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Abstract. We consider vector states in the Fock representation of the C.A.R. algebra,
representing condensed pair states. We prove that in the thermodynamic limit these states
give rise to a direct integral of gauge-dependent B.C.S. states.

1. Introduction

The algebra of the anticommutation relations (C.A.R. algebra) is
an essential tool in the description of an infinite non relativistic Fermi
system. A state on the C.A.R. algebra can be defined by giving the set
of its (n, m)-point correlation functions Wnm (expectation values of Wick
ordered monomials of fields operators). A simple class of states that
has been extensively studied [1] ••• [3] is formed by the "quasi-free"
states or "generalized" free states; a quasi-free state has the property that
its truncated (n, m) point functions Wjm vanish if n + m > 2. One of
the most important example of quasi-free state is provided by the B.C.S.
state [4, 5].

The fact that for gauge-invariant quantities the state ρ over the C.A.R.
algebra arising from the "Schafroth-condensed pair wave function"
and the gauge-dependent B.C.S. state become equivalent in the thermo-
dynamic limit, is well known by physicists since long time [6] however,
to the best of our knowledge, nobody has produced a rigorous proof of
the identification of ρ with a direct integral of gauge dependent B.C.S.
states. We shall produce here such a proof, at least for particular classes of
"Cooper pairs".

However, the main reason for performing this work is to test some
methods that might be useful when searching for physical states where
the role of the "Cooper pairs" is played by "atoms" of more than two

* Partially supported by C.N.R.
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particles. We expect that some of these states remain non quasi-free
even in the thermodynamic limit1.

Following the procedure introduced for the free Bose gas by Araki
and Woods [7], we look for states of a one-dimensional infinite system by

i) including the system in a finite interval of length L.
ii) considering vector states ρLN in the Fock representation of

the C.A.R. algebra representing N/2 condensed pair states.
iii) taking the limit, in the weak topology, of a sequence {ρLfN} of

such states when L-» oo, iV—• oo, and the density N/L is equal to a constant
value d.

In order to prove the above result, we use methods adapted from
statistical mechanics. We reduce our problem to that of proving the
equivalence, in the thermodynamic limit, of the correlation functions
in the canonical and grand-canonical ensemble for a free Fermi system
with arbitrary single-particle energies. Our technique is similar to that
used recently by Dobrushin and Minlos [8] for proving the continuity of
pressure in classical statistical mechanics.

2. The Thermodynamic Limit

We consider for simplicity the case of one-dimensional fermions
without spin (the generalization to the three-dimensional case with
spin is straightforward). Let $1 (L) be the Von Neumann algebra generated
by the field operators

%(/) = ί aF(x) f{x) dx aFifγ = j aF (x)+ f&jdx (1)
L L

belonging to the Fock representation πF of the C.A.R. algebra constructed
over the Hubert space HL=£f2iL) of square-integrable functions /
having their support in the interval L of the real line R2. Let |IPO,F) be
the Fock vacuum belonging to the Hubert space HF of the representation
πF, and finally let us put

ak3 = M//) (2)

where /)• is the wave function

1 'ίkjX, xeL, kj=j^; ; = 0, ± 1 , ± 2 . . . (3)

1 G. Fano and G. Loupias: "Conjectures on a class of physical states of Fermi systems..."

(Unpublished report).
2 We indicate with the same symbol the set L and its linear measure.
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The anticommutation relations of the akj are

O*,> <**,] + = [<> < ] + = ° K > % ] = <^ (4)

Furthermore ak\ψQtF} = 0 for any ky

Consider now the operator
-j + oo -j + oo

KL=-W Σ c(kj)a^aikj=Ύ Σ Φ)<a-kj (5)
Z -coj Z -QOj'ΦO

where c is a real function defined on R. The label 2 indicates that B\ L

creates a pair of fermions.
For the moment we will assume only that c is decreasing, that it

vanishes at infinity faster than k'1 and that it is square-mtegrable over R.
Because of (4), only the odd part of c contributes to the sum (5). Therefore
we can restrict ourselves to functions c such that c(k) = —c( — k) and
write ^

B+2,L= ΣΦj)<a\ (6)

B\ h is a bounded operator; in fact, since | |α^| | = 1 we have
00

\\KΔ\^ ΣWl < c » (7)
J = l

Let us define now a sequence {u^} of vectors ii'^efίp

K L > = ( ^ , J " K F > - (8)

Each vector \v{£Ly is an eigenstate of the total particle number
corresponding to the eigenvalue N = 2n and defines a vector state
ρL}N on the algebras $1(L), L QL by

N = 2n. (9)

We want to study the limit state ρBltd defined by

QB2,d = weak limit ρLtN . (10)

Of course ρBld will no longer be a vector state nor a density matrix
in the Fock representation over H = L2(R).

Let us compute the norm of \v{£L}:

Λ r , l?2 / / — WO F Ψ2 /) 1^2 /) \Ψθ F/

= Σ c(/c,,) c(/cJ2)... φjφj.) c(kΆ)... c(kj,)
h,J2..Jn>0
j'ί ,J2...j'n>0
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Because of the Fermi statistics, the only terms which survive are
those such t h a t ^ Φj"2 +Λ,;/i +J2 *•* +7« Furthermore, because of the
condition akj\ψQF} =0, the set {j[J'2 •••&} can only be a permutation
of the set {jx,j2 •• 7«} Therefore

= (H!)2 Σ C ^ ) 2 . . . ^ ) 2

0 < i l < J 2 <Jn

and we have the inequality

00 In

H!L\\2 <n\ Σ ΦjfΦjf • • • c(kjf = n! Σ Φ / < °°
Jl,J2..Jn>0 j = l J

Let us consider now the entire function fL of the variable λ defined
by the infinite product

fL(λ)=fl{ί+λc(kJ)
2) (14)

J = I

which is convergent according to the hypothesis on c. All the zeros of
fL(λ) lie on the negative real axis and are given by

V = - ^ ί 7 = 1 , 2 , 3 . . . . (15)

The coefficients a\ of the power series expansion of fL are simply
connected with the H^LII2-

 ί n f a c t

oo oo

fL(λ) = Σ aL

nλ" = 1 + λ Σ Φ j ) 2 + λ 2 Σ c(kh)
2c(kj2)

2 + •••
0 j l 0jn = 0

" Σ c(kh)
2c(kh)

2...c(kjf+
0<jι<J2 ' <jn

Therefore3

1 d{n)fL

Σn\ dλn

 λ=0 o<u<h-<u

Useful formulae for the computation of the a% are the following:
Defining

σL=Y Φλ2"; p= 1,2,3... (18)

3 Notice that if the function c has compact support, then a\ vanishes for n sufficiently
large, i.e. for 2n/L larger than a certain value dmax, where dmΆX is simply related to the measure
of the support of c.
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it follows that (see Ref. [9], Theorem 3.7, and Ref. [10], Formula 38)

«ί= Σ
J1 + 2J2+3J3+-

= — D e t
n!

σ[

(-1)

0
2

a\

|J2 + J4 + J6+-

0

0

3

0

0

0

n - 1

(19)

α i - — V (-ί)m+1σLaL (20)

We shall not make further use of formulae (19), (20); they are, how-
ever, interesting since they exploit the analogy between our case and
Fredholm's theory of integral equations.

From (14) it follows that

Hence, defining

1
logfL(λ)=p(L,λ)

we have

(21)

(22

(23)

We define now a family of vectors of the B.C.S. type depending on
the positive number λ, on the lenght L and on the function c:

jA, Xv, L/ — C (24)

The square of the norm of this vector coincides with fL{λ). In fact,
since

<(Bii)"Ψo,F\(BiL)mψiF>=0 for n (25)



148

we have4

<l,L,c|A,L,c> =
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V λ

. = o («0 2
(26)

We notice that ||/l, L, c|| φ θ since 2 is positive. Let us now put, for
any monomial πF(A) in the field operators (we assume that the test
functions appearing in πF(Λ) vanish outside L, i.e. πF(Λ)e 91 (L))

(27)

If /I is gauge invariant (i.e. A contains an equal number of creation
and annihilation operators), then

<(BiL)nψLo,F\πF(A)\(BiLrwL

o,F>=0 for n φ m (28)

and therefore

n = 0 (29)

where

AL =
[nψ

7,(rί) (30)

We notice that since A is a bounded operator, the expansion ]Γ AJ;λn

converges in the entire complex plane of the variable λ. The functional

Q(λ,L) i s a vector state for λ ^ 0 . Defining our states QLf2n

 o n 91 (L) as in

4 The series expansion of ev'B*'L in powers of ]/I converges in the uniform topology
since BJ L is a bounded operator. Further, we note that the same results are obtained

substituting \λ, L, c) by V — (β j L)n eιθn \ψQ F ) where θn are arbitrary real numbers.
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formula (9), the formulae (17), (30) imply that

QL,2n(A)=^r. (31)

Let us start computing the expectation value in the state ρLί2n °f
monomials of the type a(f)+a{g), where the supports of / and g are
contained in L 5 ; from this and from the continuity of ρL 2 n, it follows that

( 3 2 )

where

1 1 + °°

\j\x)e-ik'xdx= —j= j f{x)e-ik'xdx
(33)

] / 2 π L V2π -oo

In order to compute the thermodynamic limit of (32), we will choose
a particular sequence of lengths:

L^TLQ with no = ^dLo integer. (34)

With this choice the sets S(i) = \x : x=j—— j = 1, 2, 3 ...I are

ordered by inclusion

s ( 1 ) c s ( 2 ) c s ( 3 ) . .cs ( i ) »-

so that putting L = L{ and 2π = 2nf = dLt into Eq. (32), we can take the
limit of QLl,2nSakVakw) when i-^oo, j-^oo and both d = 2ni/Li and
kf =j In/L^e S(ί} are'kept fixed.

oo

Later we shall be able to prove that for any k e [j S{i}

, , x λ(d)c(k)2

λ{d)c{k)2 ( 3 5 )

where λ(d) is a positive number depending only on d. Therefore it will
be sufficient to make very broad hypothesis of regularity on the functions

5 This means that we limit ourselves to strictly local observables; the supports off
and g will not move when L->co.

11 Commun math Phys.. Vol 20
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c, / and g in order to conclude from (32) that6

lim QLι,2nXa{fγa{g)-\ = +f J^)g{k)^^—dk . (36)
i->ao,d=ψ- -co A{d)c{k)2 + \

A well known formula of the B.C.S. theory giving the expectation
value of the particle number operator ak ak in the state Q^χjL) is 7:

^K%)=Ί^F (37)

We have the expansion:

QU,LMΛ)= Σ ejkj)λ" (38)

where

eM(^) = ( " l ) m + 1 c(k/ M ; m ^ l . (39)

We notice that, whereas the preceeding expansions of fL(λ) and
(λ9 L, c\πF(A)\λ. L, cy in power series of λ have an infinite radius of
convergence, the radius of convergence of the expansion (38) is:

Putting A = akjak into Eqs. (29), (30) and taking into account the
expansion (38) we get:

AL

n(kj)λ"= )P

p = O

(41)

where

= 7 ~ V <U<2?L I <• **, I »(2?L> n = 0 ,1 , 2 . . . . (42)

Defining the function (we write kj in the place of /c(

;°)

we have (see Eq. (32))

Since 1^,(^)1^1/(^)^(^)1 for kj^k<kJ + 1, and since f(k)g(k) is summable, we are

!allowed to carry out the limit for i -• oc inside the integral if o,(/c) tends to f(k) g{k)

λc{k)2+ 1

almost everywhere. For instance this is true if c, /, g are continuous functions.
7 This relation can be easily proved by writing the vector \λ,L, c> as:

00

|/, L, c> = f] (1 + ]/^ c(fc ) < « - 0 IΨO,F>
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Therefore

Aϊikj) = t U ^ X - m , n^ 1 A^) = 0. (43)
m=l

Finally from (31), (43) we obtain

QL,2nKak)= Σ ejkj)^. (44)

So we are left with the problem of calculating the thermodynamic
limit of the right hand side of (44).

We shall prove that the thermodynamic limit of - " L

m (performed

when n-> oo, L-» oo and m is fixed) is simply λ{d)m, where λ(d) is a positive
number depending only on the density d. Relation (35) will then follow
easily. In order to do this, we shall need the following lemmas:

Lemma I8. // — — ~ — is a rational number, the following inequality
Lx +L2

holds:

aϊ + L>^ Σ <•«£• (45)

Proof. For simplicity let us prove (45) in the particular case
LX^=L2 — L. Let us put

S L = | f c : f e = ; ~ ; 7 = 1,2,3...J. (46)

The lattice S2L is the union of two disjoint lattices 5L, S'L, where S'L
is obtained from SL by shifting it of an amount π/L to the left, i.e.:

(47)
I \ •*• I ^ J

We have

L="πV Σ c{kιγc{k2γ...c{kny

1 n (n \
\ I I \ C\K i C\K i / C\K I C\ K,

π ! I n / ' " " > ' 1 ' " κ

Z-( \ M i Z-( V 1/ ••• V «i/ II i Z J V 1/ ••• V

8 This Lemma, Theorem 1 and the analogy with statistical mechanics are unpublished
results due to G. Gallavotti.
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For each point k'eS'L there exists a point k = k'-\ eSL and the

correspondence fc'-»fc maps Sf

L onto SL; therefore

2
kιeSL

§: Σ c(kί)
2...c(knf

where in the last step we have used the fact that c(k)2 is a decreasing
function. Substituting (49) into (48) we obtain

a2

n

L^ Σ « (50)
n\ +Π2 — n

which proves (45) for Lί — L2

 9. In particular for n = 2m, picking only
the term nι = n2 = m in the R.H.S. of (50), we have

Lemma 2. Let us put

0(L,n)=~-logα£. (52)

lim ff(L,M)=flι(d) (53)
> 2n

L

/zenL goes ίo infinity according to the sequence Li = 2tLo(i = l,2...).
This limit is a concave, continuous, left and right differ entiable function g
of the density d for all 0<d<dmax, where dmax= inϊ{d:g(d)= —GO}.

9 We sketch the proof for the general case: let's put — = — , where mί

Lx + L 2 m1+ m2

and m2 are mutually prime. Consider then the following sets of positive numbers

; = 12, 3, . . . I ,

and the mapping φ : S-+(SίvS2) defined for every x e S by

:yeS1uS2\ y^x} •

The idea of the proof consists simply in "shifting" by means of φ the arguments of the func-
tions c2 from elements of S to elements ofSι or S2, and using the decreasing character of c2.
We leave the proof to the reader.
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Proof. From inequality (51) we have Iogα2^>21ogα£, i.e.:

g(2L,2n)>g(L,n). (54)

Putting

ni=-^=2i-ιdL0 (i = l ,2 . . . ) , (55)

*i) ( i = l , 2 . . . ) (56)

we conclude from (54) that

(ί = l,2 ...)- (57)

On the other hand ψ is a bounded function of i. In fact from the
inequality (13) we have:

aϊ<
1

( 5 8 )

where

D = — f c(/c)2 dk < oo . (59)
2π 0

Hence, using Stirling's theorem in the form Inn! ^ n Inn — n, we have

Vn; ^ - = d . (60)

Therefore, according to the sequence L i = 2 IL 0, gf(Lf, nf) tends to
a function #(d) such that

On the other hand from Lemma 1 we have, putting L = LX+ L2,

= nί+n2:

n); ω ω =g(L,n)>ωίg(Ll9n1) + ω2g(L2,n2); ω ι = Γ ' j

where ωx is a rational number. In particular putting

L = 2'L0, L,=L2 = 2l-xL0, n^l*-2 dt Lo, n2 = 2ι~2 d2L0

into the inequality (62), and taking the limit for i->oo, we get

(63)

where d = j(d1+d2\ and djd2 is a rational number. This inequality
can be easily extended to general values of the densities by defining g(L, ή)
for all positive n by means of linear interpolation [11]. Therefore:



154 G. Fano and G. Loupias:

a) From (61), (63) and the lower bound g(d) > g(L, ή) we can conclude

[12 a] that g is a continuous function and has everywhere left- and right-

hand derivatives -—— and —ττ-5 for all 0 < d < dmax.

b) From (63) and the continuity of g we obtain the general convexity
relation [12 b] :

ωi9(di)l Σ ω ^ l ; i = Σ M i ; ω ^ O . (64)

It is possible to prove that the limit (53) exists and is equal to g(d)
for any sequence L{ tending to infinity (see for instance Ref. [11]), so
that the choice (34) is not at all restrictive.

The analogy with the usual formalism of statistical mechanics is
now clear: λ corresponds to the activity, fL{λ) corresponds to the grand
canonical partition function, and g(d) corresponds to the free energy per
unit volume of an infinite system.

The following question now arises: which physical system has a
grand canonical partition function equal to fL(λ)Ί The answer is simply
obtained10 from the well-known formula

-β Σ [ε(kj)-μ]αtαk oo

Ύre ^ J = Π [l+£Γ / Ϊ C e ( k ' ) -μ ]]
j = i

(/?, μ and ε are positive numbers with the usual physical meaning).
This expression becomes equal to fL(λ) by putting eβμ = λ and

e-βc(kj) _ c{ji^.% Hence the desired physical system is simply a free Fermi

gas with single particle energies ε(kj) equal to — — \ogc(kJ)
2. We can

exploit this analogy with statistical mechanics, by proving the existence
of the "grand canonical pressure" p(λ) = lim p(L, λ\ and showing that

it satisfies the familiar relation p(λ)= \g(d) —
dg

where d{λ) is
dd

the mean density. These results will be useful in solving our problem.
From our hypothesis on the function c it follows that the limit

(see Eq. (21))

p(λ)= lim ^ l o g / L ( l ) = lim 4~ Σ log[l + Ac(fc/] ^ (65)

exists for any λ >0, and is given by:

γ oo

— j log[l + λc(k)2] dk . (66)
zπ 0

1 0 We thank Professor D. W. Robinson for pointing out to us the answer to this

question.
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On the other hand for any α > 0 such that αL is integer, we can write:

OLL oo

fL(λ)= Σ^nλ"+ Σ aL

nλ". (67)
n = 0 n = <zL + l

Since (see inequality (58))

OO 00 i 00

X a\λn^ X —-(DLλ)nS Σ ΦLλ)nn~nen

n = aL+l n-ocL + l ^ n-aL + \ (flQ\

\aL + k oo / Γv i \ α L + fc ^ '

it is possible to determine α in such a way that the last expression is less
than ε, independently of L.

Therefore we can write, with a suitable choice of C:

αL

fL(λ) < V aL

nλ
n + ε^(xL max α^l" + ε g CαL max α^A", (69)

— log/L(A) ^ — logCαL + — log max ah

nλ
n

L L L n^aL
i i " ( 7 0 )

oo / r

= y — ί i — (DA er
t + k< Y

On the other hand max(α^/l")^/L(/ί) for Λ > 0 ; hence

4~ log/L(l) ̂  - i max Iog(^l") = max [-1 logαn

L + 4 log J (71)

Taking the limit for L-*oo into (70), (71), we have:

p(λ) = max L(d) + — logλ λ > 0 (72)
dί2α I 2

Since ε -> 0 when α -> oo we can write:

d

"2— max
0<d<dm

(73)

Our next step shall be to prove that g is differentiable. Since g is a
concave bounded function, it is differentiable except perhaps for a
denumerable set of values oΐd. Let M denote the set where g is differentiable.
We define dg

λ(d) = e~2'ld for deM. (74)
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Since —— is a decreasing function, λ(d) is increasing. Hence λ(d)
dd

is an invertible function. Let us call d(λ) the inverse function, defined on
the set λ(M). d(λ) is increasing, and hence it is differentiable except
perhaps for a denumerable set of values of λ. Let Λ denote the set where
d(λ) exists and is differentiable.

Let us take a point λeΛ. Then d(λ)eM, and g(d) is differentiable at

d = d(λ). By differentiating g(d)+ —log/I with respect to d, we obtain

the expression —— -h —-log2 that vanishes for d = d(λ) (see Eq. (74)).
ad 2

Hence the function

P(λ) = max \g(d) -f — log A (75)

coincides with g[d(λ)~] + —y-\ogλ for λeΛ. It follows that P{λ) co-

incides with p(λ) (see Eq. (73)), since a continuous concave function can

have at most one maximum value. Therefore

ogλ for λeΛ. (76)

Differentiating this equation we have

dp _ dd

Ίλ~Ίλ
log/ ^ £

2 dd

Due to our hypothesis on the function c, we can differentiate under
the integral sign in Eq. (66), and we obtain

2 4 M r τ L « fora11 >̂o
ίU π o 1 +2c(/c)2

and by (77) this expression coincides with d(λ) for λeΛ. From (78) we

see that 2λ —— is an increasing positive analytic function of /I for λ > 0.

Hence the inverse function λ(d) exists; λ(d) is analytic for 0<d<dmax

and coincides with λ(d) on a dense set. Therefore the function
——- = ——log/lid) coincides with the analytic function \ogλ(d)
dd 2 + 2
on a dense set. Since g is concave, - is continuous from the right, and
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is continuous from the left [13]. Hence for all d
dd

-~~-(d) = lim -§— (d + ε)= -—]
ad ε-+o da 1

so that g is everywhere differentiable. Furthermore

1 °° λ c(k)2

π I 1+λ c{k)2

Lemma 3. The following inequality holds n

for all λ>0. (79)

-^β~>-
aίμ- n = l,2.... (80)

<-i at!
Proof. Let us put

QL

n=n\aL

n= X c{kh)
2 c(kj2)

2 ... c{kjn)
2 (81)

Consider now the expressions

n)2 = Σ c(kjf c(kh)
2 ... c(kjf c(kΛ)

2 c(kf2)
2... c(krf , (82)

We arrange the contributions to the sum appearing in (82), according
to the number v of coincidences between the indices JiJ2 j n

 a n d
fiJΊ -"in (respectively we arrange the contributions to (83) according
to the number v of coincidences between jίj2 --h-i and 7i,j'2 •••fn + i)
More precisely, we define for 2v + τ g: 2:

Λt= Σ cKf c(kl2r •. c(klvr c(kmf c(km2)
2... c(kmf

ίiΦί2 Φίv*miΦm2Φmτ (84)

and we notice that there are ways of choosing v indices lί9l2 ••• ' v

among JιJ2 •• j n

 a n ( ^ v indices l[,Γ2 ... l'x among j[,f2 -..]'„. Furthermore
there are v! different ways of identifying the indices Z 1 ? / 2 . . . / v and
l'uΓ2 ... l'v, and all these ways give rise to the same contribution A^2in-V).

11 Inequality (80) can also be derived using classical results in the theory of entire
functions. See for instance R. P. Boas: Entire functions, Academic Press 1954, p. 24,
Theorem 2.8.2.
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Therefore we can write the expression (82) as

<2in-V)- (85)
v = 0

Reasoning in the same way, we can write (83) as:

( ) ( ) ^ . 2 ( » , (86)

It follows that

"-1 (n\ (n+1)!

%\vj ( n - v - 1 ) ! n — v n — v + 1
(87)

and the right-hand side of (87) is positive since all A^τ are positive. The
inequality (80) then follows.

We can now prove our main theorem concerning the termodynamic

limit of n+

L

1 . Let us first give an heuristic argument: from (52) it

follows that

g(L,n + l)-g(L,n) g(L,n +1)-g(L,n)

^φ~=e L =e h ~L . (88)

Therefore, since the thermodynamic limit of g(L, n) with — = —d

is the function g(d), it seems reasonable12 to conclude from (88) that the
2dg_

thermodynamic limit of a^+1/a^ is e dd. This is indeed the case and we
have the theorem:

Theorem 1. Let c be a real function defined over R+ = {x:x^0}
verifying the following conditions:

i) c is decreasing.
ii) c vanishes at infinity faster than k~*.

iii) c is square-integrable over R+.
Then for 0<d<dmax we have:

lim a^=e

2^=λ(dy1. (89)
H-»OO,L->OO a

1 2 From the physical point of view, it is evident that there are no terms in (88) depending
on the boundary of our system.
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Proof. By repeated application of the inequality (80) we find

cά+M a1:Λn + ct. un + a ""w + α - 1

where α is any positive integer. Therefore

(90)

(91)

Letting L->oo with 2n = Ld and 2α = εL, we find

liminf—^— ^ e ε . (92)

2n/L = d

Similarly

lim sup —^— ̂ e ε . (94)

2n/L = d H~i

Letting now ε->0 in (92), (94) and using the differentiability of g(d)
we obtain the desired result (89).

For a given density d, let Li = 2ιL0 (i= 1, 2, 3 ...) be a sequence of
lengths such that the numbers ni = \dLi are integers. We recall that

{ 9τr 1 °°

x\x=j ; = 1,2,3 ..Λ, and we put S = (J S(i) (notice that S
is dense in R+). The following theorem holds:

Theorem 2. Let us assume that c satisfies the conditions ϊ)... iii) of
the preceeding theorem. Then for ke S and 0 < d < dmaχ1 the thermodynamic
limit of the sequence QLif2nι(

ak ak) *s given by:

( + Λ r r + \ λ{d)c(k)2

QB2,d\ak ak)= l i m QLx,2n\ak ak)= -T7ΊΓ-7TτT—T ( 9 ί ))
ί->oo

-2^-

whereλ(d) = e dd >0.
Proof. We treat separately the two cases c(k)2 < λ(d)~1, c(k)2 >

(the case c(k)2 = λ(d)~ι then follows by continuity):
1. c(k)2 <λ(d)~K We can write (see Eqs. (39), (44)):

0L..2»Kβ*)= Σ Λ°
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where

J

J

We

We

£ = 0 for

define, for

claim that

lnl-m

m>

any ε

for i

\J

In fact from Lemma

< - m

a n l a n l

G.

nt.

> 0

Fano and G. Loupias:

- l ) m + 1 c ( k ) 2 m -

(λ(d) + ε)]m

sufficiently large:

ml <

3 it

+ 1

-ΰm,ε rn=l,

follows that

n, — m +1

un, - m + 2

w = l ,

2,3 ..

aLι

for

2,3. .

• (97)

(98)

(99)

(100)

By Theorem 1 it follows that for any ε > 0, it is possible to choose i
sufficiently large in such a way that lα^'-i/α^' — λ(d)\ < ε; therefore

(101)

and the inequality (99) is proved.
oo

Choosing ε < c(k)~2 — λ(d\ the geometrical series ^ gfm>c converges.
m = l

Therefore the series (96) is dominated by a convergent series, and we can
interchange the limit for Ϊ-^OO and the sum over m. Applying Theorem 1,
we obtain:

Um n (r,+ r, \ lϊrvΛ V / 1 \w + 1 ^//Λ2m «i ~ m n , - m + l n, — 1

Λnι~m + 1 unι~m + 2

^+1^2m3^m__M#
(102)

{-I)m+1c(k)2mλ{d)m =
•m = l /uVujc(fe)2 + l "

2. c(k)2>λ(d)~1. Let us put L = Lh n = nt into Eq. (44), and let us
perform the change of variable m = ni — nϊ into the sum. We obtain:

m' = 0

1 \nt

GO

m' = 0

1

1

c(fe)2

m'

1

(/c)

— m

m'

\

2 I

) m

oo

- Σ
m' — nx

Ύ

1

c(k)2

1 "

c(k)2

m

m

(103)
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Since ke S, there exists an index i* such that for i > ί*, k e St. Therefore

for i sufficiently large, fu\ jγ^r) = 0 (see Eq. (15)) and we get:
c(k)2

<*k)=]im

From Lemma 3 it follows that

1

c(k)2

c(k)2

m nLt

(104)

at;\ nL> ^l
a! at;1

at!

nLx \m

at;1
(105)

Therefore for any ε > 0, it follows by Theorem 1 that for / sufficiently
large we can write

(106)

Therefore choosing ε < c(k)2 — λ(d) 1 the series (104) is dominated
by a convergent geometrical series, and we can interchange the limit with
the sum. Applying again Theorem 1 we obtain:

oo Γ γ m nU nLx

m = 0L Φ)2

l-λ{d)c(k)2γm--
λ(d)c(k))2

(107)

λ(d) c(k)2

This theorem assures that (35), (36) hold. Comparing these formulae
with (37), we have finally

a{g)] (108)

where ρ[λidhR] is the (weak) limit of the gauge dependent B.C.S. vector
state ρ(λL) when λ = λ(d) and L->oo? and ρB2>d is given by (10).

The physical meaning of Eq. (79) is now clear: it establishes the equality
between the particle density in the state ρBld and the mean particle
density in the gauge-dependent B.C.S. state Q[χ^),R]

Example. Let c(k)2 be given by the function13

= e~tk; t>0 (109)

that satisfies conditions i). . . iii) of Theorem 1.
1 3 We are indebted to Dr. G. Pizzichmi for showing to us that this example can be

worked out explicitly.
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We have, putting A = —— (see formula (17)):

Σ •••

( U 0 )

7 1 = 1

1

Therefore

This value o:

1

2 ld =

ϊλ(d)

1

= lim —
n~* co Q

satisfies

f

73 '-

1

e

an

the

1

= lim
n-» oo

nΔ —πd

relation

- l ) - β π d ί - 1 . ( I l l )

in agreement with (79).
We notice that conditions i)... iii) of Theorem 1 on the function c(k)

are far from necessary for our results to hold. Consider the simple example

c(fe)=~ (113)

that does not satisfy condition iii) of Theorem 1. In this case the infinite
product (14) is simply given by 1 4 :

Therefore in this case

2n 1

g(d)= lim ~loga n

L = dlog-^-; ^-=-\ogld, (116)
n-^co L la da

L = 2n/'d

1 4 We make use of the well known formula Π 1 —I =
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lim n +
πL / T \2

n + 1 - lim Ilim I I
aL

n i ™ \ 2 J (2n + 2 ) ( 2 n
L l j d

~2

etc. Therefore all our formulae hold also in this case. A more general
class of functions c, which includes the case

, , v 1 , 1
c ( f c ) ^ " p Γ ' m r e a l > y

shall be studied in a subsequent paper.
Let now A = a^ιa^2 ... af aSiaS2 ... as be a general gauge invariant

monomial in the field operators, with rmeS, sneS (m, n = 1,2 ... p).
Since 4̂ contains an equal number of creation and annihilation operators,
well known formulae [14] tell us that ρ{λ L){A) can be written as a linear

M(p)

combination £ hq(λ) of terms of the type:

β a

KΨ) == Π 0<λ,L)K α ^ Π ^(λ,L)« a-k) Q(λ,L)(a-h^h) (120)
j = l ί = l

where 2α + β = p and the different choices of the indices lp kh ht among
rx '•-rps1 ... sp are labelled by the integer q. Since

we can expand ^ (A,D(^) i n power series of Λ, obtaining a generalization
of formula (38):

Also formula (44) can be immediately generalized; we obtain

n ~L

QL 2n(A) = Σ em(A) -~- . (124)
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Taking into account (123), we can write

n

QL,2Π(A) = Σ
1

Σ

dm

dλ"

ml

dmhq(λ)

dλm

1)1

λ = 0

aL

n-m

° aL

n

From (120), (121), (122) we have

dmhq(λ)

m! dλn

(125)

1 dm

m\ dλm βπ [1 + λc(lj)

β

a

i = 1

α

/π c(fef) c(ht)

:(/ct )
2] [1 + λc(hi)

2~]

(126)

where we have introduced the notation

(a, + a2 + + αj<m> = £ < * ^ ... <%». (127)

Since

^ ^ -(128)

m + 2

a2
( α 1 - α 2 ) ( α 1 - α 3 ) (a2-aι)(a2~a3) (a3 - at) {a3 - a2)

(129)

etc., it is possible to write em(A) as a linear combination of terms of the
type (— l ) m + 1 c(k)2m, the coefficients of the linear combination being
independent of m. We are then led back to the case considered in
Theorem 2; for each term we can perform the thermodynamic limit
inside the sum, i.e.:

^lim - V (-l)m+1c(/c)2w/l(c/)m (130)
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So, finally:

QB2ti(A)= lim ρLιt2JA)= Jim | e m ( Λ ) - ^ -
I"°°m~1 "' (131)

As in the previous case, it is easy to extend this result to any local
observable A = a(fί)

+... a(fp)
+ a(g{)... a(gp). Since qB^d and ρm)tR]

coincide on any local observable we can deduce, by continuity, that
they coincide on any quasi local observable. Of course ρBid vanishes
on the non gauge invariant monomials A of the algebra, while in general
Q[λ{d),R] does not vanish on such elements. It is well known that Q[λ{d)>R]

presents a broken symmetry; defining

Q(λ,R,θ) = Q[λ,R]°*θl 0 ^ θ ^ 2 π (132)

where θίθ is the automorphism of the algebra generated by the gauge
transformation a(f)-+a(f) eιθ, it is easy to verify that

Qβ2,d = ί ~2^ Q(λ(d),R,θ) (133)

In fact the state on the R.H.S. of (133) vanishes on non gauge invariant
monomials of the algebra and coincides with Q[λ{d),R] on the gauge in-
variant elements.
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