be chosen to be monomials in the generators of
3Ii. Let _

Tn(s) = exp(- sπμw

2)) = J e~^2 rf£^n(A)

for s ̂  0 and where EAn(λ) is the spectral resolution of π(An). Since
converges strongly to / as 5->0 from above, there are positive numbers
{s n;n=l,2, ...} such that

Since the Qn form a decrasing sequence of positive operators it follows
(see e.q. [2, Appendix II, p. 331]) Qn converges strongly to an operator
β is rc-> oo. Let 0o = β/0, Note #0 φ 0 since

Σ \\Qn(Tn+1(s,+i)-r>fo\
00

Σ IITB+1(sn+1)/0-/0||

n=l

We will show g0 e D(π) and g0 is strongly cyclic for π.
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Clearly, g0 e V(Q^) = D (exp π Σ M Π for all n = 1,2, ... . In

fact, Jim Tn+ι(sa+J... Γ M (sjo Hence, for all

n= 1,2, ... . Since the An span 9IX it follows that g0 e T)(π(β)) for all
5 e 9 .̂ Since 9^ dominates 91 for each A e 91 there is a ff G9I1? such that
l|π(g)/||^||πμ)/|| for all /e£(π). It follows that τ>(π(B))cΐ)(π(A)).
Hence, #0 e D(π(^4)) for all yl e 91 and since π is closed g0 e T)(π).

Let 91 = {π(9ί) ̂ 0} and let πt be the closure of the restriction of π to
91, i.e. % =π'9l. We will show % =π. We first show π1 is self-adjoint.

Suppose A = A*ε'i$ί1 and #e9l. We show πί(B)g0 is an analytic
vector for π±(A). Since 9ίx dominates 91 there is a JB0e9ί1 such that
|| TU! (Bo)/ 1|^||% (B)/ 1| for all / e D(^). Since A, B0 e 9ix we can express A

m m

and B0 in the form A = £ αf^4f and J50 = J] )βf .4f. We have
ί=l i = l

S Σ

; 10o i i Σ ii«ι(5o^")

We estimate

Σ αiχί

xeR

n+1
2

m \i / « \i

where g = min(sls ...,sj and ||ά|| = I Σ W 2 and H^l = Σ IAI 2 '
ί = l ί=l
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Hence, we have

Σ ii%wW l(

^0oίi ιι/?ι ι
<+oo for all s^O.

κ+1
2

Hence, %(#) #0 is an analytic vector for n^(A) for all B e 91. Since 00 is
cyclic for % it follows that for each hermitian A e S^TT^) has a dense
set of analytic vectors. It follows from a theorem of Nelson [7, Lemma
5.1] that π^A) is essentially self-adjoint for all hermitian Ae^.

Let π2(A) = πί(A) for all AE^ and let T>(π2) = D(^). Since
dominates 91 for every ^4e9I there is a f ie 9^ such that

). Hence,

Hence

D(π2) =

and π2 is closed. We have shown that π^A) = π2(A) is self-adjoint for all
hermitian A e (ίίί. Hence, we have

£>(π2)= Π »(«2(^))= Π
^eSίi AeMl,A = A*

= Π »(l

Hence, π2 is self-adjoint. It then follows immediately from Lemma 4.9
that π1 is a self-adjoint representation of 91 on 91. Hence, % is a self-
adjoint restriction of π and by Theorem 4.7 9Ϊ = Eξ> and D(%) = Eΐ)(π)
where £ e π(9l)' is an hermitian projection.

We show £ = / and, hence, % = π. We first show /0 e 91. Suppose
ε > 0. We have

Il2«~ 1 ^o-/oll = Jim \\Tn+1(sn+l)... Tm(sJ/o-/oH

00

m = w + 1

oo

<; Σ̂ 2 } = 2 (M+ }.

9 Commun math. Phys., Vol. 21
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Hence, there is an integer n such that \\Q~ l g0 - f0\\ ^ 2~(r+1) < ε/2. Let
E(λ) be the spectral resolution of β"1 and let

Sσ=]λdE(λ).
o

Since ^eD^"1) there a σ such that ||Sσ#0 -Qn1 0o\\ < £/2 We have

Sσ e π(3l)" and

Hence, /0 can be approximated uniformly be vectors S^o Wltrl Sσ

 e π(2I)".
Since g0 e 5ϊ = ££ with E e π(2I)' it follows that /0 6 51 Since /0 is cyclic
for π(St)" and 51 is invariant under π(9I)", it follows that 9ΐ = £ and £ = /.
Hence, π^ = π and gϋ *

s strongly cyclic for π. This completes the proof
of the theorem.

We define the direct sum of representations of *-algebra in the
obvious manner. Suppose {πα; α e /0} is a collection of closed *-represen-
tations of a *-algebra 31 on Hubert spaces $α. We denote the direct sum
of these representations by π = (f) πα and define π as follows. Let

αe/o

§ = 0 §α be the direct sum of the Hubert spaces §α and let
αe/o

for all αe/0 and

for all 4e2l}.
αe/o

We define π(A) F - π(^l) {Fα α e 70} = {πα(^) Fα α e 70} for all F e D(π)
and A e 21. It is easily seen that π is a closed ^representation of 21 on §.
Furthermore, π is self-adjoint if and only if πα is self-adjoint for all α e 70.
If 91 is a commutative *-algebra then π = (J) πα is standard if and only

«€/0

if πα is standard for all α 6 70.

Theorem 7.5. Suppose 91 is α commutative *-algebra which is dominated
by a countably generated *-subalgebra ^^ Suppose π is a self-adjoint
representation of 2ί. Then, π is standard if and only if π is the direct sum
of strongly cyclic strongly positive self-adjoint representations of 21.

Proof. From Theorem 7.3 it follows that if π is the direct sum of
strongly positive strongly cyclic self-adjoint representations of 9ί then
π is the direct sum of standard representations of 9ί. Hence, π is standard.

Conversely, suppose π is standard. Since every ^-representation of
a C*-algebra can be expressed as a direct sum of cyclic representations,
there are vectors {/α e § : || /J - 1, α e 70} such that with 9Jlα = {π(2l)"/J,
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9Jϊα is orthogonal to 93̂  for α φ β and § - 0 9Jiα (i.e. π(2I)" can be
αe/o

expressed as a direct sum of cyclic representations of π(2l)").
Let £α be the hermitian projection of § onto 9Wα. Clearly, Ea e π(2I)'.

By Theorem 4.4 9ία = Eα D(π) is a self-adjoint reducing subspace for π.
Let πα = π | ?lα. It is easily verified that π = (J) πα. Since π is standard we

q g / o

have that πα is standard in all α e /0. Since {π(2l)"/α} = 90ϊα,/α is cyclic for
πα(2I)". Hence, by Lemma 7.4 πα is a strongly cyclic standard representa-
tion of 21. Then, it follows from Theorem 4.7 that πα is a strongly cyclic
strongly positive self-adjoint representation of 21. Hence, π is a direct sum
of strongly cyclic, strongly positive, self-adjoint representations of 21.
This completes the proof of the theorem.

VIII. Standard Representations of the Canonical Commutation Relations

Let 2I0 be the *-algebra constructed in Example 2 of Section V, i.e.
2ί0 consists of all polynomials in {pi9 qt; ij= 1, ..., s} where the g's and
p's satisfy the relations,

for all ij= 1, ..., s. A representation π of 2I0 is called standard if π is
a direct sum of Schrodinger representations, i.e., π = 0 πα where πα is

αe/o

unitarily equivalent to the Schrodinger representation (discussed in
Example 2 of Section V). It follows that standard representations of 2Ϊ0

are self-adjoint.

Definition 8.1. Suppose ω is a state of 2I0 and π0 is the Schrodinger
representation of 2I0 discussed in Example 2 of Section V. We say ω is
strongly positive if π0(A) ^ 0 implies ω(A) ^ 0 for all A e 210. If π is
a ^-representation of 2I0 we say π is strongly positive if πQ(A) ^ 0 implies
π(A) ^ 0 for all A e 2ί0.

Using a result of Sherman [11] we show that every strongly positive
strongly cyclic self-adjoint representation of 2I0 is standard. We will
need the following lemma.

Lemma 8.2. Suppose π is a standard representation of 2Ϊ0 on a Hilbert
space § and πί is a self-adjoint subrepresentation of π. Then π± is standard.

Proof. Suppose π is a standard representation of 2Ϊ0 on a Hilbert
space § and % is a self-adjoint subrepresentation of π. By Theorem 4.7
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we have 5)(n1) = EI)(n) and π1(A)f = π(A)f for all v4e9I0 and all
/e £(%) where E e π(9I0)' is an hermitian projection.

Since π is standard we have π = (f) πα and § = φ §α where πα = π0

and §α = §0 for all α e J0, where π0 is the Schrodinger representation of

The vector /0(x) = π~ s / 4£~^'*'2 is strongly cyclic in the Schrodinger
representation. This follows from the fact that the functions p(x)/0W,
where p(x) is a polynomial are dense in Schwartz's space <9*(RS) in the
Schwartz space topology. Hence, {π0(2I0)/0} is dense in D(π0) in the
induced topology. Hence, /0 is strongly cyclic for π0. Furthermore,
πo(φi + 4i) /o = 0 for ί = 1, . . . , s and if 0 e !>(π0) and if πoίϊpj + ̂ ) # = 0
for i = 1, . . . , s then # = α/0 for some complex number α.

Since πα and π0 are unitarily equivalent there is a strongly cyclic
vector /α e D(πα) C §α corresponding to the cyclic vector /0 e D(π0) C §0?
i.e., ||/J=1, πΛ(ίpi + qi)fot = Q for /=!, ...,s. Note that (/0,π0(^)/0)
= (/α, πΛ(A)fΛ) for all >4 e 910 and α 6 /0. Let 9K0 be the closed span of
{/α α e /0}. We claim 9K0 C D(π) and / e 9M0 if and only if / e D(π) and
n(ipt + <2i)/ = 0 for i = 1, . . ., s.

Suppose /eSOΪ0. Let EΛ be the hermitian projection of § onto §α.
Since /e9K0 there is a sequence { f n ; n = 1,2, ...} such that /„ is a finite
linear combination of /α for each n and fn-+f as H-»OO. Note that if

/» = Σ c»(α)/α we have

αs/o

= |cΠ(α)-cm(α)|2||παμ)/J|

= ll£α(/n

Hence, we have

\\π(A)fn~π(A)fJ2= Σ l|£
αe/o

)/ol l 2 Σ l l
αe/o

as n, w->oo. Since ^e9I0 is arbitrary we have { f n ; n = 1,2, ...} is a
Cauchy sequence in the induced topology on T)(π). Since fn-^fasn^>co
and π is closed we have /e£)(π). Since π(ipi + q i ) f n = Q for ΐ = l, ...,s
and n = 1, 2, ... we have π(zpf + qt)f = 0 for i = 1, . . . , s.
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Conversely, suppose / e T)(π) and π(ip; + qt)f = 0 for i = 1, . . . , s. Then,
since EΛ e π(2l0)' we have

EΛπ(ipt + «,)/ = π(iPi + βi) £β/ = 0

for i=l , ...,s. Hence, we have Eα/ = c(α)/α where c(α) is a complex
number. Hence, /e9W0.

We recall that D(π1) = £I)(π) where £eπ(2I0)' is an hermitian pro-
jection. Let 9l = E<mo. We show 9lc9Ά0. Suppose /e9K0 Then
π(φ» + &) £/ = £π(φi + ft)/ = 0 for / = 1, . . . , s. Hence, Ef e 9W0

Let {gβι β e /J be an orthonomal basis for 91 and let 91̂  = {π(9I0) gβ}.
We claim {gβ,π(A)gβ.) = δpβ,(f0,π0(A)f0) for all AεW0 and AjS'e/! .
Since gβ9gβ.e9Λ0 we have g^= Σ c(α)/α and gβ,= ^ c'(α)/α. Then,

αelo αεJo

we have

(gβ9π(A)gβ,)= X (gβlEΛπ(A)gβ.)
αeI0

= Σ (E*9β> π

αe/o

αe/o

Hence, we have 9lβ-
L9lβ> for β Φ β'. Let πβ be the closure of the restriction

of π to 9lβ, i.e. πβ = (π 191 )̂. π^ is unitarily equivalent to π0 since /0 and
^ are strongly cyclic for π0 and πβ and (/0, π0(^)/0) = (/^ πβ(A)fβ) for
all ,4 e 8I0.

Let π2 = © Tfy. Since π2 is the direct sum of representation which

are unitarily equivalent to π0, π2 is standard. We complete the proof of
this lemma by showing π2 = π1.

Since π2 is a self-adjoint subrepresentation of π it follows from
Theorem 4.7 that D(π2) = FD(π) with F e π(5I0)' an hermitian projection.
We show πt = π2 by showing E = F. Since 9lβ C £(%) for all β e J1? we
have πx D π2 and, therefore, E^F. We show F^E. Suppose /e {££>}
and ε > 0. Since D(%) is dense in {£§} there is a 0 e D(%) with ||/ - g\\
< ε/2. Since /α is cyclic for πα and π = © πα it follows that the linear

αe/o

span of {π(9ί0)/α; α e /0} is dense in §. Hence, there is a vector /ι of the
m

form /ι = Σ πίΛJ/α,, with ^«e ^o and | |ft - flf|| < ε/2. Let
«=ι

n=l
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Since g e D(^) C {£§} we have \\g-k\\ = \\Eg-Eh\\ ^ \\g-h\\ <ε/2.
Hence, we have

\\f-k\\ £\\f-g\\ + \\g-k\\<ε/2 + ε/2 = ε.

We claim k e {F§}. We show EfΛ e {F£} for all α 6 /0. Since /α e 9Ji0>
Efa e 91. We have gβ e D(π2) C {F§} for all β e /t. Since, the {̂ } span 91
we have E/αe9ΐC{F§}. Hence, £/αe{F§} for all αe/0. Hence,
k e {F§}, since

m

F/C= Σ/X/UE/^
n = l

m

= Σ π(An)FEf«n

n=l

Hence, each/ e {£§} can be approximated arbitrarily well by a k e
Hence, F^E. Therefore, E = F and πt = π2. Hence, πx is standard and
the proof is complete.

Sherman [11] has proved the following useful result. Suppose 21 is
a countably generated *-algebra and π1 is a closed * -representation of
9Ϊ on a Hubert space § such that there is an A0 e 9Ϊ with the property
that π^o) is the restriction to T>(πι) of the inverse of a compact operator.
Then, if ω is a state of 91 with the property that ω(A) ^ 0 for all A e 9ί
with π^A) ^ 0, then ω is of the form

ωμ)=Σ(Λ%(^)/*) fora11 Ae® with /^^(πι) for ΐ = ι,2,....

From Sherman's theorem we derive the following result.

Theorem 8.3. Suppose π is a strongly cyclic self-adjoint representation
of 2I0 on a Hilbert space § with a strongly cyclic vector fQ e D(π) with
|| /o || = 1. Lef ω(^4) = (/0, π(^4)/0) /or Ae^be the state determined by f0.
Then, π is standard if and only if ω is strongly positive.

Proof. Suppose π is standard. Then π is a direct sum of Schrodinger
representations and, therefore, π is strongly positive. Hence, ω is strongly
positive.

Conversely, suppose ω is strongly positive. In the Schrodinger repre-

sentation π0, π0(H) with H = £ pf + qf is well known to have point spec-

trum with finite multiplicities (in fact, σ(π0(H)) = {s + 2n; n = 0,1,2,...}).
Hence, πQ(H}~1 is compact. Since ω is strongly positive (positive relative
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to the Schrodinger representation) it follows from a theorem of Sherman
[11] that ω is of the form

for all A e 910, with ft e D(π0) for i = 1, 2, . . . .
00

Let % = 0 π0 be the direct sum of π0 countably infinitely many
n = l

00

times. Let ί̂  = φ $0 be the representation space of %. Let/ ~ {/l9/2, . . .}
M = = 1

be the vector in ί̂  with components fi e £>(π0). Since /f e £>(π0) for
00

ϊ = 1, 2, . . . and X INo^/ill 2 - ω(4M) < oo for all A e 310, it follows that

/e Dfo). Note ω(4) = (/, π^)/) for all /I e <K0.
Let 9ϊ = {τrι(81o)/} and let π2 be the closure of the restriction of n1

to 91, i.e., π2 = (nt \ 91). n2 is unitarily equivalent to π since / and /0 are
strongly cyclic for π2 and π and

for all A e 810. Since π is self-adjoint π2 is self-adjoint. Hence, π2 is a self-
adjoint restriction of π l β Since πt is standard it follows from Lemma 8.2
that π2 is standard. Since π and π2 are unitarily equivalent we have π
is standard. This completes the proof of the theorem.
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