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Abstract. Unbounded *-representations of *-algebras are studied. Representations
called self-adjoint representations are defined in analogy to the definition of a self-adjoint
operator. It is shown that for self-adjoint representations certain pathologies associated
with commutant and reducing subspaces are avoided. A class of well behaved self-adjoint
representations, called standard representations, are defined for commutative *-algebras.
It is shown that a strongly cyclic self-adjoint representation of a commutative *-algebra
is standard if and only if the representation is strongly positive, i.e., the representations
preserves a certain order relation. Similar results are obtained for *-representations of the
canonical commutation relations for a finite number of degrees of freedom.

Introduction

In this paper we study unbounded *-representations of *-algebras.
The basic definitions, notation and motivation are drawn from the
Wightman formulation of quantum field theory and the theory of Lie
algebras. The general plan of the paper is to examine some of the pa-
thologies associated with *-algebras of unbounded operators and, then,
to find natural definitions which rule out these pathologies. Two such
definitions are those of self-adjointness for representations (Section 1V)
and strong positivity (Sections VII and VIII).

The results of each section are summarized at the beginning of each
section. We claim little or no originality for the contents of Sections I,
II, V and VI which consist largely of background material, definitions
modified from C*-algebra theory and quantum field theory and known
examples illustrating features of unbounded representations.
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1. Review of Known Results on Unbounded Operators

We review some of the well known results on unbounded operators
and refer to [3, Chap. XII], [14] and [16] as references for the results
stated in this section. In this paper we will work exclusively with Hilbert
spaces over the complex numbers. We use the physicists’ inner product
(f, g) which is linear in g and conjugate linear in f.

A bounded or unbounded operator 4 on a Hilbert space §, defined
on a linear manifold D(A4) (called the domain of A) is a linear mapping
of D(A4) into H. Unless otherwise stated we assume D(A4) is dense in 9.
If A and B are operators on $ with domains D(4) and D(B) we say A
is an extension of B, denoted A4 D B, if D(A4)D> D(B) and Af =B for all
f € D(B). We denote by G, the graph of the operator 4, the linear mani-
fold in H @ $ of all pairs, G, = {{f, Af}; f € D(A)}. Clearly 4> B if and
only if G, D G. An operator A is said to be closed if its graph G, is closed,
i.e. A is closed if and only if f,— f and Af, —g as n— oo implies f € D(4)
and Af =g. We say A4 is closable if 4 has a closed extension. If 4 is
closable we denote by A4 the smallest closed extension of 4, i.e. if 4 is
closable then Gy=G,, where {5} denotes the closure of a set S in a
Hilbert space.

If A is an operator with dense domain D(4)C$H we denote by A*
the hermitian adjoint of A. The graph of A* is given by

Gu={{f9}€D9DH; (f,4h)=(g, h) for all he D(A)}.
The domain of A* consists of all those vectors satisfying the relation,

DAY ={feH;|(f,Ah)| < K|h| for some constant K =0
and all he D(A4)}.

A* is always a closed operator. However, the domain D(A4*) may not
be dense in §. In fact A4 is closable if and only if D(4*) is dense in
and if D(4*) is dense in H then 4 = A**.

An operator A is said to be hermitian if A* > A. An operator A is
hermitian if and only if (f, Ag)=(A4f, g) for all f,ge D(A). Every her-
mitian operator is closable since D(4*)D D(A4) and hence D(A¥) is
dense in $. An operator A is self-adjoint if 4 = A*. An hermitian oper-
ator A4 is sélf-adjoint if and only if D(4)=2D(4*). Since A* is closed it
follows that every self-adjoint operator is closed. An operator A is said
to be essentially self-adjoint if its closure 4 is self-adjoint.

If A is an hermitian operator we denote by D, and D _ the deficiency
spaces of A defined by the relations,

D, ={Range(d+i}' ={feD(¥); A*f=if},
D_={Range(4d—il)}* ={feD(4¥); A*f=—if},
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where {S}* denotes the orthogonal complement of S. A useful result of
von Neumann states that an hermitian operator A4 is essentially self-
adjoint if and only if D, =D _ = {0}. Furthermore, 4 has a self-adjoint
extension if and only if the dimension of D, equals the dimension of D_.

If A is a self-adjoint operator then A has a unique spectral resolution
{E(1); — o0 <A< 4 oo} such that E(A) E(u)* = E(min{A,u}), E(A)— E(u)
(strongly) as A— u from above, E()—I (strongly) as 41— + oo, E(1)—0
(strongly) as A— — co.

(f,Ag)= [ 2d(f, E(2) g) forall fe$ and ge D(4)
and

D(A)={feH;:[(A*+1)d(/,EA)f)< o}

If A is an hermitian operator and C is a bounded operator we say
C commutes with A4 if

(f,CAg)=(Af,Cg) forall f,geD(A).

If A is essentially self-adjoint then C commutes with A4 if and only if
C commutes with the spectral projections of 4 (see [6, Chap. VIII, Sec.
1207 or [16, Chap. 1V, and 17, Sec. 4, Thm. VII, p. 251]).
Finally, we state some results concerning normal operators (see, €.g.
[3, Chap. XII, Problems 9, 10, 11 and 12, p. 1258—12597). If 4 is a
closed operator then A*A is self-adjoint where D(A*A4)={fe D(4);
AfeD(A*)}, AA* is also self-adjoint. A closed operator A is said to be
normal if 4*4=AA*. A closed operator A is normal if and only if
D(A)=D(4*) and | Af| = ||A*f] for all fe D(A). If 4 is normal then
A, =(1/2) (A + A*)and 4, =(1/2i) (A — A¥) are essentially self-adjoint on
D(A) and the spectral resolutions of 4; and 4, commute.

I1. Closed *-Representations of *-Algebras

In this section we define *-representations of *-algebras. For need of
an adjective we will call *-representations hermitian representations. In
analogy with the notion of a closed operator we define the notion of
a closed representation. We show that just as every hermitian operator
has a minimal closed extension, every hermitian representation of a
*-algebra has a minimal closed extension.

A *-algebra U is an algebra over the complex numbers with a
*-operator satisfying;

(i) A¥*=A4A,
(il) (@A + B)* =aA* + B*,
(ili) (AB)*=B*A4*

T*
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for all 4, B e A and complex numbers «. In general A will not be normed
since we are interested in the study of unbounded *-representations.

All algebras in this paper will have a unit denoted by I .

Definition 2.1. A representation 7 of an algebra 2 on a Hilbert space
9 is a mapping of U into linear operators all defined on a common
dense domain D(r) which is dense in $ and = satisfies the conditions,
n(I)=1, the unit operator on £,

(i) n(@A+B)f =an(A)f +n(B)f, for all A4,Be U feD(n) and all
complex numbers a.

(i) n(A) D(n) C D(n) for all Ae W and n(A4) n(B)f =n(4AB)f for all
A,Be U and fe D(n).

Definition 2.2. A representation 7 of a *-algebra U on a Hilbert
space $§ is said to be hermitian or a *-representation if

(iii) (f, n(A4) g)=(n(4*)f, g) for all f,ge D(n) and A€ U, ie. n(A)*
Dr(A*) for all A € A.

We remark that a representation 7 is hermitian if and only if for
every hermitian 4 € A (i.e. 4 = A*) n(A) is hermitian.

This definition of a *-representation is well known to workers in the
theory of representations of Lie algebras and axiomatic quantum field
theory (see e.g. [15]). In the Wightman formulation of quantum field
theory one assumes that the “smeared fields @(f)” generate a *-algebra
and a field theory is a cyclic *-representation of this algebra satisfying
additional assumptions such as Lorentz invariance and local com-
mutativity.

Definition 2.3. If m; and =n, are representations of an algebra 2 on
a Hilbert space $ we say n; is an extension of =, denoted n, D 7,, if
D(r,) D D(n,) and n,(A) D 7w, (A4) for all 4e .

If = is a representation of an algebra U on a Hilbert space $ with
domain D(rn), there is a natural induced topology on D(n). This topology
is defined as follows. Suppose S is a finite set of elements of A. We define
the semi-norm || - || on D(xn) as

Iflls= % In(A)S]

AeS

where || f| is the Hilbert space norm of f. Note S D 8’ implies || f|s = || fls»
for all f'e D(n). We define the induced topology on D(n) as the topology
generated by the neighborhoods,

RS, e)={geDm); | f—gls<el-

Note n(4) is a continuous mapping of D(xn) into D(n) in the induced
topology for all 4.
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Just as there is a notion of a closed operator there is an analogous
notion of a closed representation.

Definition 2.4. We say n is a closed representation of 2 if D(n) is
complete in the induced topology.

We show that every hermitian representation of a *-algebra can be
extended to a closed hermitian representation. The following lemma
will be useful.

Lemma 2.5. Suppose n is a *-representation of a *-algebra and S CN

is a finite set of elements of W. Then, there is an hermitian element C € U
such that |n(C)f| = || f s for all fe D(n).

Proof. Let S={A4,,A4,, ..., A,} be a finite subset of . Let
D=(n/2)i A¥A; and C=D+I.
We have -
Im(©)f11* = I=D)f1I? +2(f, (D) /) + I f1I* 2 ni_il (f,m(AFA)f)

—n 3 IxA)f 12 2( 3, 1n(4)f1] 21f15, forall feDin).

This completes the proof of the lemma.

Lemma 2.6. Suppose 7 is a *-representation of a *-algebra W on a
Hilbert space . Then, there is a unique minimal closed extension m of =.
Furthermore, the domain of r is given by

D(m)= () D(n(A))

AeU

and n(A) f =7(A) f for all Ae W and all f € D(n).

Proof. Suppose n is a *-representation of a *-algebra 2 on a Hilbert
space $. Since # is hermitian we have n(A4)* Dn(A4*) for each 4.
Hence, n(A) is closable for each A € A. Let D(rn) be defined

D= () D(n(4)
Ae
and let n(A4) = 7(4)| D(x) for all A € A. We show = is a closed *-represen-
tation of . Clearly, = is linear. We show n(4) D(r) C D(n) for all 4Ae A
and n(AB)f =n(A) n(B)f for all feA(x) and 4, Be A.
Suppose 4, Be UA. From Lemma 2.5 it follows that there isa Ce U
such that

12O | 2 In(AB) [ + =B f 1 + [ f]



90 Robert T. Powers:

for all fe D(n). Suppose f € D(n). We have fe D(n(C)).ﬂsnce, there is
a sequence {f,e D(n);n=1,2,...} such that n(C)f,—n(C)f as n— oo.
It follows from the above inequality that

@ f=f1-0,
(b) [In(B) (f, — [l =0,
© 7(A) 7(B) (fu = fu)| = I72(AB) (f, = f) 20

as n,m— co. From (a) and (b) it follows that f € D(=(B)) and

(d) [n(B) (f,— ) -0
as n—oo. From (c) and (d) it_follows that n(B)f € D(n(4)). From (a)
and (c) it follows that fe D(n(4B)) and n(4AB)f=mn(4)n(B)f. Since
A e Wis arbitrary it follows that

w(B)f =7(B)f e () D(A)=Dln).
Aed
Hence, n(B) D(n) C D(xn) for all Be A and n(4AB)f =n(A) n(B)f for all
A,Be Wand all feD(n).

We show = is hermitian. Suppose AeU and f,ge D(n). Since
feD(n(4*))and g € D(n(4)) there are sequences { f,,g,€ D(n);n=1,2,...}
such that f,— f, g,—9g, n(A*) f,—» (A% f and n(A) g,— n(A) as n— oo.
Using these sequences we obtain the relation.

(fsn(4) g)= lim (£,, n(4) g,)

= lim (n(4%)/, 9,) = (x(4*). )

for all A€ A and all f, g e D(n). Hence, n is hermitian.

We show = is closed. Suppose {f,; « € I,} is a Cauchy net in D(zn) in
the induced topology on D(x). Then {n(A)f,; x € I,} is a Cauchy net in
9 for each 4 € . Since m(4) is a closable operator for each A € U there
is an f'e D(n(4)) = D(n(A)) such that lim fo=f and limm(A) f,=n(A)f.
Hence, f € D(rn) and liarln I7(A) (f,— f)I =0 for all AeU. Hence, D(r)
is complete in the induced topology and = is closed.

Finally, we show = is the minimal closed extension of @. Suppose 7,
is a closed extension of 7. We show n; D . Suppose f, € D(n). We show
fo € D(n,) and n,(A) fo =7(A) f, for all AeA.

Suppose S is a finite subset of A and ¢ > 0. From Lemma 2.5 it follows
that there is a C € U such that

IO fllZ Y In(A)fIl forall feD(n).

AeS

Since f,, € D(m) C D(n(C)) there is a vector fe D(n) such that |7(C)f,
—n(C)f]] <e. Hence, for each finite subset S of A and &> 0 the set
Q(S,e)={feDm); 3, |n(A)f —n(A)foll <&}

AeS
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is not empty. Let I, be the set of all pairs {S, ¢} partially ordered by the
relation a={S, e} <{S,¢} =o' if and only if §'>S and ¢ <e. By the
axiom of choice there is a net {f,e€Q(x); a€l,}. Clearly, this net is
a Cauchy net in the induced topology on D(r) and since 7; D 7 this net
is a Cauchy net in the induced topology on D(n). Since lignnl(A) fa

=n(A) f, =n(A) f, for all 4 € Aand =, is closed it follows that f, € D(r;,)
and 7,(A) f, =n(A) f, for all AeU. Hence, we have n; Dx. This com-
pletes the proof of the theorem.

Hereafter, we denote by = the minimal closed extension of the
*-representation .

We remark that if 2 is a Banach *-algebra (i.e., a complete normed
*-algebra) then a *-representation 7 of U on a Hilbert space § is closed
if and only if D(n)=%. We also note that if 7 is a *-representation of
a *-algebra A and D(n) = H then () is a *-algebra of bounded oper-
ators. This follows from the closed graph theorem.

II1. The Commutant 7(20)’

We define the commutant ()" of a *-algebra n(Y) of unbounded
operators. Our definition corresponds to the definition used in the
Wightman formulation of quantum field theory (see [15, Eq. (3-38),
p. 101]). The commutant ()’ is a weakly closed symmetric linear subset
of B(H) (all bounded operators on ). The commutant need not be an
algebra as shown in Lemma 3.2.

Definition 3.1. Suppose 7 is a *-representation of a *-algebra U on
a Hilbert space . The commutant of n(2), denoted (), consists of
all bounded operators C on § such that

(f, Cn(4) g) = (r(4%) f, Cg)

for all f,ge D(n) and 4.

If n(A) is a *-algebra of bounded operators #(A)’ is simply the com-
mutant of 7() defined in the usual manner. The above definition of the
commutant is essentially the weakest definition, i.e., this definition gives
the biggest commutant.

One can easily check that the commutant 7(2)' of a *-representation
7 has the following properties.

(i) (Y is a complex linear manifold,

(i) (W) is symmetric, i.e., C € n(WA) = C* € n(WAY),

(iil) (A is closed in the weak operator topology,

(iv) If = is the closure of 7 then w(A) = x(A)'.

In general n(A) is not an algebra as the next lemma shows.
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Lemma 3.2. Let U be the free commutative algebra on one hermitian
generator A, (i.e., W consists of all polynomials P = oyl + oy Ay + o, A
with complex coefficients with multiplication and the *-operation defined
in the obvious manner). Let © be a *-representation of U on a Hilbert
space 9. Then, n(N)' is an algebra if and only if n(A,) is essentially
self-adjoint.

Proof. Let A and 7 be as described in the lemma. We begin by showing
that ()’ consists of those bounded operators which commute with
n(A,), i.e., those operators C such that

@ (f, Cn(4y) 9)=(n(4o)f, Cg) forall f geD(m).
Clearly, if C e n()’ then C satisfies relation (a). Conversely, if C satisfies
relation (a) then

(f, Cn(45) g)=(f, Cn(Ao) n(A5™") g) = (n(Ao) f, Cn(Ao) n(A5 ) 9)
-+ =(n(40)f, Cg)

for all n=1,2,... and all f,ge ®(n). Since each element of A is a
polynomial in A4, it follows that C e n(20)".

Now suppose that 7m(d4,) is essentially self-adjoint. Let {E(A);
<00 <A< + 00} be the spectral resolution of 7(4,). By the remarks in
Section I a bounded operator C commutes with n(4,) (i.e., C satisfies
relation (a)) if and only if CE(4) = E(4) C for all — co <1< + 0. Hence,
a(WY ={E(4); —oo<i< + oo} and (W) is a von Neumann algebra.

Next suppose n()' is an algebra. We begin by showing that the
Cayley transform of n(4,) is in 7(2). Let U be the partial isometry from

Range (n(4, + iI)) onto Range (n(4, — il)) defined by
Uf=mn(d,—il)g where f=mn(A,+il)g.

Note Uf =0 for f e Range(n(4,+il))*. Note U* is a partial isometry
from Range(n(4, —il)) to Range(n(4, + iI)) defined by

U*f=n(Ay+il)g where f=mn(d,—il)g.

We have that U*U=E, and UU*=E_ where E, and E_ are the
hermitian projections onto Range(n(4,+il)) and Range(n(4, —il)),
respectively.

We show U € (). From the definition of U it follows that

(f, Un(Ao) 9)=(f, Un(Ay +il) g)—i(f, Ug)
=(f, n(4o—iI) g)—i(f, Ug)
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and
(n(4o) f, Ug)=(U*n(Ao)f, 9)
=(U*n(do —il) f,9)—i(U*f, 9)
=(n(Ao +iD)f,9)—i(f, Ug)
(f, (Ao —il)g)—i(f, Ug), forall f,geD(x).
Hence, U € n(A)’ and since n(A)’ is symmetric U* € n(A)'. Since n(A) is
an algebra we have | —E, =1—-U*U and I —E_=1—-UU* are con-
tained in w(A)'. It follows that
(Ld=E.)g)=(f,U-E.)g)+i(f,(I —E,)n(do+il)g)
=i(f, —E,)n(4o) 9)
=i(n(4o)f,(I—E+)g)
i(I—Ey)n(Ao+iDf.g9)—(f,I—E,)g)
=—(fU-E)9)
forall f, g € D(r). Since D(n)is densein H we have E, = I. A simimilar cal-
culation shows E_ = I. Hence, n(4,) has deficiency spaces D, = D_ = {0}.

Hence, if n(A)' is an algebra n(A4,) is essentially self-adjoint. This com-
pletes the proof of the lemma.

IV. Self-Adjoint Representations of *-Algebras

To each *-representation n of a *-algebra U there is a naturally
associated adjoint representation n* of . The domain and action of
n* are given by

D(n*)= () D(n(4)*)
Ae
and

m*(A) f =n(A**f forall feD(n*).

Just as the hermitian adjoint of a hermitian operator may fail to be
hermitian, the hermitian adjoint representation n* may fail to be her-
mitian. In analogy with the definition of a self-adjoint operator we define
self-adjoint representations as those hermitian representations which are
equal to their adjoints (i.e. #==n*). A *-representation 7 is self-adjoint
if and only if D(n) = D(n*). We show that just as every hermitian exten-
sion A; of an hermitian operator A is an hermitian restriction of 4%, so
is every hermitian extension 7; of an hermitian representation 7 an
hermitian restriction of ©*.
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It is easily seen that for *-representations n each operator C € n()’
maps D(n) into D(n*). It will follow that the commutant of a self-adjoint
representation is necessarily a von Neumann algebra.

We next examine the problem of reducing subspaces for *-represen-
tations. If m is a *-representation of a C*-algebra 2 on a Hilbert space $
and M C$H is a linear manifold which reduces = (i.e. 7(4) M C M for all
A € ) then the hermitian projection Eg, onto the closure of M is in the
commutant, 7()'. This is not true in general for unbounded *-represen-
tations as will be shown by a simple example. However, we will show
that if z is a self-adjoint representation of a *-algebra U on a Hilbert
space $ and I C D(xn) is a reducing subspace for 7 such that = restricted
to M is self-adjoint then the hermitian projection Eg, onto the closure
of M is in the commutant 7(A)'. Conversely, if Een(2A) is an hermitian
projection then MM =ED(n) is a reducing subspace for = such that =
restricted to M is self-adjoint. Hence, for self-adjoint representations
there is a one-to-one correspondence between reducing self-adjoint sub-
spaces and hermitian projections E € ().

Finally we introduce the notation of when one algebra dominates
another algebra and show that a *-representation 7 is self-adjoint if 7(2I)
contains a dominating subalgebra which is self-adjoint.

Lemma 4.1. Suppose w is a *-representation of *-algebra U on a Hil-
bert space §. Let

(m*)= () D(m(4)*)

Aeu
and let

¥ (A) =n(A*)* | D(n*) forall AeN.
Then, * is a closed representation of W (n* might not be a *-representa-
tion) which extends m. We call n* the hermitian adjoint of .

Proof. Let n* be defined as in the lemma. We show that n*(B) D(n*)
CD(n*) and n*(AB)f =n*(A)n*(B)f for all A,BeW and fe D(n*)
Suppose f € D(n*) and g € D(n). We have

(n(4*) g, n*(B) f) = (n(4*) g, n(B*)*f)
WBﬂnAﬂ%ﬁ
(=((

(9,

n )
Mm W)
=(g,7*(4B)f).

Since |(n(4*) g, n*(B)f)| = K ||g| for all g e D(n) with K = ||[n*(4B)f| it
follows that 7*(B) f € D(n(A4*)*). Since this is true for all 4 € A we have
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n*(B) f € D(n*). Hence, 7n*(B) D(n*) C D(n*) for all Be A and we have

(9, 7*(AB) f) = (n(4*) g, n*(B) f)
= (g, n*(4) n*(B) f)

for all g € D(n) and f € D(n*). Since D(n) is dense in § we have n*(AB) f
=n*(A) n*(B)f for all 4, Be Wand f e D(x*). Hence, n* is a representa-
tion of 2.
It is clear that n* is an extension of 7 since n(A4*)* D n(A4) for all 4 € 2.
Finally, we show n* is closed. If {f,: 2 €I} is a Cauchy set in the
induced topology on D(n*). Then, it follows from the fact that m(4*)*
is a closed operation that if lia{rl f,= f then f e D(n(A*)*) and limr*(A)f,

=mn(A*)*f. Hence, fe D(n(A*)*) for all AeA. Hence, fe D(n*) and
D(n*) is complete and, therefore, n* is closed. This completes the proof
of the lemma.

Lemma 4.2. Every hermitian extension of a*-representation 1 is an
hermitian restriction of n*. (In fact, if n, m; are hermitian and ©, D n
then n* Dnfdm D)

Proof. Suppose 7 is a *-representation of a *-algebra 2 on a Hilbert
space & and 7, is an hermitian extension of 7. Since 7,(A*) D n(4*) for
all Ae U we have n(A*)* D n,(A¥)*. Since =, is a *-representation we
have n,(A*)* D (A) for all A € A. Hence, we have

T(A*)* Dy (A%)* Dy (A) D 7(A)

for all 4 € A. Hence, n* D7 Dn; Dn. Hence 7, is an hermitian restric-
tion of n* and the proof is complete.

Definition 4.3. We say a *-representation z of a *-algebra 2 is maximal
if every hermitian extension of 7 coincides with 7.

Definition 4.4. We say a representation 7 of a *-algebra is self-adjoint
if © is hermitian and n=n* We say = is essentially self-adjoint if the
closure of 7 is self-adjoint.

It follows from Lemma 4.1 that an hermitian representation = is self-
adjoint if and only if D(n) = D(n*). A self-adjoint representation is maxi-
mal by Lemma 4.2 and, therefore closed.

We note that if #* is hermitian then 7* is self-adjoint. This may be
seen as follows. Since n* is hermitian we have n** > 7* and since n* is
an hermitian extension of 7 it follows from Lemma 4.2 that n** C n*.
Hence, we have n* =n** and =n* is self-adjoint.

We leave open the problem of the general analysis of 7**. We remark
that we have found a simple example of a closed *-representation such
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that = is not self-adjoint but n* is self-adjoint and hence n** is a proper
extension of #. In general we do not know whether 7#** is hermitian.

The next lemma shows that operators in the commutant of a *-repre-
sentation map D(zn) into D(n*).

Lemma 4.5. Suppose n is a *-representation of a *-algebra W on a Hil-
bert space $. Suppose Cemn(W). Then CD(n)CD(n*) and Cn(A)f
=n*(A) Cf for all Ae W and f € D(n).

Proof. Suppose 7 is a *-representation of A and C € n(A)". Then, for
all Ae W and f, g € D(n) we have

(fs Cn(4) g) = (n(4*)f, Cg).

Since |(n(A*)f, Cg)| S K| f]| for all feD(n) (with K =|Cr(A)g]) it
follows that Cg € D(n(4*)*) and

(f; Cn(4) g) = (f, n(4%)* Cg).

Since D(r)is densein H we have Cn(A4) g = n(A*)* Cg. Since Cge D(n(A*)*)
for all Ae W we have Cg e D(n*). Hence, CD(n) C D(n*) and Cn(4)f
=n*(4) Cf for all A€W and f e D(n). This completes the proof of the
lemma.

Lemma 4.6. Suppose 7 is a self-adjoint representation of a *-algebra.
Then the commutant ©(N) is a von Neumann algebra. Furthermore for
each Cen(W) we have CD(n)CD(n) and Cr(A)f =n(4)Cf for all
A€W and feD(n).

Proof. Suppose = is a self-adjoint representation of . Since D(w)
=D(n*) it follows that for each Cen(A) we have CD(n) C D(n) and
Cn(A)f =n(A) Cfforall A e Wand f € D(n). We show () is a von Neu-
mann algebra. Since n(2)’ is a symmetric weakly closed linear manifold
in B(H) it suffices to show that C;, C, en(WU) implies the product
C,C,en(). But, if C;, C, e r(A)’ we have that

C,Cym(A)f =C,n(A) C, f =n(A) C,C, f

for all 4 € Wand f € D(n). Hence, C, C, € n(A)'. This completes the proof
of the lemma.

We turn next to the problem of reducing subspaces. If m is a represen-
tation of an algebra U on a Hilbert space $ and 9 is a linear manifold
contained in D(n) we say MM reduces 7 if w(4) M C I for all A eWA. We
denote by 7|t the representation x restricted to 9. If wis a *-representa-
tion of a *-algebra U and M is a reducing subspace then the restriction
7| M is a *-representation.

For a bounded *-representation of a *-algebra 2 for each reducing
subspace M the hermitian projection E onto the closure of M is in the
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commutant (20). This is not true in general for unbounded *-representa-
tion. This may be seen as follows.

Let A be the free commutative algebra on one hermitian generator
Ay. U consists of all polynomials in A, Let $=IL*(R) and let D(n)
={fe®; fis a C*-function and d"f/dx"e€ for all n=1,2,...}. We
define a *-representation of U on & defining

(w4 ) 0= —i Lo

for all fe D(n). It is easily shown that = is a *-representation (in fact «
is self-adjoint).

Let 9 be the linear manifold of all C®-functions which vanish
outside the closed interval [0, 1]. Clearly, Mt is a reducing subspace for
n. The hermitian projection E onto the closure of 9 is given by

(Ef)x)=f(x) xe[0,1]
=0 x¢[0,1]

for all fe$. However, E is not in n() since for f,ge D(n) we have
(Ef, m(Ao) 9) — (n(AF) f, Eg)
— d i
——if3( 7 000+ () a0
=i(f(0)g(0)— f(1) g(1)).

Since this expression does not vanish for all f, g € D(n), E ¢ n(A)".

We say that a reducing subspace I is self-adjoint if 7|9 is a self-
adjoint representation. The next theorem shows that for self-adjoint
representations there is a one-to-one correspondence between self-
adjoint reducing subspaces and hermitian projections in the commutant.

Theorem 4.7. Suppose © is a self-adjoint representation of a *-algebra
A on a Hilbert space $. Suppose E € n(W) is an hermitian projection. Let
M = ED(n). Then I reduces n and the restriction w|IM is self-adjoint.

Conversely suppose M C D(n) is a reducing subspace for © and 7|M
is self-adjoint. Then, the hermitian projection Eg onto the closure of M
is in the commutant m(A)'.

Hence, for self-adjoint representations there is a one-to-one corre-
spondence between hermitian projections in n() and self-adjoint reducing
subspaces.

Proof. Suppose 7 is a self-adjoint representation of a *-algebra 2.
Suppose Een(2) is an hermitian projection. Let M= ED(n). From
Lemma 4.6 it follows that ED(n) C D(n) and n(4) E f= En(A) E f for all
Ae A and all fe D(rn). Hence, M C D(n) and M reduces 7.
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We show 7|9 is self-adjoint. Suppose fe M and fe D((m/M)*).
Then f e D((n(4)/M)*) for all A A. Hence, for each A€ A there is a
constant K, depending only on A and f such that |(f, n(4) g)| < K,||g|
for all ge M. Since E f = f we have for all g € D(n)

I(f, n(4) g)l = |(E f, n(4) g)| =|(f, En(4) g)|
=|(f,n(4) Eg)l = K4| Egl = K4lgl -

Hence, f € D(n(4)*) for all 4 € A. Hence, f € D(n*) = D(n). Since Ef = f
we have f e ED(r) =M. Hence, f € D((r/M)*) implies f € M and, there-
fore, 7/ is self-adjoint.

Conversely, suppose I reduces 7 and 7/ is self-adjoint. Let E be
the hermitian projection onto the closure of k. Clearly, we have
ED(m)> M. We show that M D ED(n). Suppose f€ ED(n). Then f =Ef,
with f; € D(n). We have for all ge I

(f,n(4) g)=(Ef1, n(4) g)
=(f1, En(4) )
=(f1.m(4)g).
Since f; € D(n) C D(n*) we have that f; € D(n(A)*) for all A € A. Hence,
for each AU there is a constant K, depending only on A4 and
f1€ D(r(A)*) (Ky=|m(A)* f1]]) such that |(f;, n(4) g)| < K,llg| for all
g € M C D(n). Then, from the above equation it follows that
(/s n(4) g)l = (1, m(A) g)l = K4llg |

for all ge M. Hence, feD((n(4)|M)*) for all AeW and, therefore,
feD(=|MM)*). Since =|M is self-adjoint we have feI. Hence,
ED(n) CIM and, therefore, ED(n) =M.
Since ED () =W C D(n) it follows that for f,ge D(n) and A€ A we
have
(n(4*)f, Eg) = (f. n(4) Eg) = (/. En(4) Eg)
and
(f, En(A) g)=(Ef, n(4) g) = (n(4*) Ef, g)
=(En(4*) Ef, g)=(n(4*) Ef, Eg)
=(Ef, n(4) Eg)=(f, En(4) Eg)

Hence, (n(4*)f, Eg)=(f, En(A) g) for all A€ A and f, g € D(n). Hence,
E e n(A)'. This completes the proof of the theorem.

Remarks. We note that in the proof of the second part of the above
theorem we did not use the fact that = was self-adjoint. Hence, we have
the slightly stronger statement for the second part of Theorem 4.7. If ©
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is a *-representation of a *-algebra 2 on a Hilbert space $ and 9t C D(n)
is a reducing subspace for 7 such that 7|9 is essentially self-adjoint then
Eq, € (W) where Egy is the hermitian projection onto the closure of .

Using some of the ideas of Nelson [7] we define the notion of
domination as follows.

Definition 4.8. Suppose © is a *-representation of a *-algebra U on
a Hilbert space §. Suppose S C U is a symmetric linear subset of A. We
say n(S) dominates (%) if for every A e U there is a Be S such that
In(B)f |l 2 |n(A)f]| for all fe D(n). We say S dominates A if 7(S)
dominates 7(2) for every *-representation z of 2.

A very simple example of an algebra and a dominating subalgebra
is the following. Let U be the free commutative algebra on two hermitian
generators A and B. U consists of all polynomials in the commuting
elements 4 and B. Let 2, be the *-subalgebra of 2 consisting of all
polynomials in H= A%+ B2 It is simple matter to show that m(2l,)
dominates () for every *-representation © of 2.

Lemma 4.9. Suppose n is a *-representation of a *-algebra W and sup-
pose W, is a *-subalgebra such that n(W,) dominates w(W). Let n, be
*-representation of W, defined by n,(A)=mn(A4) for all Ae N, and D(rn,)
=D(n) (ie. ny =n|W,) then, if n, is self-adjoint then w is self-adjoint.

Proof. Let m and ©; be *-representations of A and A, as described
in the lemma. Since 7, ==n§ we have D(#f)=D(n,)=D(n). Since
D(nf) > D(n*) we have D(n*) C D(xn). Since D(n*) D D(n) we have D(n)
=D(n*) and n==*. This completes the proof of the lemma.

We remark that the converse of this lemma is false. In Example 3 of
the next section we describe a self-adjoint representation of the free
commutative algebra on two hermitian generators 4 and B such that the
*-subalgebra generated by n(42 + B?) is not self-adjoint.

V. Some Examples of Unbounded Self-Adjoint Representations

In this section we examine three examples of self-adjoint representa-
tions of *-algebras. The first two examples are well known. The first
example is a representation of a commutative *-algebra by an algebra
of functions on a measure space. The second example is the “Schro-
dinger” representation of the commutation relations. The third example
is a modification of an example constructed by Nelson in [7]. Nelson
constructed an example of two essentially self-adjoint operators A and B
defined on a common dense invariant domain D, such that ABf =BAf
for all fe D, but the spectral projections of 4 fail to commute with the
spectral projections of B. By modifying Nelson’s example we construct
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an irreducible self-adjoint representation of the free commutative algebra
or on two hermitian generators on an infinite dimensional Hilbert space.

Example 1. For the first example we consider the free commutative
algebra A on n-hermitian generators 4, ..., A,. U consists of all poly-
nomials

P=o[m]Y a([m]) A™ where A"™=A71A4%5>.. A"
[m]
and the o([m]) are complex numbers with a([m])=+0 for only a finite
number of [m]. Let u be aregular Borel measure on R"andlet$ IZ(R",p)
be the Hilbert space of all u-measurable square integrable functions on
R". We define a *-representation 7 on § by the relations,

(mP)f) %y e X)) =P(xq ... X)) f(Xq --. X,)
for all P=P(4,, ... A,) € A. We take the domain of n to be
D)={feH;[|IP(x)f(x)>du(x)<oo forall PeU}.

Clearly, © is a *-representation of 2.

We will show that = is a self-adjoint representation of . First we
will show n(P*)* = n(P) for all P € 2. To prove this it is enough to show
n(P) D n(P*)* since n(P*)* > w(P) for all Pe . Suppose fe D(n(P*)*)
and n(P*)* f =¢g. Since

[ (P() f(x) = g(x)) h(x) du(x)=0

for all h e D(n) and in particular for all square integrable functions A of
compact support it follows that g(x) = P(x) f (x) p-almost everywhere. Let

fux)=f(x) for |x|=n
=0 for |x|>n.
Then, we have

If=fl2="| 1f()I* du(x)-0,

|x|>n

In(P)fo—gl?= [ lg(x)I* du(x)—>0

|x|>n

as n—o0 by the Lebesque dominated convergence theorem. Hence,
f€D(n(P)) and n(P)f =g. Hence, we have n(P*)* =n(P) for all Pe A
and, therefore,
D(*) = () D(r(P)*)= () D(n(P*))=D().
Pe Pe¥
Hence, = is self-adjoint.

Example 2. For the second example we take the Schrodinger repre-
sentation of the canonical commutation relations for a finite number of
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degrees of freedom. Let 2 be the free non-commutative algebra of all
polynomials in the hermitian generators {g,, p;;i=1, ..., s} modulo the
two-sided *-ideal generated by the relations

Lgs Pj] =4;p; —DPi4; = 15111 s

g %‘] =[p; Pj] =0
fori,j=1,...,s.
We define a *-representation 7 on § = I*(R®) by defining

(g ) (x)=x,f(x).
(w01 9= =i 5 £ )0

We define D(n) to be Schwartz’s space & (R°) of all complex infinitely
differentiable functions which together with their derivatives decrease
faster than any polynomial in X, ..., X,.

Clearly = is a *-representation of . It follows from [5, Part II] or
[13] that the induced topology on ﬁ(n)=5f(Rs) is equivalent to the

Schwartz space topology on & (R®). Let H = z p? +q? and let A, be

the *-subalgebra of U consisting of all polynomlals in H. It is well
known that n(H") = (3 (|x|* — 4))"/%(R®) is essentially self-adjoint for all
n=1,2,....Itisshownin [5, Part II]or [13] that a function f € § = L*(R®)
is in &(R®) if and only if f € D(n(H")) for all n=1, 2, ... and furthermore
the topology on &(R®) defined by the semi-norms || f|,= [|n(H") f| is
equivalent to the Schwartz space topology on & (R°).

It follows from this remark that 7(2,) dominates 7() (in fact one
can easily check that 2, dominates 2[). Since .%(R°) is complete it follows
that 7 and n, = |, are closed *-representations of A and ;. Since

7, (H") =n(H") is self-adjoint for all n=1,2, ... it follows that

0

D(nf)= ) D, (H")*) ﬂ (m,(H") = Dmy).
Hence, 7, is self-adjoint and from Lemma 4.9 it follows that = is self-
adjoint.

We show 7 is irreducible. It is well known that n(g,) = x;| ¥ (R®) and
n(p;) = —i(0/0x,)| F(R®) are essentially self-adjoint for i=1,...,s. If
C e n(W), C must commute with 7(g;) and =(p;) for i=1, ..., s. Since these
operators are self-adjoint C must commute with their spectral projections
and therefore, C must commute with the unitary operators. U(k) and

8 Commun. math Phys, Vol. 21
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V(y) for all k, y € R®, where

k)| 1) 0= 50,

V) )= (exp (m [ Zne)) f) (=1 +9).

i=1

It is well known that these operators (defining the Weyl-Schrodinger
representation of the commutation relations) are irreducible (see e.g. [ 17]).
Hence, C e (W)’ implies C = AI. Hence, = is irreducible.

We note that although = is irreducible not every vector fe D(n) is
cyclic. If f € D(n) has compact supportthen every ge {r(2) f } has support
in the same compact set and, therefore, f is certainly not cyclic for =.

Example 3. By modifying an example of Nelson [7] we construct an
irreducible representation on an infinite dimensional Hilbert space of
the free commutative algebra on two hermitian generators. Let U be the
free commutative algebra on two hermitian generators 4 and B. 2 is
*-isomorphic to the *-algebra of all complex polynomials in two real
variables. Let § = I?(V) be the Hilbert space of all Lebesque measurable
square integrable functions in the square V = {(x, y); |x| ==, [y] = n}. Let
D(n) be all C*-functions (infinitely differentiable) on V satisfying the
boundary conditions.

(a"f)( ny)—e’y( nf)(n,y) forall |y|<m,

(8;f ) (x, —m)= (‘Z;{) (x,m) forall |x|==

foralln=0,1,2,... We define
) )=~ (2L ) o,

(w(B)f) (x,y) = —i (af ) (x.)

for all f € D(rn). Clearly n(4) D(x) C D(n), n(B) D(n) C D(n)and n(A4) n(B) f
=n(B) n(A) f for all f € D(n). We define n(P) for all P = P(A4, B) € U poly-
nomials in 4 and B by the relation n(P) f = P(n(A), n(B)) f for all f € D(n).
Clearly = is a *-representation of 2.

Lemma 5.1. n(A4") and n(B") are essentially self-adjoint in D(n) for all
n=12....
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Proof. Consider the function f(x, y) of the form

f(xa y)=

exp( _2i7jy + imx) h(y)} (@)

where m is an integer and h(y) is a C*-function with suppoert strictly
inside the interval (— 7, 7) (i.., there is a 6 >0 depending on & such that
h(y)=0 for |y| < m — ), one can easily verify that f € D(r). We claim that
f is an analytic vector for n(A4"). In fact, we have

(m(A)f) (x, y)=(m—y/2m) f(x, y),
(m(A" f) (x, y) = (m — y/2m)" £ (x, y),
@AY I lml+ 3™ f1-

Hence, we have

2 In(A" S IMI+ l"" sl

s<If Z
= llf[l exp(s(im| + 3)") <

Hence, f is an analytic vector of n(4").

Since the linear span of functions f of the form (a) is dense in § it
follows that D(n) contains a dense set of analytic vectors for n(4"). Hence
by a theorem of Nelson [7, Lemma 5.1], n(A") is essentially self-adjoint.

Next consider the function g(x, y) of the form

g(x,y) =k(x) e™ (b)

where m is an integer and k(x) is a C®-function which support strictly
inside the interval (— x, 7). We claim g is an analytic vector for =(B").
In fact, we have

(n(B) ) (x, y) =mg(x, y),
(n(B") ) (x, y) =m"g(x, ).

Hence, g is an analytic vector for n(B"). Since the linear span of vectors g
of the form (b) is dense in § it follows that D(x) contains a dense set of
analytic vectors for n(B"). Hence, n(B") is essentially self-adjoint.

Lemma 5.2. ©* is hermitian and therefore n* is self-adjoint.

Proof. Suppose n* is the hermitian adjoint of = and f, g € D(n*). We
show that (f, n*(4"B™) g) = (n*(A"B™)f, g) for all n,m=0, 1,2, ... Since
n(A") and n(B™) are self-adjoint by Lemma 5.1, we have n*(4") f = n(4A") f
and 7*(B™) f =n(B™) f for all f e D(n*). By Lemma 4.1 we have that n*
is a representation of A and n*(P) D(n*)C D(x*) for all P e A. Hence

8*
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we have for f, g e D(n*)
(f, m*(A"B™) g) = (f, n*(A") n*(B™) g)

(
(f, (4" n(B™ g)
(
(

Il

n*(4") f, n(B™) g)

n*(B™) n*(A") f, 9)

(n*(B"A" £, )= (n*(4"B") £, g) .

It follows that for P € W with P = )" a(n, m) A"B™and f, g € D(n*) we have

(. 7*(P)g) = X aln, m) (f, *(4"B") g)

nm

=Y a(n,m)(z*(4"B™) f, g)
= (n*(P*)f.9).

Hence, n* is hermitian. By the remark after Definition 4.4 it follows that
n* is self-adjoint.

We remark that a closer analysis shows that 7 itself is already self-
adjoint.

Lemma 5.3. Let U(x)=exp(ian(A)) and V(B)= exp(ifn(B)) for all
real o, B. Then (W) ={U(x), V(B), — o0 <a, f < c0}'.

Proof. Suppose C is bounded operator on § which commutes with
U(a) and V() for all real o and B. Then for f, g € D(n) we have

(f, Cr(4) g) = lim (i)~ (f, C(U@ ~ 1) g)
= lim (= i) ™ (U(~ )~ 1)1, Cg)

= (n(4)f; Cg)

since by Stone’s theorem (i) ! (U(x) — I) f = n(A) f as a—0 for f € D(m)
C ®(n(4)). Similarly one finds (f, Cn(B) g) = (n(B) f, Cg) for all £, g € D(m).
By induction we have (f, Cn(4"B™) g) = (n(4"B™) f, C, g) for all f, g € D(n)
and n,m=0,1,2,.... Hence, (f, Cn(P)g)=(n(P*)f,C,g) for all PeA
and f, g € D(n). Therefore C e n(A)'.

Conservely suppose C € n(U). Then we have (f, Cn(4) g) = (n(4) f, Cg)
for all f, g € D(n). Since n(A) is essentially self-adjoint it follows that C
commutes with the spectral projections of 7(4) (see Section I) and hence
C commutes with

U= [e**dE(3) with n(4)= [AdE()

and similarly C commutes with V(p) for all 5. This completes the proof
of the lemma.
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Lemma 5.4. n(A) = {11}.
Proof. Let R be the von Neumann algebra generated by {U(x), V(f);
< o0 +a, f< + o0}, By Lemma 5.4 we have n(U) =R".
One can easily check with the aid of Stone’s theorem that for
0<a<2n and 0 < B <2m, we have for all fe H=L*(V)
(U@f)(x,p)=fx+ay)—nSx<n—a
=e Vf(x+a—-2my)n—a<x<m,
U(=a)f)x,p)=flx—a,y)a—nSxsn
=V f(x—a+2m y)—n<x<a—7
for all —n<y=<m,and

VB, y)=f(x, y+P) —n=y<n-—p
=f(x,y+B—-2n) n—-p=y=<m,
V(=P f)x,y—=P=flx,y—P) B—n<y=n

=fx,y—f+2n) —nx<f-—=
for all —t<x=<m. Let E(4)(—n <A=n) be the projection defined by
ENS)x )= =V(@ Ur—2) V(-n) UL -n)f)(x, )
=f(xy —n=x=22
=0 ASxZm.
We have E(4) e R for all |A| ==, since U(a), V(f) € R for all o« and f. Let
S, = [e*dE(}).
We have S; €R and for all fe$
(S1.f) (x, ) =€*f(x, ).
Let S,=U(—2n)e R. We have for all fe 9
(S2/) (e, ) =€ f(x,y).

Let R, be the von Neumann algebra generated by S, and S,. R, is a com-
mutative von Neumann algebra and the vector f(x, y)=1€ 9 is cyclic
for R, since the linear span of the functions {e" ¢/™*; n,m =0+ 1, +2,...}
is dense in $. Since R, is commutative and has a cyclic vector R, is a
maximal commutative von Neumann algebra (see [10, Lemma 1.2]) i.e.
R, =R;. Since R{CR we have R'CR;=R,. Hence, every operator
CeR'CR, is of the form

(CHxy)=Cxnf(xy)

for all fe$, with C(x,y) a measurable essentially bounded function.
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Now suppose CeR. We show C=AI. Since CeR'CR,, we have
(CHx,p)=Clx,0f(x )

for all fe$. A straight-forward computation shows that

(Ul CU(=a)f) (x,y)= C([x+al, ») f(x, ),
VB CV(=PS)x 0=l [y+BDSf(x )

for all fe$ and all « and B, where [x +a] = x + « modulo 2z. Since
U(e) CU(—a)=C and V(B) CV(— B)=C for all o and p it follows that
C(x, y) is constant almost everywhere. Hence C = Al and =(A) = {A1}.

Theorem 5.5. ©* is an irreducible self-adjoint representation of U on
an infinite dimensional Hilbert space.

Proof. By Lemma 5.1 n* is self-adjoint and by Lemma 5.4 z(2)
= {AI}. Since n* D 7, it follows n* (W) C (W). Hence, n*(W)'= {AI}.

VI. Strongly Cyclic *-Representations and States of *-Algebras

Just as in the Gelfand-Segal construction for C*-algebras, there is for
each state w of a *-algebra U a strongly cyclic *-representation © of U
on a Hilbert space  with a cyclic vector f, € § such that w(A4) =(f,7(4)fo)
for all 4. The representation 7 is determined by @ up to unitary
equivalence. The proof of this statement follows from the proof of the
Wightman reconstruction theorem in quantum field theory [15, Theorem
3-7, p. 117-126]. Furthermore, as in the theory of C*-algebra, the
induced representation = is irreducible if and only if the state w is pure
(see [9] for proof for C*-algebras).

Even strongly cyclic *-representations of commutative *-algebras
may have unexpected properties. Hilbert proved the existence of a poly-
nomial P(x, y) in two real variables such that

(i) P(x,y)is of sixth degree,
(ii) P(x,y)>0 for all (x, y) e R?,

(iil) P is not a finite sum of squares of real polynomials.

Using Hilbert’s construction, Gelfand and Vilenkin [4, Chap. IL,
Sec. 7.2, p. 232-236] argue that there exists a state w on the free com-
mutative algebra on two hermitian generators 4 and B such that
o(P(4, B)) <0 with P a polynomial satisfying conditions (i) (ii) and (jii)
above. Hence in the representation induced by w,n(P)Z0 while
P(x,y) =0 for all (x,y)e R% To avoid this type of pathology we define
the notion of strongly positive states on commutative *-algebras, those
states which are non-negative on non-negative real polynomials of
hermitian elements.
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Definition 6.1. Suppose = is a *-representation of a *-algebra U on

a Hilbert space . A vector fe D(n) is said to be cyclic if {n(A)f} is
dense in § and f is said to be strongly cyclic if {z()f} is dense in D(n)
in the induced topology on D(r). A *-representation = is said to be cyclic
if it has a cyclic vector and strongly cyclic if it has a strongly cyclic vector.
Suppose =« is a *-representation of a *-algebra U on a Hilbert space
Hand f e D(n). Let n; = n| {n(WA) f}. Then it is easily seen that f'is strongly
cyclic if and only if the closure of n; is an extension of 7 (i.e., ®; D).

Definition 6.2. A state of a *-algebra U with unit I is a functional on
satisfying the requirements.

(i) w(xA4 + B)=oaw(A4) + w(B),
(i) w(4A*A)=0,
(iil) w()=1
for all 4, Be U and complex numbers «. A state w is pure if it can not
be written in the form w = Aw,; + (1 — 1) w, with w, % w, states of A and
0<i<l1.

Theorem 6.3. For each state w of a *-algebra U with unit I there is
a closed strongly cyclic *-representation ©t of U on a Hilbert space § with
strongly cyclic vector f, € D(r) such that w(A) = (fo, ©(A) fo) for all A€ A.
The representation it is determined by w up to unitary equivalence. Further-
more, the induced representation 7 is irreducible if and only if w is pure.

Proof. Since the proof of this theorem virtually a word for word repro-
duction of the corresponding theorem for C*-algebras we give only an
outline of the proof and refer to [6], [9] and [15, Theorem 3—7, p. 117]).

Let S={AeU;w(4*A4A)=0}. One shows .# is a left ideal and
F*={AeW; A*e J}isarightideal. Let Q = /.S be the complex linear
space of all equivalence classes [A]={Be U; 4 — Be ¥) of A modulo
#. One shows ([4], [B]) = w(A*B) is a well defined inner product on Q.
Let $ be the Hilbert space obtain upon completion of Q relative to its
inner product. We consider Q as a dense subset of §.

We define a representation n; of 2 on Q by the relation 7,(A) [B]
=[AB] for all 4, Be . One shows 7, is a well defined *-representation
of A on § with domain D(x;) = Q. Let n be the closure of 7; with domain
D(n). Let fo=[I1eQCD(n). We have f, is strongly cyclic since
{m(A) f,} = Qisstrongly dense in D(n) and w(A4) = (fn(4) fo)forall A e A.

If = and =’ are strongly cyclic closed *-representations of 2 on Hilbert
spaces 9 and §’ with strongly cyclic vectors f,, and f; such that ( f,, ©(A4) f,)
=(fg, 7'(A) fy) for all A e A then n and 7’ are unitarily equivalent. To see

this, one defines an isometry U of {n() f,} onto {n'(A) fo} by the relation
Un(A)fo=n'(A)fs for all AeA. One checks.that U is well defined,
linear and isometric. Hence, U can be extended to an isometry of § onto
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$'. The extension is also denoted by U. One checks that for a net
{foen(W fo;aely} liartnfa=fe D(n) in the induced topology on D(r)
if and only if lim U f, = U f€D(x') in the induced topology on D(w’).
Since f, and fg are strongly cyclic {n()f,} is dense in D(n) and
{r' (W) f5} is dense in D(r') in the induced topologies. It follows from these
remarks and the fact that = and =’ are both closed that U D () = D(x').
Furthermore, we have Un(A) f =7'(4) U f forall f e D(n)and Ae . There-
fore, n and 7’ are unitarily equivalent. Hence, the representation induced
by a state w is determined up to unitary equivalence.

Finally, we show that the induced representation = is irreducible if
and only if w is pure. Suppose = is a closed strongly cyclic representation
of with strongly cyclic vector f, € D(rn) such that w(4)=(f,, n(4)f,) for
all Ae .

First suppose w is not pure. Then w =Aw; + (1 — 1) w, with o, + w,
states of A and 0< A< 1. Consider the bilinear form on {n()f,}
x{n(W) f,} defined by

{n(4) fo, m(B) fo = Ay (A*B)

Using the fact that w(A4*A) > Aw(A4* A) > 0 for all A € A one shows that
the above bilinear form uniquely defines a positive operator 0 < C < A1
such that

{(m(A) fo, ©(B)) fo) = (n(A4) fo, C(B) fo)
and
(m(B1) fo, Cni(A4) n(B,) fo) = (n(4*) n(By) fo, C(B,) fo)

for all A, B, B;, B, € U. Since n(4) and 7m(A*) are continuous in the
induced topology and {n() f,} is dense in D(n) in the induced topology,
the above relation may be extended to all of D(n). Hence, we have
(fs Cn(A) g) =(n(A*) f, Cg) for all f, g e D(n) and A € . Hence Cen(AY
and C I since w; * .

Conversely, if 7 is not irreducible there is an operator C, e () with
C,¢{AI; e C}. Then for a=1 or a=i, C,=(aC, +aC§)¢ {A;1eC}
and C,en(). Let C=(2|C,|))" (|C,| [ +C,). We have 0=C<I,
C¢{Al;1eC}, Cen(Y). Note (f,, Cf,)>0 since (f,, Cf,) =0 implies
(7(A) fo, Cr(A) fo) = (=(A*A) fo, C fo)=0 for all 4e W which implies
C=0. We have

(fo, m(A*A4) C fo) = (r(A) fo, Cn(A) £5) >0,
(fo, n(A* A (I — C) fo) = (n(A) fo, (I — C) n(A) fo) >0

for all AeA. Hence, w,(4)=(fo,Cfo) " (fo,m(A)Cfy) and w,(4)
=(fo, I = C)fo) ! (fo, m(A) (I — C) f,) for all A €A are states of A and
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w=Aw;+(1 =1 w, with 1=(f,, Cfy). Since C¢ {al;e C} we have
w, + w,. Hence w is not pure. This completes the outline of the proof
of the theorem.

In the next section we will study strongly cyclic self-adjoint represen-
tations of commutative *-algebras. As pointed out in the beginning of
this section Gelfand and Vilenkin have shown the existence of a state @
of the free commutative algebra on two hermitian generators 4 and B
and a sixth degree polynomial P(4, B) € A such that P(x, y) >0 for all
(x,y) € R? and w(P(4, B)) <0. In order to distinguish against such states
we introduce the following definition.

Definition 6.4. Suppose w is a state of a commutative *-algebra 2.
We say w is strongly positive if for every finite set of hermitian elements
Aq, A,, ..., A, and every real positive polynomial P(x,, ..., x,) =0 for all
(x4, ..., x,) € R" we have w(P(4,, ..., 4,)) = 0. A *-representation of U is
said to be strongly positive if each vector state of 7 is strongly positive
(equivalently, if n(P(4,, ..., 4,)) =0 for all positive polynomials of her-
mitian elements).

We remark that the cyclic representation induced by a strongly
positive state of a commutative *-algebra is strongly positive. In the next
section we shall need the following lemma which gives a well known
necessary and sufficient condition for the moment problem to have
a solution.

Lemma 6.5. Suppose U is the free commutative *-algebra on n-her-
mitian generators Ay, ..., A, and suppose w is a state of . Then, a neces-
sary and sufficient condition that there exists a regular Borel measure u
(not necessarily unique) on R" such that

o(P(4y, ..., 4,))= [ P(xy, ..., x,) du(xy, ..., X,)

for all P € Wis that w be strongly positive.
Proof. For the proof we refer to [12].

VII. Standard Representations of Commutative *-Algebras

In this section we define standard representations of commutative
*-algebras. Intuitively, we mean by a standard representation of a com-
mutative algebra a self-adjoint representation of the algebra by an
algebra of functions on a measure space. Example 1 of Section V is an
example of a standard representation of a commutative *-algebra. To
construct faithful standard representations of commutative *-algebras
with an uncountable number of generators one has to deal with rather
large measure spaces. We avoid such measure theoretic problems by
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defining standard representations in terms which can be stated as easily
for finitely generated algebras as for infinitely generated algebras. We
show that for a self-adjoint representation = of a commutative *-algebra
A, the following statements are equivalent:

(i) m(A4)* =nr(A) for all hermitian 4 € A,
(i) n(4)* =n(A*)for all Ae A,
(iil) =(A)” is commutative

where 7()” is the commutant of (). We define a standard representa-
tion of A as a self-adjoint representation satisfying any one and, therefore,
all of these statements. The reader may verify that a standard representa-
tion of a finitely generated commutative *-algebra is unitarily equivalent
to a self-adjoint representation by an algebra of functions on a measure
space.

We show in Theorem 7.3 that self-adjoint representations induced
by strongly positive states are standard. Finally, we show that if 2 is
a commutative *-algebra which is dominated by a countably generated
*-subalgebra. Then every standard representation of 2 is a direct sum
of strongly cyclic self-adjoint representations of 2. The proof is based
on Nelson’s theory of analytic vectors [7] and techniques developed by
Reed in [8].

Theorem 7.1. Suppose 7 is a self-adjoint representation of a com-
mutative *-algebra . Then, the following statements are equivalent.

(i) m(A)* =n(A) for all hermitian A € A,
(i) n(A)* =nr(A¥) for all Ae ¥,
(iii) 7(A)” is commutative.

Proof. We prove (i) = (ii) = (iii) = (i).

Suppose 7 is a self-adjoint representation of a commutative *-algebra
A and statement (i) is true. To prove statement (ii) is valid it suffices to
show D(n(4*)) = D(n(A)*) for all A € A since w(A)* D n(A*)for all A€ A.
It is well known from the theory of the polar decomposition of a closed
operator (see e.g. [3, Chap. XII, Sec. 7, p. 1245-1250]) that if C is a closed
operator on a Hilbert space $ then H = C*C is self-adjoint and D(H?)
= D(C) where H? is the positive square root of H. Suppose 4 € A and
let H, =n(A*)* n(4*) and H,=mn(A)n(A)*. It follows that D(n(4*))
=D(H}) and D(n(4)*)=D(H3}). We show H, = H,. Clearly, we have
H, = n(A*)* n(4%) > n(A A¥) and H, = n(A) n(A)* D n(AA¥). Since AA* is
hermitian we have n(4A4%) is self-adjoint. Since self-adjoint operators
are maximal (i.e., they have no proper hermitian extensions) it follows
that H, =n(AA¥)=H,. Hence, D(n(A)*)=D(H3)= D(Ht)=D(n(A4*))
and hence 7(4)* = n(A¥) for all A 2 Hence, we have (i)= (ii).
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Next suppose statement (ii) is true. Then, if A= A4* € A, n(A4) is self-
adjoint. Let {E,(1); — 00 <1< + o0} be the spectral resolution of 7(A)
and let R={E (A); all A=A4%e A, — 0 <A< + o0}” be the von Neu-
mann algebra generated by all the spectral projections of all the self-
adjoint 7(4), A = A* € A. We claim R = n()". Clearly, we have C € m(2y
if and only if C commutes with each hermitian n(4) € (). Since these
operators are essentially self-adjoint we have by the remark of Section I
that Cen(W) if and only if CE,(1)=E /(1) C for all A=A*eU and
— 00 <A< + oo. Hence, we have n() =R’ and n(AW)"=R"=R.

We show 7(2)” = R is commutative by showing the projections which
generate R are commutative. Suppose 4, Be W are hermitian and let
C=A+iB. Let H, = n(C)* n(C) and H, = z(C) n(C)*. We have H, and
H, are self-adjoint and H; = n(C)* n(C) > n(C*C) and H, =7r(C) n(C)*
D (CC*)=n(C*C). Since C*C is hermitian we have n(C*C) is self-
adjoint from statement (ii). By the maximality of self-adjoint operators
we have H, = 7(C*C) = H,. Hence, n(C)* 7(C) = 7(C) n(C)* and n(C) is
normal. Let

Ay = 5 GO+ 7O,

1 —————
A, = e (7(C) — =(C)*).

By the remark of Section I we have A; and A, are self-adjoint operators
with mutually commuting spectral projections. Clearly, we have A, D 7(A)
and A, > n(B). By the maximality of self-adjoint operators we have
A, =n(A) and 4, =7(B). Hence, it follows that E (1) Ez(u) = Eg(u) E4()
for all hermitian 4, Be A and — oo <4, u< + 00. Hence, R=n(A)" is
commutative and (ii) = (iii).

Finally, suppose statement (iii) is true. Suppose A € A is hermitian
and let UH = (n(4 + iI)) be the unique polar decomposition of 7(A4 + il)
where H 20 is self-adjoint and U is a partial isometry from

Rangen(4 +il)* to Rangen(A4+il).

We claim U e n(A)". Suppose Ven(A) is unitary. Since = is self-
adjoint we have VD(n)C D(n) and V*n(A +il) Vf=n(A+il)f for all
fe®(n). Hence V*n(A+il) V=n(A+il) and V*a(A+il) V=(*UV)
-(V¥*HV)= UH. By the uniqueness of the polar decomposition we have
V*UV=U and V*HV = H. Since = is self-adjoint #()’ is a von Neu-
mann algebra. Hence, n(A) is generated by its unitary elements and,
therefore, U € (n(A)) = (A"

Since n(A)” is commutative we have UU*=U*U and, hence,

Range (A4 +iI) = Range n(A + il)*.
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We have f orthogonal to Range n(A4 + iI) if and only if f € D(n(4)*) and
n(A)*f = if and we have g orthogonal to Range n(4 + iI)* if and only
if g€ D(n(4)) and n(d) g = — ig. Since these ranges are equal we have
feD(n(4)*) and n(A)*f=if if and only if feD(m(A) and =(A)f
=mn(A)*f = —if. Hence, Range n(A4 +iI)=$. Repeating this argument
for n(A — il) one finds Range n(A4 — iI) = . Hence, the deficiency spaces
D, and D_ for n(A4) are D, =D_ ={0}. Hence, n(4) is self-adjoint.
Since A is an arbitrary hermitian element we have (iii)= (i). This com-
pletes the proof of the theorem.

Definition 7.2. Suppose 7 is a *-representation of a commutative
*-algebra . « is said to be standard if « is a self-adjoint representation
satisfying conditions (i), (ii) and (iii) of Theorem 7.1.

Theorem 7.3. Suppose 7 is a strongly cyclic self-adjoint *-representa-
tion of a commutative *-algebra N on a Hilbert space . Suppose f, is
a strongly cyclic vector with || foll =1 and w(A)=(fo, n(A)f,) for all
A e W is the state determined by f,. Then w is standard if and only if w
is strongly positive.

Proof. First suppose = is standard and {4, A;i=1,...,n} are her-
mitian elements of 2. Since 7 is standard n(4}) is self-adjoint and the
spectral projections E;(1) of m(4,) commute with the spectral projections
E,(2) of n(A,) for i,j=1, ..., n. Let E(Ay, ..., ;) = E; () Es(As), -... Ey(A)
be the joint spectral resolution for n(4,),...,n(4,). The functional
calculus for self-adjoint operators then shows that for f, € D(n) and
P=P(4,,..., A,) a polynomial in (4,, ..., 4,) we have

(f09 R(P)f0)= IP()Vla "'7/1n) d(fo, E(/'{l’ '“s/ln)fo)'

Hence, if P(Ay, ..., 4,) 20 for all real 4,, ..., 4, we have w(P) = (f,, ©(P) fo)
= 0. Hence, w is strongly positive.

Conversely, suppose w is strongly positive. We show n(A4,) is
self-adjoint for all hermitian A, € 2A. Suppose A, = A§e A. Let
S={A4,, ..., A,} beafinite set of elements of A and let B, the commutative
*-subalgebra of A consisting of all polynomials in A, and 4;€S;
i=1,...,n

Let M, ={n(B,) f,} and let =, be the restriction of n to B, and
{n(W,) fo}, ie., m(A) f =n(A)f for all A e B, and fe {n(B,) f,}. Let n, be
the closure of ;. Clearly = is a closed strongly cyclic *-representation
of B, induced by the state w, = w|B,. In fact, we have w(4) = (fo, 75(A4) fo)
for all 4B,

Since w is strongly positive w, = w|B, is strongly positive. Hence, by
Lemma 6.5 there is a regular Borel measure u (possibly not unique) on
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R™*! such that
wy(P(Ag, 4y, ..., A))= [ P(xg, X1, .., X,) dp(Xo, Xg, .., X,,)

for all polynomials P(4,, 4, ..., 4,) € B,. Let $,=L*(R"*1, u) be the
Hilbert space of all u-measurable square integrable functions on R"*!
and let @, be the standard representation of B on ), defined the relations

(dss(P(AOa Als sevs An)) F) (x07 x19 sy xn)
=P(Xg, X1, -y X)) F(Xg5 X1, -5 X,)

for all Fe®(®,)={FeD,; P(xq, Xy ..., X,) F(X0, Xq, ..., X,) €EH, for all
polynomials P}. As shown in Example 1 of Section V, @ (P*)= &,(P)*
for all PeB, Hence, &, is standard. Let e,e$, be the function
eo(Xg, X1, ..., X,) =1 and let N, = {P(B,) ¢y} and let E be the hermitian
projection onto N, Let 7, be the closure of the restriction of @ to
{®,(B,) e}. Note wy(A4) = (e, 7,(4) o) for all A € B,. Since ¢, is strongly
cyclic for t,, 7, is a closed *-representation induced by w,.

Since ©, and 1, are closed *-representations induced by w, there is
an isometry U of I, onto N, such that UD(n,) = D(t,) and U*t,(4) U f
=ny(A)f for all AeB; and f e D(n,) and, finally, U f, =e¢, (see Theo-
rem 6.3).

Since @, is standard and 4, = 4}, we have ®(A4,) is self-adjoint and
&4, +iI)~* exists. Let C;=U*E®,(A, +il) ' E,U. C, is defined on
M, C H. We extend C, to all of § by defining C, f =0 for f € M.. A straight
forward computation shows that

Cin(Ao +iD)fo=fo, (@)
(n(A*) 7(By) fos CsTC(Bz)fo) = (n(B}) fo, Csn(A) m(By) fo) (b)

for all A, B, B, € B,.

Hence, for each finite set S of hermitian elements of A there exists
an operator C; on $ such that ||C,|| =1 and C; satisfies relations (a) and
(b) above. Hence, by the axiom of choice there is a net S— C, of such
operators where the sets S are ordered by inclusion. Since the unit ball
of B(H) is compact in the weak operator topology [1, Chap. IV, § 2,
Thm. 1, Cor. 3] the net {C,} has at least one cluster point in the weak
topology. Let C be a cluster point of {C,}. We claim Cen(Y) and
Cn(Ao +il) fo= fo.

Since C,n(Aq +il) fo = f, for all S it follows that Cn(A, + i) fo = fo.
We show C e (). Suppose 4, B;, B, € W and ¢> 0. Since C is a weak
cluster point of the set {C,} there is a finite set S such that 4, B, B, € B,

d
o |(w(A*%) (B, for (C, — C) n(B,) fo)| <&/2.
|((By) for (Cy — C) () 1(B,) fo) | < /2.
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Combining these inequalities with Eq. (b) we obtain
|(m(A*) 7(By) fo, Cn(B) fo) — (n(By) fo, Cn(A) n(B,) fo)l <e.
Since ¢ is arbitrary we have
(n(4*) n(By) fo, Cn(B2) fo) = (m(By) fo, Cn(A) n(B,) fo)

for all A, By, B, € 2. Since f,, is strongly cyclic there are for each f, g € D(n)
sequences {B,,} and {B,,} such thatn(B,,) f, — f, n(4*) ©(By,) fo = (4%,
(B3, fo— g and n(4) n(B,,) fo—n(4) g as n— 0. Hence, we have

(7(4*), Cg) = lim (n(A*) (B, ,)fo, C7(B3,) o)
= }l_'n}o (”(Bm)an CTC(A) n(BZn)fO)

=(f.Cn(4)g).

Hence, C e n(2)'. Since = is self-adjoint we have from Lemma 4.6 that
CD(n) C D(n) and

Cn(Ayg+il)fo=n(Ao+il)Cfo=f,.

Hence, f, e Rangen(4,+ il) and n(A) fo = n(A) n(Ag+il) Cfo=n(Ay + il)
-n(A4) C f, € Range n(4, +iI) for all A e AW. Since f, is cyclic it follows
that the range of n(A4, +il) is dense in §. Repeating this argument for
(A, —il) we have that the Range n(4, — il) is dense in $. Hence, n(4,)
had deficiency spaces D, = D_ = {0} and n(A4,) is essentially self-adjoint.
Since n(4,) is self-adjoint for arbitrary hermitian A, we have that = is
standard. This completes the proof of the Theorem.

Next we will show that every standard representation of a com-
mutative *-algebra U which is dominated by a countably generated
*-subalgebra U, is the direct sum of strongly cyclic standard representa-
tions. The main part of the proof is in the following lemma.

Lemma 7.4. Suppose W is a commutative *-algebra which is dominated
by a countably generated *-subalgebra W,. Suppose w is a standard repre-
sentation of W on a Hilbert space $. Then 7 is strongly cyclic if and only
if m(W)”" is cyclic.

Proof. Suppose U, A, and = are as stated in the lemma.

First suppose = is cyclic with cyclic vector f, € D(n). Suppose g€ H
and ¢>0. Since f| is cyclic there are hermitian elements A, B € 2 such
that |n(4 +iB)f, —gll <&/2. Let

A,= [ AdE,(), B,= [ AdEg(),

—-n —-n
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where E,(1) and Egz(l) are the spectral resolutions of 7(4) and n(B).
Since f, € D(n(A))nD(n(B)) there is an integer r such that

(4, —n(A)) foll <e/4, (B, —n(B))foll <&/4.
By the argument of Theorem 7.1, E (1), Ez(4) e n()” for all real 4.
Hence, C= A, +iB, e n(A)". Now, we have
ICfo—gl=14,fo+iB,fo—4l

=<4, 1o —n(A) fol + | B.fo —n(B)foll

+ | n(4 +iB)fo —gll

<efd+e/d+e2=¢.
Hence, g € $ may be approximated arbitrarily well by vectors C f, with
C e n(A)". Hence, n(W)” is cyclic with a cyclic vector f,,.

Next suppose n(2)” is cyclic with cyclic vector f;, and | f,|| = 1. Since

A, CA is countably generated U, has a countable algebraic basis
{4,;4,=AF,n=1,2,...} i.e. each A € Wis a finite linear combination of

A,. In fact, the 4, may be chosen to be monomials in the generators of
A, Let

T,(s) = exp(— sn(A2)) = [ e** dE, (1)

for s =0 and where E,4 (1) is the spectral resolution of n(4,). Since T,(s)
converges strongly to I as s—0 from above, there are positive numbers
{s,;n=1,2,...} such that

I Tu(su) fo— foll £270F 0.
Qn = Tl(sl) TZ(SZ) T;l(sn) .

Since the Q, form a decrasing sequence of positive operators it follows
(see e.q. [2, Appendix II, p. 331]) Q, converges strongly to an operator
Q is n—o0. Let go = Q f,, Note g, +0 since

lgoll = | foll = Il fo—goll
g 1- ;O'IQn+1f0_~an0”

Let

g 1- g() “ Qn(Tn+1(sn+1) _I)fOH

z1- ZO I T+ 1(Sns 1) fo — foll

n=

0
>1- Y 27Dt

n=1

We will show g, € D(n) and g, is strongly cyclic for =.
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Clearly, g, D(Q,1)=D (exp (n ( Y )s,A?)) for all n=1,2,.... In

i=1

faCt> Qn_1 o= rrp—'reo Tn+1(sn+1) Tm(sm)fo Hence’ 9o € D(H(An)) for all

n=1,2,.... Since the 4, span U, it follows that g, e D(n(B)) for all
Be . Since A, dominates A for each 4 € A there is a B € A, such that
IzB)f| Z|Im(A)f ]| for all feD(n). It follows that D(n(B))C D(n(A)).
Hence, g, € D(n(A)) for all A € A and since = is closed g, € D(n).

Let Nt = {n(A) go} and let n; be the closure of the restriction of 7 to
N, ie. m, =7/ N. We will show n, =n. We first show 7, is self-adjoint.

Suppose 4 =A*e U, and BeWA. We show =,(B) g, is an analytic
vector for m,(A). Since U, dominates A there is a B, e A, such that
7 (Bo) f1l = | my(B)f| for all f e D(my). Since 4, B, € A, we can express A

and B, in the form A= ) o,4; and B,= ) B;A; We have

i=1 i=1

S I (A") 7, (B) goll s'/n'!

n=0

= ¥ Im:(B)m (4 gol| '/n!
< 3 Im(Bo) m (4" gol /1!
= 3 I (Bo") 0,05 gol 1!

S1Qn" goll Y. 7 (BoA™) Qull 5"/
n=0

We estimate

m

Z o X;

i=1

n

exp (— Y sixiz)
i=1

a . o,
<Al &l" sup x"*+* e~a2|
xeR

I Bo ") 0l < sup | 3

n+1
2

A 1
<A e

EX
2

where g=min(s,, ..., s,) and [[&] = (Z |oc,~|2>i and || ] = (Z |/3,.|2)
i=1 i=1
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Hence, we have

o0

Y. lImy (A" 7y (B) go | s"/n!

n=0
n+1

. @ n&(n 1 2
<10z aoll 1A 3 1T (251

<+ oo for all s=0.

Hence, 7,(B) g, is an analytic vector for 7;(A4) for all B € . Since g, is
cyclic for 7 it follows that for each hermitian A € U, 7, (A4) has a dense
set of analytic vectors. It follows from a theorem of Nelson [7, Lemma
5.17 that n,(A) is essentially self-adjoint for all hermitian 4 € 2.

Let n,(A)=m;(4) for all AeU, and let D(n,)=D(xn,). Since A,
dominates U for every Ae W there is a Be A, such that D(rn,(B))
C D(mn,(4)). Hence,

() D(r2B) C () Dlry(A))=Dlm;) =D(rs).
Be; AeA
Hence
D(n,y) = m D(n,(B))
Beﬂll
and =, is closed. We have shown that =, (4) = 7,(A) is self-adjoint for all
hermitian 4 € ;. Hence, we have

D)= () D(m(4)= () Dr(4)

AeUy AeU, A=A4*

= [} D= () Dr(4)*)
AeUy, A= A* AeUy

— D).

Hence, 7, is self-adjoint. It then follows immediately from Lemma 4.9
that 7, is a self-adjoint representation of 2 on R. Hence, 7, is a self-
adjoint restriction of 7 and by Theorem 4.7 %t = E§ and D(n,) = ED(n)
where E € n()’ is an hermitian projection.

We show E=1I and, hence, n, =n. We first show f, € it. Suppose
&¢>0. We have

105 9o = foll = Jim [ Ty 1(5ps1) - Tl fo = fol

é Z ” (Tm(sm) - I)fO”

m=n+1
9

< Z 2—(m+1)=2-(n+1)‘
m=n+1

9 Commun math. Phys., Vol. 21
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Hence, there is an integer n such that |Q, ! gy — fol S27 "+ <¢/2. Let
E(J) be the spectral resolution of O, * and let

S,= [ AdE().

Q= q

Since g, € D(Q,}) there a ¢ such that [|S,g, — 0, * goll < &/2. We have
S, en(WAW" and

18290 = foll 18290 — Qu ' goll + 12" go = foll <&/2+¢/2=¢.

Hence, f,, can be approximated uniformly be vectors S,g, with S, € w(2[)".
Since g, € Nt = EH with E e n(A)’ it follows that f, € N. Since f, is cyclic
for 7(A)” and N is invariant under (A", it follows that R=Hand E=1.
Hence, n, == and ¢, is strongly cyclic for . This completes the proof
of the theorem.

We define the direct sum of representations of *-algebra in the
obvious manner. Suppose {n,; o € I} is a collection of closed *-represen-
tations of a *-algebra 2 on Hilbert spaces §,. We denote the direct sum
of these representations by n= (P =, and define 7 as follows. Let

aelp

H= P 9, be the direct sum of the Hilbert spaces $, and let

aelp
D(n)={F~{F,;acl} €9H;F,eD(n,) forall ael, and
Y |n(A) F,|*> <o forall AeU}.

aelp

We define n(4) F =n(A){F,;ae 1y} ={n (A)F,;0ecl,} for all F e D(n)

and A € . It is easily seen that = is a closed *-representation of 2 on $H.

Furthermore, 7 is self-adjoint if and only if 7, is self-adjoint for all a € I,.

If A is a commutative *-algebra then == (P =, is standard if and only
ael

if 7, is standard for all o € I, ’

Theorem 7.5. Suppose W is a commutative *-algebra which is dominated
by a countably generated *-subalgebra U,. Suppose 7 is a self-adjoint
representation of . Then, ©t is standard if and only if 7t is the direct sum
of strongly cyclic strongly positive self-adjoint representations of .

Proof. From Theorem 7.3 it follows that if « is the direct sum of
strongly positive strongly cyclic self-adjoint representations of % then
7 is the direct sum of standard representations of 2. Hence, x is standard.

Conversely, suppose n is standard. Since every *-representation of
a C*-algebra can be expressed as a direct sum of cyclic representations,

thereare vectors { f, € 9: || f,l =1, a e I} such that with M, = {n(W"f,},
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M, is orthogonal to M, for a+ B and H= P M, (ie. 7(A)" can be

aeclp

expressed as a direct sum of cyclic representations of 7(2)”).

Let E, be the hermitian projection of § onto IM,. Clearly, E, € n(A)'.
By Theorem 4.4 9, =E, D(n) is a self-adjoint reducing subspace for x.
Let r, = 7| N,. It is easily verified that = = (P =,. Since = is standard we

aelo
have that =, is standard in all « € I,,. Since {z()" f,} =M, f, is cyclic for
7, (A)". Hence, by Lemma 7.4 7, is a strongly cyclic standard representa-
tion of . Then, it follows from Theorem 4.7 that =, is a strongly cyclic
strongly positive self-adjoint representation of 2. Hence, 7 is a direct sum
of strongly cyclic, strongly positive, self-adjoint representations of 2.
This completes the proof of the theorem.

VIII. Standard Representations of the Canonical Commutation Relations

Let A, be the *-algebra constructed in Example 2 of Section V, i.e.
A, consists of all polynomials in {p;, g;;i,j=1, ..., s} where the ¢’s and
p’s satisfy the relations,

9'=q;  pf=np:>
[4: Pj] =4;p;—Pjq;= i5ij I,
[9591=[p»p]1=0

for all i,j=1,...,s. A representation © of U, is called standard if 7 is

a direct sum of Schrodinger representations, i.e., 1= ) n, where 7, is
aelp
unitarily equivalent to the Schrodinger representation (discussed in

Example 2 of Section V). It follows that standard representations of U,
are self-adjoint.

Definition 8.1. Suppose o is a state of U, and =« is the Schrodinger
representation of U, discussed in Example 2 of Section V. We say w is
strongly positive if ny(4) =0 implies w(A4) =0 for all AeU,. If = is
a *-representation of A, we say =« is strongly positive if 7y(4) = 0 implies
n(A) = 0for all 4 e U,

Using a result of Sherman [117] we show that every strongly positive
strongly cyclic self-adjoint representation of U, is standard. We will
need the following lemma.

Lemma 8.2. Suppose =« is a standard representation of U, on a Hilbert
space $ and 7, is a self-adjoint subrepresentation of . Then m, is standard.

Proof. Suppose = is a standard representation of 2, on a Hilbert
space $ and =, is a self-adjoint subrepresentation of n. By Theorem 4.7

9%
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we have D(n)=ED(n) and n,(A)f =n(A)f for all AeWU, and all
f € ®(n,) where E € n(,) is an hermitian projection.

Since 7 is standard we have n= P n, and H= P 9, where 7, =17,
aelp aelp

and 9, =9, for all a € I,,, where 7, is the Schrodinger representation of
A, on H, = L*(RY).

The vector fo(x)=n"%* e #¥” is strongly cyclic in the Schrodinger
representation. This follows from the fact that the functions p(x)f,(x),
where p(x) is a polynomial are dense in Schwartz’s space &(R®) in the
Schwartz space topology. Hence, {ny(,) fo} is dense in D(n,) in the
induced topology. Hence, f, is strongly cyclic for n,. Furthermore,
no(ip;+4q;) fo=0 for i=1,...,s and if g e D(n,) and if =y(ip; +4;) g=0
fori=1,...,s then g =af, for some complex number o.

Since m, and 7, are unitarily equivalent there is a strongly cyclic
vector f, € D(n,) C H, corresponding to the cyclic vector f, € D(n) C Ho,
ie, [[fll=1, n(ip;+q)f,=0 for i=1,...,s. Note that (f,, 7o(4)f,)
=(f,, n(A)f,) for all 4e A, and a eI, Let M, be the closed span of
{f.;aely}. We claim M, C D(n) and fe M, if and only if f € D(n) and
n(ip;+q,)f=0fori=1,...,s.

Suppose feIM,. Let E, be the hermitian projection of § onto H,.
Since f €M, there is a sequence {f,;n=1,2, ...} such that f, is a finite
linear combination of f, for each n and f,— f as n— 0. Note that if

fu=Y c,(0)f, we have

aelo

1E,m(A) (fo — fud|* = 1n(A) Eo(fu — fu) I
= |ey(@) — €@ I ma(A) £]I?
= Eo(fo = S Imo(A) foll* -

Hence, we have

In(A) f, — (A full> = X 1 Em(A) (f,— fu)I?

aelp

=mo(d)foll* Y. NELfu— £

aelo
= mo(A) foll | fu— full*~0

as n,m—o0. Since Ae U, is arbitrary we have {f,;n=1,2,...} is a
Cauchy sequence in the induced topology on D(n). Since f,— f as n—
and = is closed we have fe D(rn). Since =(ip;+q,) f,=0for i=1,...,s
and n=1,2,... we have n(ip;+q;)f=0fori=1,...,s.
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Conversely, suppose f € D(n) and n(ip; + q;) f =0fori=1, ...,s. Then,
since E, € n(A,) we have

E,n(ip;+q) f =n(ip;+q) E,.f =0

for i=1,...,s. Hence, we have E,f =c(x)f, where c(x) is a complex
number. Hence, f e M.

We recall that D(n,) = ED(n) where E € n(U,)’ is an hermitian pro-
jection. Let t=EM, We show NCIP, Suppose feIM, Then
n(ip;+¢q;) Ef = En(ip;+q,)f =0 for i=1,...,s. Hence, EfeM, and
N CM,.

Let {g;; p €I, } be an orthonomal basis for 9t and let N, = {n(W) g4}
We claim (gg, 7(A4) g5) = 055 (fo, mo(A) fo) for all A€W, and B, f'€1,.
Since g;, gy €M, we have g;= ) c(@)f, and g; = ) (@) f, Then,

aelp aelp
we have

(gB: n(A) gﬂ’) = Z (gﬁlEan(A) g/}‘)

aelg

= Z (Eag/b 7Z(A) Eagﬂ’)

aelp

=Y () (@) (fo ma(A)S,)

aelp

= (gﬂs g[l’) (fos “O(A)fo) = 5ﬂp'(fo: 77~'0(A)fo) .

Hence, we have R,* 9N, for B+ B'. Let m, be the closure of the restriction
of m to Ny, i.e. my=(m|MNy). 7, is unitarily equivalent to «, since f, and
g, are strongly cyclic for n, and n; and (f,, 7o(A4) fo) = (f3, 7s(A) fp) for
all AeU,.

Let m,= P n5. Since 7, is the direct sum of representation which
Bely
are unitarily equivalent to =,, 7, is standard. We complete the proof of

this lemma by showing n, =n;.

Since n, is a self-adjoint subrepresentation of 7 it follows from
Theorem 4.7 that D(n,) = F D(n) with F € ()’ an hermitian projection.
We show 7, =, by showing E=F. Since N, C D(n,) for all B, we
have w, D n, and, therefore, E = F. We show F = E. Suppose f € {ES}
and & > 0. Since D(=,) is dense in {EH} there is a g € D(x,) with || f — g|
<¢/2. Since f, is cyclic for n, and 7= @ =, it follows that the linear

aelp

span of {n(W,)f,;x€l,} is dense in . Hence, there is a vector h of the

formh= ) n(A4,)f, with 4,€ A, and |h—g| <e/2. Let
n=1

k=Y n(4,) Ef, =Eh.
1

n=
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Since geD(n)C{ESH} we have ||g—k| =|Eg—Eh| <|g—h| <ég/2.
Hence, we have

[f=kl=If—gl+lg—kll<e2+¢2=¢.

We claim k € {F$}. We show E f, € {F 9} for all a € . Since f, € M,,
Ef,eN. We have g, € D(n,) C {F$} for all fel,. Since, the {g,} span N
we have Ef,e RC{F9}. Hence, Ef, e {F9H} for all ael,. Hence,
ke {F$9}, since

Fk= Z Frn(A4,) Ef,,
n=1

m

= ). n(4,) FEf,,

n=1

m

= ¥ ®(A)Ef,=k.

n=

Hence, each f € { EH} can be approximated arbitrarily well by a k € {F H}.
Hence, F = E. Therefore, E = F and =, ==,. Hence, n, is standard and
the proof is complete.

Sherman [11] has proved the following useful result. Suppose U is
a countably generated *-algebra and 7, is a closed *-representation of
A on a Hilbert space $ such that there is an A, € A with the property
that 7, (A4,) is the restriction to D(r,) of the inverse of a compact operator.
Then, if w is a state of A with the property that w(4) =0 for all A e A
with 7, (A4) = 0, then w is of the form

0

w(A)= ) (funm(A)f) forall AeW with f,eD(n,) for i=1,2,....

From Sherman’s theorem we derive the following result.

Theorem 8.3. Suppose n is a strongly cyclic self-adjoint representation
of A, on a Hilbert space § with a strongly cyclic vector f, € D(rn) with
|| foll = 1. Let w(A) = (fo, n(A4) f,) for A € U, be the state determined by f,.
Then, © is standard if and only if w is strongly positive.

Proof. Suppose = is standard. Then = is a direct sum of Schrodinger
representations and, therefore, 7 is strongly positive. Hence, w is strongly
positive.

Conversely, suppose w is strongly positive. In the Schrodinger repre-

s

sentation m, mo(H) with H= Y p? + g7 is well known to have point spec-
i=1

trum with finite multiplicities (in fact, o(ro(H))= {s +2n;n=0,1,2,...}).

Hence, n,(H) ™! is compact. Since w is strongly positive (positive relative
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to the Schrodinger representation) it follows from a theorem of Sherman
[11] that w is of the form

o) = T (fuma(a)f)

for all Ae U, with f;e D(ny) fori=1,2,....

Let m, = @ 7, be the direct sum of n, countably infinitely many

n=1

times. Let §, = P 9, be the representation space of ny. Let f ~ { f1, f5, ...}
n=1

be the vector in §; with components f;e D(r,). Since f;e D(n,) for
i=1,2,...and Y, |mo(A)fill* = w(A*4) < oo for all A € Wy, it follows that

i=1
fe®D(n,). Note w(A)=(f, n,(4)f) for all AeA,.
Let = {n,(AU,)f} and let n, be the closure of the restriction of 7,
to R, i.e., 1, =(my|M). 7, is unitarily equivalent to x since f and f, are
strongly cyclic for 7, and m and

(f m2(A)f) = o(4) = (fo, n(A) fo)

for all A € A,. Since = is self-adjoint =, is self-adjoint. Hence, =, is a self-
adjoint restriction of m,. Since 7, is standard it follows from Lemma 8.2
that n, is standard. Since n and =, are unitarily equivalent we have n
is standard. This completes the proof of the theorem.
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